第六章 薄膜的生长过程
- 格式:ppt
- 大小:3.48 MB
- 文档页数:35
薄膜生长步骤
薄膜生长指的是在基底上通过化学或物理方法制备出一层薄膜的
过程。
这项技术具有广泛的应用前景,例如电子器件、光学材料、涂
料等领域。
下面我们将分步骤介绍薄膜生长的过程。
第一步,先准备好基底,一般选用的是高质量的单晶硅片或玻璃
基板。
这个步骤的关键在于确保基底表面平整、无杂质,以及合适的
晶格结构和晶向。
第二步,进行基底表面预处理。
这个步骤的目的是去除表面的氧
化物和污染物,以及提高表面的反应活性。
常用的方法包括机械抛光、酸洗、热压等。
第三步,选择适当的生长技术。
常见的薄膜生长技术有物理气相
沉积、化学气相沉积、分子束外延、溅射等。
不同的技术具有不同的
优缺点和适用范围,应该根据具体需要选择。
第四步,进行薄膜的生长。
生长过程中需要控制温度、气压、反
应进气量等参数来控制膜的厚度和质量。
在生长过程中还需要根据需
要加入掺杂元素或在不同的反应条件下进行生长。
第五步,进行后处理。
薄膜生长后需要进行一定的后处理,例如
进行退火、氧化等,这些步骤有助于提高膜质量和改变其性能。
以上就是薄膜生长的主要步骤。
在实际操作中,还需要注意一些细节,例如仪器的维护、材料的选择、反应条件的调整等,才能得到高质量的薄膜。
薄膜的生长主要包含以下三个基本过程:首先,在非平衡等离子体中,电子与反应气体发生初级反应,使得反应气体发生分解,形成离子和活性基团的混合物;其二,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物之间的次级反应;最后,到达生长表面的各种初级反应和次级反应产物被吸附并与表面发生反应,同时伴随有气相分子物的再放出。
具体说来,基于辉光放电方法的PECVD技术,能够使得反应气体在外界电磁场的激励下实现电离形成等离子体。
在辉光放电的等离子体中,电子经外电场加速后,其动能通常可达10eV左右,甚至更高,足以破坏反应气体分子的化学键,因此,通过高能电子和反应气体分子的非弹性碰撞,就会使气体分子电离(离化)或者使其分解,产生中性原子和分子生成物。
正离子受到离子层加速电场的加速与上电极碰撞,放置衬底的下电极附近也存在有一较小的离子层电场,所以衬底也受到某种程度的离子轰击。
因而分解产生的中性物依扩散到达管壁和衬底。
这些粒子和基团(这里把化学上是活性的中性原子和分子物都称之为基团)在漂移和扩散的过程中,由于平均自由程很短,所以都会发生离子-分子反应和基团-分子反应等过程。
到达衬底并被吸附的化学活性物(主要是基团)的化学性质都很活泼,由它们之间的相互反应从而形成薄膜。
2、等离子体内的化学反应由于辉光放电过程中对反应气体的激励主要是电子碰撞,因此等离子体内的基元反应多种多样的,而且等离子体与固体表面的相互作用也非常复杂,这些都给PECVD技术制膜过程的机理研究增加了难度。
迄今为止,许多重要的反应体系都是通过实验使工艺参数最优化,从而获得具有理想特性的薄膜。
对基于PECVD技术的硅基薄膜的沉积而言,如果能够深刻揭示其沉积机理,便可以在保证材料优良物性的前提下,大幅度提高硅基薄膜材料的沉积速率。
目前,在硅基薄膜的研究中,人们之所以普遍采用氢稀释硅烷(SiH4)作为反应气体,是因为这样生成的硅基薄膜材料中含有一定量的氢,H 在硅基薄膜中起着十分重要的作用,它能填补材料结构中的悬键,大大降低了缺陷能级,容易实现材料的价电子控制,自从1975 年Spear 等人首先实现硅薄膜的掺杂效应并制备出第一个pn 结以来,基于PECVD 技术的硅基薄膜制备与应用研究得到了突飞猛进的发展,因此,下面将对硅基薄膜PECVD 技术沉积过程中硅烷等离子体内的化学反应进行描述与讨论。