生理学考试知识点整理:心肌细胞的生理特性
- 格式:doc
- 大小:12.50 KB
- 文档页数:2
心肌生理特性心肌生理特性包括:自律性、兴奋性、传导性和收缩性。
一、心肌的生物电现象(跨膜电位)心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。
另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。
图1 各部分心肌细胞的跨膜电位(一)、工作心肌的跨膜电位:以心室肌为例说明之。
图2 心室肌细胞的跨膜电位及形成机制心肌细胞的跨膜电位包括静息电位和动作电位。
其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。
(1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。
细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。
因此,K+顺浓度差由膜内向膜外扩散,达到K+的电一化学平衡电位。
(2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期1、去极化:又称为0期。
在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。
0期历时1~2 ms。
其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na+快速内流,使膜内电位急剧上升,达到Na+的电一化学平衡电位。
2、复极化:包括l期、2期、3期、4期。
1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。
2期:1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。
记录的动作电位曲线呈平台状,故此期称为平台期。
2期的形成主要是由Ca2+内流与K+外流同时存在,二者对膜电位的影响相互抵消。
3期:膜内电位由0MV 左右下降到-90 ,3期是Ca2+内流停止,K+外流逐渐增强所致。
4期:此期膜电位稳定于静息电位,所以也称静息期。
4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。
第四讲心肌的生理特性二、心肌细胞的电生理特性——兴奋性、自律性、传导性和收缩性(一)兴奋性:●心肌细胞属于可兴奋组织,在受到适当刺激时可产生动作电位的能力,以阈值作指标。
●阈值高表示兴奋性低,阈值低表示兴奋性高。
1、兴奋性的周期性变化(1)有效不应期(effective refractory period,ERP)●心肌细胞一次兴奋过程中,由0期开始到3期膜电位恢复到-60mV这段时期,心肌不能产生新的动作电位。
●包括绝对不应期和局部反应期。
●绝对不应期(ARP):0期∽-55mV,兴奋性为0,膜电位负值太低,Na+通道完全失活。
●局部反应期:-55mV∽-60mV,Na+通道少量复活,引起局部去极化,不产生动作电位。
(2)相对不应期(Relative refractory period)●-60mV∽-80mV,Na+通道已逐渐复活,但开放能力尚未恢复正常,兴奋性低于正常,只有阈上刺激才能引起动作电位。
(3)超常期(Supernormal period)●-80mV∽-90mV,膜电位已基本恢复,更接近阈电位水平,Na+通道恢复到备用状态,兴奋性高于正常,阈下刺激能引起新的动作电位。
●心肌兴奋时,兴奋性周期性变化特点是有效不应期长,相当于整个收缩期和舒张早期。
这一特性是的心肌收缩和舒张活动能交替有序,在心缩期不会接受外来的兴奋而发生强直收缩。
2、决定兴奋性的因素①静息电位或最大复极电位水平:负值↑→兴奋性↓;负值↓→兴奋性↑②阈电位水平:水平↑→兴奋性↓;水平↓→兴奋性↑③引起0期去极化的离子通道性状:Na+通道和L型钙通道状态是否处于备用状态。
●Na+通道和L型钙通道活动是电压依从性和时间依从性的。
●有激活、失活和备用三种状态。
●Na+通道:-90mV -70mV -55mV(复极)-90mV激活失活复活备用●慢反应细胞的兴奋性决定于L型钙通道的功能状态,但L型钙通道的激活、失活和复活速度均较慢,其有效不应期也很长,可持续到完全复极之后。
心肌细胞的电生理学特性及其对心脏节律的影响心肌细胞是构成心脏的重要组成部分之一。
它们负责收缩,使心脏能够有效地将血液输送到全身各个器官。
心肌细胞与其他肌肉细胞不同的是,它们具有特殊的电生理学特性,这些特性对心脏正常的节律、动力学和功能具有重要的影响。
1. 心肌细胞的电生理学特性心肌细胞的电生理学特性主要体现在动作电位和细胞间的耦联上。
动作电位是指心肌细胞在兴奋后表现出来的电信号。
一个动作电位由不同的离子通道参与控制,这些离子通道包括钠通道、钾通道、钙通道等。
具体来讲,心肌细胞的动作电位主要分为五个阶段:起始阶段、低平台阶段、快速复极阶段、高平台阶段和最终复极阶段。
在起始阶段,钠通道开放,使细胞内钠离子大量进入,导致膜电位迅速升高。
在低平台阶段,钠通道关闭,钾通道开放,钠离子不再进入,而钾离子大量流出,导致膜电位缓慢下降。
在快速复极阶段,钾通道继续开放,钠离子和钙离子逐渐流回细胞外,膜电位迅速降低。
在高平台阶段,钾通道关闭,而钙通道开始开放,钙离子进入细胞,使膜电位保持一定的水平。
最终复极阶段,钙通道关闭,细胞内钙离子逐渐流出,而钾离子继续流出,膜电位快速复极。
除了动作电位,心肌细胞的另一个重要电生理学特性就是细胞间的耦联。
心肌细胞之间通过间质连接互相连接,这些连接可以使细胞之间的离子流动同步,并产生一定的电场效应,从而调节整个心脏的节律和收缩功能。
2. 心肌细胞的电生理学对心脏节律的影响心肌细胞的电生理学特性对心脏的节律和动力学产生了深远的影响。
其中最重要的是心脏的自主节律。
心脏的自主节律是由心内传导系统产生的,这个系统包括窦房结、房间束、房室结、His束和心室肌纤维。
心内传导系统中有许多细胞也参与了细胞间的耦联,使得整个心脏可以同时收缩向前泵血,保证了血液循环的正常运转。
具体来讲,心脏的自主节律是由窦房结负责控制的。
窦房结位于右心房的上部,它所在的位置比较接近心脏表面,可以更容易地受到体内外一些因素的影响。
心肌生理特性包括:自律性、兴奋性、传导性和收缩性。
一、心肌的生物电现象(跨膜电位)心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。
另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。
图1 各部分心肌细胞的跨膜电位(一)、工作心肌的跨膜电位:以心室肌为例说明之。
图2 心室肌细胞的跨膜电位及形成机制心肌细胞的跨膜电位包括静息电位和动作电位。
其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。
(1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。
细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。
因此,K顺浓度差由膜内向膜外扩散,达到K的电一化学平衡电位。
(2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期1、去极化:又称为0期。
在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。
0期历时1~2 ms。
其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na 快速内流,使膜内电位急剧上升,达到Na的电一化学平衡电位。
2、复极化:包括l期、2期、3期、4期。
1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。
2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。
记录的动作电位曲线呈平台状,故此期称为平台期。
2期的形成主要是由Ca 内流与K外流同时存在,二者对膜电位的影响相互抵消。
3期:膜内电位由0MV 左右下降到-90 ,3期是Ca内流停止,K外流逐渐增强所致。
4期:此期膜电位稳定于静息电位,所以也称静息期。
4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。
2++2++++++(二)、自律细胞的跨膜电位及其产生机制:以窦房结细胞为例说明之。
心电物理知识
1.心肌细胞电生理特性:
心脏肌肉细胞(心肌细胞)具有独特的电生理特性,当细胞膜内外离子浓度发生变化时,会产生电位变化。
静息状态下,心肌细胞膜内外存在稳定的电位差,即静息电位,通常是细胞膜外正电,膜内负电。
当细胞受到刺激时,膜电位会发生瞬时的反转,即除极过程,随后通过离子泵的作用回到静息状态,这个过程称为复极。
心肌细胞的这种电位变化会形成一系列的动作电位,依次传播,使得心脏得以有序地收缩和舒张。
2.心电向量:
心脏每次搏动产生的电活动,可以看作是一个三维空间的电流源,形成一个心电向量。
这个向量随着心脏各部位的激动顺序和方向不断变化。
心电向量的合成就是心肌细胞动作电位在空间上的总体表现。
3.心电信号记录:
通过在人体体表放置多个电极,可以检测到心脏电活动在体表的投影。
当心脏各部位依次除极和复极时,体表电位随之变化,形成的心电图波形反映了心脏激动的顺序和时间间隔。
心电图上的P波、QRS波群、T波和U波分别对应了心房除极、心室除极、心室复极早期和晚期复极过程。
4.心电图波形解读:
心电图上的波形提供了丰富的信息,包括心率、心律、心肌除极和复极的顺序、时间、幅度以及各波形间的时间间隔等,这些参数可用于诊断各种心脏疾病,如心律失常、心肌梗死、心室肥大、心肌炎、电解质紊乱等。
5.心电生理传导系统:
心脏内部有一个特化的传导系统,包括窦房结、房室结、希氏束、浦肯野纤维等,这些结构保证了心脏电激动的有序传递。
心电图能反映出这个传导系统的功能状态。
生理学考试知识点整理:心肌细胞的生理特性
1.自动节律性组织细胞具有在没有外来刺激的条件下,自动地发生节律性兴奋的特性。
自律性来源于特殊传导系统的自律细胞,其中窦房结细胞的自律性最高,称为起搏细胞,是正常心脏的起搏点。
心肌细胞自律性的高低取决于4期去极的速度。
2.兴奋性在一个心动周期中,心肌的兴奋性是不断变化的。
(1)绝对不应期:在此期间任何强大的刺激都不能引起动作电位。
(2)有效不应期:随后有一个时期,如给予足够强的刺激,肌膜可产生局部反应,但不能引起扩布性兴奋。
有教科书将这一时期加上前面的绝对不应期称为有效不应期。
(3)相对不应期:高于正常阈值的强刺激,可以引起扩布性兴奋。
(4)超常期:给予略低于正常发生兴奋所需的刺激,可引起一个动作电位。
3.传导性心脏内兴奋的传播是通过两种系统完成的,特殊传导系统和心肌本身。
(1)主要传导途径:窦房结→心房肌和房内传导
系统→房室交界→房室束支→左、右束支→浦肯野纤维→心室肌。
(2)传导速度:心脏中不同组织的传导速度各不相同,房室交
界处传导速度慢。
心室中的特殊传导系统传导速度快。
4.收缩性心肌一般不发生强直收缩。
Ca2+、交感神经兴奋或儿茶酚胺等加强心肌收缩力,低氧、酸中毒、乙酰胆碱等降低心肌收缩力。