广东省汕头市潮南区 九年级数学上册 期末质检试题含答案【精品】
- 格式:doc
- 大小:4.84 MB
- 文档页数:11
广东汕头九年级数学上学期期末考试卷(含答案)总分120分 时间90分钟一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应的位置上.1.在下列四个图案中既是轴对称图形,又是中心对称图形的是( ) .A. B .C .D.2. 下列事件中,属于必然事件的是( ).A. 小明买彩票中奖B. 投掷一枚质地均匀的骰子,掷得的点数是奇数C. 等腰三角形的两个底角相等D. a 是实数,0a < 3.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 直径AB 的延长线 于点D .若∠D =40°,则∠A 的度数为( ). A .20°B .25°C .30°D .40°4.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点(1,1)-; 乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ).A .=-y xB .1=y xC .2y xD .1=-y x5.如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( ).A .4πB .6πC .8πD .12π6.关于x 的一元二次方程()22310+-+=a x x 有实数根,则a 的取值范围是( ).A .14a ≤且2a ≠- B .14a ≤ C .14a <且2a ≠- D .14a <7.图1是装了液体的高脚杯示意图(数据如图),用去一部 分液体后如图2所示,此时液面AB =( ). A .1cm B .2cm C . 3cmD .4cm8.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,设参加活动的同学有x 人, 根据题意,可列方程( ). A .(1)42-=x xB .(1)42+=x xC .(1)422-=x x D .(1)422+=x x 9. 已知抛物线y=ax 2+bx+c 的顶点为D(﹣1,3),与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论: ①b 2-4ac >0; ②c ﹣a=3; ③a+b+c <0;④方程ax 2+bx+c=m(m≥2)一定有实数根,其中正确的结论为( ). A. ①②④ B. ①②③ C. ①③ D. ②③10.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( ).A .()202020202,32--B .()202120212,32C .()202020202,32 D .()201120212,32--二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确案填写在答题卡相应的位置上.11.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是______.12.在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是_______. 13.若点()23,2P a b +-关于原点的对称点为()3,2Q a b -,则()20203a b +=________.14.一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长__________.15.直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为5,CD =8,则弦AC 的长为________. 16.如图,在反比例函数14y x=和2k y x =的图象上取A ,B 两点,若AB ∥x 轴,△AOB 的面积为5,则k = __ .17.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,接PQ ,则PQ 长的最小值是________ .三、解答题(一)(本大题3小题,每小题6分,共18分).18.解方程:2810x x -+=.19.如图,OM 是⊙O 的半径,过M 点作⊙O 的切线AB ,且MA MB =,OA ,OB 分别交⊙O 于C ,D . 求证:AC BD =.20.如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4, 请直接写出点P 的坐标.四、解答题(二)(本大题3小题,每小题8分,共24分).21.已知二次函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,3),(﹣1,0).(1)则b = ,c = ;(2)该二次函数图象的顶点坐标为 ; (3)在所给坐标系中画出该二次函数的大概图象; (4)根据图象,当﹣1<x <0时,y 的取值范围是 .22.如图1,在Rt △ABC 中,∠A =90°,AB=AC=12+,点D ,E 分别在边AB,AC 上,且1AD AE ==,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α,如图2,连接CE ,BD ,CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;23. 渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?五、解答题(三)(本大题2小题,每小题10分,共20分).24.如图,AB是⊙O的直径,点P在⊙O上,且PA=PB,点M是⊙O外一点,MB与⊙O 相切于点B,连接OM,过点A作AC∥OM交⊙O于点C,连接BC交OM于点D.(1)求证:OD=12 AC;(2)求证:MC是⊙O的切线;(3)若152OB ,BC=12,连接PC,求PC的长.25.如图,抛物线y=14x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM 与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,请直接..写出点Q的坐标.参考答案与评分标准一、选择题1. B 2. C 3.B 4.D 5.D 6.A 7.C 8.A 9.B 10.C 二、填空题11. (3,7) 12. 12 13. 1 14. 1215. 416. 14 17. 1三、解答题(一)18.解: 移项,得281x x -=- --------------1分配方,得2228(4)(4)1x x -+-=----------------2分 即2(4)15x -= --------------3分解这个方程得415x -=± --------------5分1415x ∴=+,2415x =- --------------6分19.证明:OM 是⊙O 的半径,过M 点作⊙O 的切线AB ,OM AB ∴⊥, --------------1分MA MB =,ABO ∴∆是等腰三角形, --------------2分 OA OB ∴=, --------------3分OC OD =,OA OC OB OD ∴-=-, --------------5分即:AC BD =. --------------6分20.解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6, ∴反比例函数的解析式为26y x=-, --------------1分 将A (-1,n )代入26y x=-, 得:661n =-=-,即A (-1,6), --------------2分将A ,B 代入一次函数解析式中,得第19题图236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩, --------------3分 ∴一次函数解析式为124y x =-+; --------------4分 (2)点P 的坐标为(1,0)或(3,0). --------------6分四、解答题(二)21.解:(1)2,3; ------------2分(2)(1,4); ------------4分 (3)如图所示: ------------6分 (4)0<y <3. ------------8分 22.证明:(1)根据题意:AB=AC ,AD=AE ,∠CAB=∠EAD=90︒, ∵∠CAE+∠BAE =∠BAD+∠BAE =90︒, ∴∠CAE=∠BAD ,--------------1分在△ACE 和△ABD 中,AC ABCAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD(SAS), --------------3分 ∴CE=BD ; --------------4分(2)根据题意:AB=AC ,AD=AE ,∠CAB=∠EAD=90︒,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD(SAS), --------------5分∴∠ACE=∠ABD ,∵∠ACE+∠AEC=90︒,且∠AEC=∠FEB , ∴∠ABD+∠FEB=90︒, ∴∠EFB=90︒,∴CF ⊥BD ,--------------6分 ∵21,AD=AE=1,∠CAB=∠EAD=90︒, ∴222+,22+, ∴BC= CD , --------------7分∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线.--------------8分23.解:(1)若降价x 元,则每天销量可增加50x 千克, ∴()()500504830W x x =+--,整理得:2504009000W x x =-++, --------------2分 当2x =时,2502400290009600W =-⨯+⨯+=,∴每天的利润为9600元; --------------3分(2)()225040090005049800W x x x =-++=--+, ∵500-<,∴当4x =时,W 取得最大值,最大值为9800,∴降价4元,利润最大,最大利润为9800元; --------------5分(3)令9750W =,得:()297505049800x =--+, 解得:15=x ,23x =, --------------7分∵要让利于民,∴5x =,48543-=(元)∴定价为43元. --------------8分五、解答题(三) 24.证明:(1)∵AB 是⊙O 的直径,∴∠ACB=90°, 又∵AC ∥OM ,∴90BDO ACB ∠=∠=︒, ∴OD ⊥BC ,∴D 为BC 的中点,O 为AB 的中点,∴OD 为△ABC 为中位线,∴OD =12AC ; --------------3分(2)如图所示:连接OC , ∵AC ∥OM ,∴∠OAC =∠BOM ,∠ACO =∠COM , ∵OA =OC , ∴∠OAC =∠ACO , ∴∠BOM =∠COM ,在△OCM 与△OBM 中,OC OBCOM BOM OM OM ⎧⎪∠=∠⎨⎪⎩==,∴△OCM ≌△OBM(SAS)又∵MB 是⊙O 的切线, ∴∠OCM =∠OBM =90°,∴MC 是⊙O 的切线; --------------7分(3)∵AB 是⊙O 的直径∴∠ACB =∠APB =90°∵OB =152, ∴AB =15,∴PA =PB 152, ∵BC=12, ∴AC=9,过点A 作AH ⊥PC 于点H ,∵29AC OD ==,45ACH ABP ∠=∠=︒, ∴AH =CH 92222215292()()6222PH PA AH =-=-=∴PC =PH+CH 212--------------10分 25.解:(1)令y =0,x 2﹣x ﹣3=0解得,x =﹣2,或x =6, ∴A (﹣2,0),B (6,0),设直线l 的解析式为y =kx +b (k ≠0),则,解得,,∴直线l 的解析式为; --------------3分(2)如图1,根据题意可知,点P与点N的坐标分别为P(m,m2﹣m﹣3),N(m,m﹣1),∴PM=﹣m2+m+3,MN=m+1,NP=﹣m2+m+2,分两种情况:①当PM=3MN时,得﹣m2+m+3=3(m+1),解得,m=0,或m=﹣2(舍),∴P(0,﹣3);--------------5分②当PM=3NP时,得﹣m2+m+3=3(﹣m2+m+2),解得,m=3,或m=﹣2(舍),∴P(3,﹣);∴当点N是线段PM的三等分点时,点P的坐标为(3,﹣)或(0,﹣3);-----------7分(3)点Q的坐标为(0,9)或(0,﹣).(答对一个给2分,答对两个给3分) --------10分附(3)详细解答:∵直线l:与y轴于点E,∴点E的坐标为(0,﹣1),分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴,即∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,﹣3),D(4,﹣3),∴CD⊥y轴,∴ED=,∴,,∴,∴Q1O=Q1E﹣OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴,即,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2,∴3EG=2,∴,∴,∴,∴,,综上,点Q的坐标为(0,9)或(0,﹣).。
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.二次函数y =2x 2﹣4x ﹣6的最小值是( ) A .﹣8B .﹣2C .0D .62.抛物线的()213y x =-+顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)--D .(1,3)-3.下列事件中为必然事件的是( ) A .抛一枚硬币,正面向上 B .打开电视,正在播放广告 C .购买一张彩票,中奖D .从三个黑球中摸出一个是黑球4.如图,ABC 中,D 、E 分别是BC 、AC 边上一点,F 是AD 、BE 的交点,2CE AE =,BF EF =,EN BC ∥交AD 于N ,若3BD =,则CD 长度为( )A .6B .7C .8D .95.若反比例函数2k y x-=的图象在每一条曲线上y 都随x 的增大而增大,则k 的取值范围是() A .2k >B .2k <C .02k <<D .k 2≤6.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .357.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm 长的绑绳EF ,tanα=,则“人字梯”的顶端离地面的高度AD 是( )A .144cmB .180cmC .240cmD .360cm8.方程x 2+4x +4=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根D .没有实数根9.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 10.如图,△ABC 中,∠A=30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD=23,则线段CD 的长是( )A .2B 3C .32D 332二、填空题(每小题3分,共24分)11.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.12.如图,在Rt ABC 中,90ACB ∠=︒,4cos 5A =,点D 为AB 边上一点,作DE BC ⊥于点E ,若5AD =,8DE =,则tan ACD ∠的值为____.13.如图,AB AC 、是O 的切线,B C 、为切点,连接BC .若50A ∠=︒,则ABC ∠=__________.14.若关于x 的方程2(2)(23)10a x a x a -+-++=有两个不相等的实数根,则a 的取值范围是________. 15.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件. 16.在ABC ∆中,()23tan 3cos 02A B -+-=,则∠C 的度数为____. 17.小天想要计算一组数据92,90,94,86,99,85的方差S 02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S 12,则S 12__S 02(填“>”,“=”或”<”) 18.连接三角形各边中点所得的三角形面积与原三角形面积之比为: . 三、解答题(共66分)19.(10分)在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园 ABCD ,要求把位于图中点 P 处的一颗景观树圈在花园内,且景观树 P 与篱笆的距离不小2米.已知点 P 到墙体 DA 、DC 的距离分别是8米、16米,如果 DA 、DC 所在两面墙体均足够长,求符合要求的矩形花园面积 S 的最大值.20.(6分)解方程组:7235215x y x y -=⎧⎨+=-⎩21.(6分)在四边形ABCD 中,对角线AC 、BD 相交于点O ,设锐角∠DOC =α,将△DOC 按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M .(1)当四边形ABCD 是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想此时AC′与BD′的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(1)AC′与BD′的数量关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.22.(8分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE ,AE=3,∠CAE=45°,求AD 的长. (2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD 的长.23.(8分)如图1,抛物线2: 2W y ax =-的顶点为点A ,与x 轴的负半轴交于点D ,直线AB 交抛物线W 于另一点C ,点B 的坐标为()1,0.(1)求直线AB 的解析式;(2)过点C 作CE x ⊥轴,交x 轴于点E ,若AC 平分DCE ∠,求抛物线W 的解析式; (3)若12a =,将抛物线W 向下平移()0m m >个单位得到抛物线1W ,如图2,记抛物线1W 的顶点为1A ,与x 轴负半轴的交点为1D ,与射线BC 的交点为1C .问:在平移的过程中,11tan D C B ∠是否恒为定值?若是,请求出11tan D C B∠的值;若不是,请说明理由.24.(8分)化简分式222xx x x x 1x 1x 2x+1-⎛⎫-÷ ⎪---⎝⎭,并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值. 25.(10分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A 距离海平面的高度,先测出斜拉索底端C 到桥塔的距离(CD 的长)约为100米,又在C 点测得A 点的仰角为30°,测得B 点的俯角为20°,求斜拉索顶端A 点到海平面B 点的距离(AB 的长).(已知3≈1.732,tan20°≈0.36,结果精确到0.1)26.(10分)如图,BC 是O 的弦,OD BC 于E ,交O 于D ,若8,2BC ED ==,求O 的半径.参考答案一、选择题(每小题3分,共30分) 1、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得. 【详解】222462(1)8y x x x =-=---因此,二次函数的图象特点为:开口向上,当1x ≤时,y 随x 的增大而减小;当1x >时,y 随x 的增大而增大 则当1x =时,二次函数取得最小值,最小值为8-. 故选:A . 【点睛】本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键. 2、A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标. 【详解】解:∵抛物线()213y x =-+, ∴抛物线()213y x =-+的顶点坐标是:(1,3), 故选:A . 【点睛】本题主要考查了利用二次函数顶点式求顶点坐标.能根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键. 3、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A ,B ,C 选项中,都是可能发生也可能不发生,是随机事件,不符合题意; D 是必然事件,符合题意. 故选:D. 【点睛】本题考查必然事件的定义,熟练掌握定义是关键. 4、D【分析】根据AAS 证明△BDF ≌△ENF ,得到NE =BD =1,再由NE ∥BC ,得到△ANE ∽△ADC ,根据相似三角形的对应边成比例即可得出结论. 【详解】∵NE ∥BC ,∴∠ENF =∠BDF ,∠NEF =∠DBF . ∵BF =EF , ∴△BDF ≌△ENF , ∴NE =BD =1.∵NE∥BC,∴△ANE∽△ADC,∴13 NE AE AEDC AC AE EC===+,∴313 DC=,∴DC=2.故选:D.【点睛】本题考查了相似三角形的判定与性质.求出NE的长是解答本题的关键.5、B【分析】根据反比例函数的性质,可求k的取值范围.【详解】解:∵反比例函数2kyx-=图象的每一条曲线上,y都随x的增大而增大,∴k−2<0,∴k<2故选B.【点睛】本题考查了反比例函数的性质,熟练掌握当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6、A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.7、B【解析】试题分析:解:如图:根据题意可知::△AFO∽△ABD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故选B.考点:解直角三角形的应用.8、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B . 【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 9、A【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 10、B【分析】连接OD ,得Rt △OAD ,由∠A=30°,3OD 、AO 的长;由BD 平分∠ABC ,OB=OD 可得OD 与BC 间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,3∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴AD AOCD OB=2342,∴3.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.二、填空题(每小题3分,共24分)11、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.12、38 【分析】作辅助线证明四边形DFCE 是矩形,得DF=CE,根据角平分线证明∠ACD=∠CDE 即可解题.【详解】解:过点D 作DF⊥AC 于F,∵4cos 55A AD ==,, ∴DF=3,∵90ACB ∠=︒,DE BC ⊥∴四边形DFCE 是矩形,CE=DF=3,在Rt △DEC 中,tan∠CDE=CE DE =38, ∵∠ACD=∠CDE,∴tan ACD ∠=38.【点睛】本题考查了三角函数的正切值求值,矩形的性质,中等难度, 根据角平分线证明∠ACD=∠CDE 是解题关键.13、65°【分析】根据切线长定理即可得出AB=AC ,然后根据等边对等角和三角形的内角和定理即可求出结论.【详解】解:∵AB AC 、是O 的切线, ∴AB=AC∴∠ABC=∠ACB=12(180°-∠A )=65° 故答案为:65°.【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.14、178a <且2a ≠ 【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可. 当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 【详解】由题意得()()()223421020a a a a ⎧---+>⎪⎨-≠⎪⎩, 解得178a <且2a ≠, 故答案为:178a <且2a ≠. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.15、2【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x +y +2y )的值,取其最大值即可得出答案.【详解】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,依题意,得:5x +7×2y +10y =346, ∴x =346245y - , ∵x ,y 均为非负整数,∴346﹣24y 为5的整数倍,∴y 的尾数为4或9,∴504x y =⎧⎨=⎩ ,269x y =⎧⎨=⎩,214x y =⎧⎨=⎩, ∴x +y +2y =2或53或1.∵2>53>1,∴最多可以购买2件纪念品.故答案为:2.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x ,y 的非负整数解,是解题的关键.16、90︒【分析】先根据平方、绝对值的非负性求得tan A 、cos B ,再利用锐角三角函数确定A ∠、B 的度数,最后根据直角三角形内角和求得90C ∠=︒.【详解】解:∵(2tan cos 0A B -=∴tan 0cos 02A B ⎧=-=⎪⎩∴tan cos A B ⎧=⎪⎨=⎪⎩∴6030A B ∠=︒⎧⎨∠=︒⎩ ∴90C ∠=︒.故答案是:90︒【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.17、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S 12=S 1.故答案为:=.【点睛】本题考查方差的意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.18、1:1【分析】证出DE 、EF 、DF 是△ABC 的中位线,由三角形中位线定理得出12DE EF DF BC AB AC ===,证出△DEF ∽△CBA ,由相似三角形的面积比等于相似比的平方即可得出结果.【详解】解:如图所示:∵D 、E 、F 分别AB 、AC 、BC 的中点,∴DE 、EF 、DF 是△ABC 的中位线,∴DE=12BC ,EF=12AB ,DF=12AC , ∴12DE EF DF BC AB AC === ∴△DEF ∽△CBA ,∴△DEF 的面积:△CBA 的面积=(12)2=14. 故答案为1:1.考点:三角形中位线定理.三、解答题(共66分)19、216米2【分析】设AB=x 米,可知BC=(30-x )米, 根据点 P 到墙体DA 、DC 的距离分别是8米、16米,求出x 的取值范围,再根据矩形的面积公式得出 S 关于x 的函数关系式即可得出结论. 【详解】解:设矩形花园 ABCD 的宽 AB 为x 米,则长BC 为 (30)x -米 由题意知,8230162x x ≥+⎧⎨-≥+⎩解得1012x ≤≤2(30)30S x x x x =-=-+即2(15)225(1012)S x x =--+≤≤显然,1012x ≤≤时S 的值随x 的增大而增大 所以,当12x =时,面积 S 取最大值max 12(3012)216S =⨯-=答: 符合要求的矩形花园面积 S 的最大值是216米2【点睛】此题主要考查二次函数的应用,关键是正确理解题意,列出S 与x 的函数关系式解题的关键.20、15 xy=-⎧⎨=-⎩.【分析】根据加减消元法即可求解.【详解】解:723 5215 x yx y-=⎧⎨+=-⎩①②+①②得:1212x=-. 解得:1x=-代入①,解得:5y=-所以,原方程组的解为15 xy=-⎧⎨=-⎩【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.21、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得AOC BOD,由此证明△AOC≌△BOD,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:COC DOD,COC DOD,∴180180即AOC BOD,∴△AOC≌△BOD,∴AC′=BD′, ,OAC OD B OC A OBD ,设BD′与OA 相交于点N ,∵∠ANB=OAC +∠AMB=OBD AOB ,OAC OBD , ∴AMB AOB ,∴AC′=BD′成立,∠AMB =α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.22、(1)AD=9;(2)1033【分析】(1)连接BE ,证明△ACD ≌△BCE ,得到AD=BE ,在Rt △BAE 中,2,AE=3,求出BE ,得到答案;(2)连接BE ,证明△ACD ∽△BCE ,得到3AD AC BE BC == ,求出BE 的长,得到AD 的长. 【详解】解:(1)如图1,连接BE ,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,又∵AC=BC ,DC=EC ,在△ACD 和△BCE 中, AC BC BCE ACD DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,∴AD=BE ,∵AC=BC=6,∴2,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt △BAE 中,AB=62,AE=3, ∴BE=9,∴AD=9;(2)如图2,连接BE ,在Rt △ACB 中,∠ABC=∠CED=30°,tan30°=33AC BC =, ∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD ,∴△ACD ∽△BCE ,∴33AD AC BE BC ==, ∵∠BAC=60°,∠CAE=30°, ∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=1033.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.23、(1)22y x =-;(2)225 232y x =-;(3)11tan D C B ∠恒为定值13. 【分析】(1)由抛物线解析式可得顶点A 坐标为(0,-2),利用待定系数法即可得直线AB 解析式;(2)如图,过点B 作BN CD ⊥于N ,根据角平分线的性质可得BE=BN ,由∠BND=∠CED=90°,∠BND=∠CDE 可证明BND CED ,设BE=x ,BD=y ,根据相似三角形的性质可得CE=2x ,CD=2y ,根据勾股定理由得y 与x 的关系式,即可用含x 的代数式表示出C 、D 坐标,代入y=ax 2-2可得关于x 、a 的方程组,解方程组求出a 值即可得答案;(3)过点B 作BF CD ⊥于点F ,根据平移规律可得抛物线W 1的解析式为y=12x 2-2-m ,设点1D 的坐标为(t ,0)(t <0),代入y=12x 2-2-m 可得2+m=12t 2,即可的W 1的解析式为y=12x 2-12t 2,联立直线BC 解析式可用含t 的代数式表示出点C 1的坐标,即可得11C H D H =,可得∠1145C D H =,根据抛物线W 的解析式可得点D 坐标,联立直线BC 与抛物线W 的解析式可得点C 、A 坐标,即可求出CG 、DG 的长,可得CG=DG ,∠CDG=∠1145C D H =,即可证明11//C D CD ,可得11D C B DCB ∠=∠,11tan D C B tan DCB ∠=∠,由∠CDG=45°可得BF=DF ,根据等腰三角形的性质可求出DF 的长,利用勾股定理可求出CD 的长,即可求出CF 的长,根据三角函数的定义即可得答案.【详解】(1)∵抛物线W :22y ax =-的顶点为点A , ∴点2(0)A -,, 设直线AB 解析式为y kx b =+,∵B (1,0),∴20b k b =-⎧⎨+=⎩, 解得:22k b =⎧⎨=-⎩, ∴抛物线解析式为:22y x =-.(2)如图,过点B 作BN CD ⊥于N ,∵AC 平分,DCE BN CD BE CE ∠⊥⊥,,,∴BN BE =,∵90,BND CED BDN CDE ∠=∠=︒∠=∠,∴BND CED , ∴BN DB CE CD=, ∴BE DB CE CD=, ∵//AO CE , ∴12BO BE DB AO CE CD===, 设,BE x BD y ==,则2,2CE x CD y ==,∵222CD DE CE =+,∴()22244y x y x =++,∴()()530x y x y +-=, ∴53y x =, ∴点()1,2C x x +,点51,03D x ⎛⎫- ⎪⎝⎭, ∴点C ,点D 是抛物线W :22y ax =-上的点,∴()2221250123x a x a x ⎧=+-⎪⎨⎛⎫=--⎪ ⎪⎝⎭⎩, ∵x >0,∴25113x x ⎛⎫+=- ⎪⎝⎭, 解得:10x =(舍去),23925x =, ∴2539012325a ⎛⎫=-⨯- ⎪⎝⎭, ∴2532a =, ∴抛物线解析式为:225232y x =-.(3)11tan D C B ∠恒为定值,理由如下: 如图,过点1C 作1C H x ⊥轴于H ,过点C 作CG x ⊥轴G ,过点B 作BF CD ⊥于点F , ∵a=12, ∴抛物线W 的解析式为y=12x 2-2, ∵将抛物线W 向下平移m 个单位,得到抛物线1W , ∴抛物线1W 的解析式为:2122y x m =--,设点1D 的坐标为()(),00t t <, ∴21022t m =--, ∴2122m t +=, ∴抛物线1W 的解析式为:221122y x t =-, ∵抛物线1W 与射线BC 的交点为1C , ∴22221122y x y x t =-⎧⎪⎨=-⎪⎩, 解得:11222x t y t =-⎧⎨=-⎩,22222x t y t =-⎧⎨=+⎩(不合题意舍去), ∴点1C 的坐标()2,22t t --,∴122,2C H t OH t =-=-,∴()11222D H DO OH t t t =+=-+-=-,∴11C H D H =,且1C H x ⊥轴,1145C D H ∴=, ∵2122y x =-与x 轴交于点D , ∴点()2,0D -,∵22y x =-与2122y x =-交于点C ,点A , ∴222122y x y x =-⎧⎪⎨=-⎪⎩, 解得:46x y =⎧⎨=⎩或02x y =⎧⎨=-⎩, ∴点()4,6C ,A (0,-2),∴6,246GC DG OD OG ==+=+=,∴DG CG =,且CG x ⊥轴,∴1145GDC C D H ∠=︒=∠,∴11//C D CD ,∴11D C B DCB ∠=∠,∴11tan D C B tan DCB ∠=∠,∵45,,213CDB BF CD BD OD OB ∠=⊥=+=+=,∴45FDB FBD ∠=∠=, ∴,23DF BF DB DF ===,∴322DF BF ==, ∵点()2,0D -,点()4,6C ,∴()()22240662CD =--+-=,∴922CF CD DF =-=, ∴1113BF tan D C B tan DCB CF ∠=∠==, ∴11tan D C B ∠恒为定值.【点睛】本题考查了待定系数法求一次函数解析式、二次函数的图象的平移、相似三角形的判定与性质及三角函数的定义,难度较大,属中考压轴题,熟练掌握相关的性质及判定定理是解题关键.24、x x+1;x=2时,原式=23. 【解析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为1的数代入求值.【详解】解:原式=()()()()()()()()()()()222x x+1x x1x1x x x==x+1x1x+1x1x+1x1x x1x+1x1⎡⎤---÷⋅⎢⎥-----⎢⎥⎣⎦.∵﹣1≤x≤3的整数有-1,1,1,2,3,当x=﹣1或x=1时,分式的分母为1,当x=1时,除式为1,∴取x的值时,不可取x=﹣1或x=1或x=1.不妨取x=2,此时原式=22=2+13.25、斜拉索顶端A点到海平面B点的距离AB约为93.7米.【分析】在Rt△ACD和Rt△BCD中,根据锐角三角函数求出AD、BD,即可求出AB.【详解】如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•tan∠ACD=100×33≈57.73(米),在Rt△BCD中,BD=CD•tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索顶端A点到海平面B点的距离AB约为93.7米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题问题,掌握锐角三角函数的意义是解题的关键.26、5.【分析】连接OB,由垂径定理得BE=CE=4,在Rt OEB中,根据勾股定理列方程求解. 【详解】解:连接OB,8OD BC BC ⊥=142BE CE BC ∴=== 设O 的半径为R ,则2OE OD DE R =-=-在Rt OEB 中,由勾股定理得222OE BE OB =+,即()22242R R +=- 解得5R =O ∴的半径为5【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.。
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→AB→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.2.矩形ABCD中,AB=10,42BC=P在边AB上,且BP:AP=4:1,如果⊙P是以点P 为圆心,PD长为半径的圆,那么下列结论正确的是()A.点B、C均在⊙P外B.点B在⊙P外,点C在⊙P内C.点B在⊙P内,点C在⊙P外D.点B、C均在⊙P内3.已知二次函数y =ax2+ 2ax + 3a2+ 3(其中x是自变量),当x ≥ 2时,y随x的增大而增大,且-3 ≤x ≤ 0时,y的最大值为9,则a的值为().A.1或2-B2或2-C2D.14.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米B.8米C.5米D.5.5米5.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y26.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE 为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A .1B .1C .D . 7.函数1y ax =+与抛物线()210y ax bx b =++≠的图象可能是( ).A .B .C .D .8.如图,已知OB 为⊙O 的半径,且OB =10cm ,弦CD ⊥OB 于M ,若OM :MB =4:1,则CD 长为( )A .3cmB .6cmC .12cmD .24cm9.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°10.老师出示了如图所示的小黑板上的题后,小华说:过点(3,0);小明说:1a =;小颖说:x 轴被抛物线截得的线段长为2,三人的说法中,正确的有( )A .1个B .2个C .3个D .0个二、填空题(每小题3分,共24分)11.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.12.如图,已知正方形OABC 的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数(0)k y k x=>的图象与正方形OABC 的边有交点,请写出一个符合条件的k 值__________.13.若2sin 2α=,则锐角α的度数是_____. 14.已知⊙O 的直径AB=20,弦CD ⊥AB 于点E,且CD=16,则AE 的长为_______.15.如图,DE 是ABC 的中位线,AF 是BC 边上的中线,DE 交AF 于点M ,下列结论:①ADE ABC △△∽;②MA MF =;③14MD BC =:④14AMD ABC S S =△△,其中正确的是______.(只填序号).16.将抛物线2y x 先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.17.如图,BC ⊥y 轴,BC <OA ,点A 、点C 分别在x 轴、y 轴的正半轴上,D 是线段BC 上一点,BD =14OA =2,AB =3,∠OAB =45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF =45°,将△AEF 沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE 的值为_____.18.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.三、解答题(共66分)19.(10分)计算:()1148312242÷-⨯+ ()2()()102113 3.14tan302221π----+-+- 20.(6分)如图,在△ABC 中,AB =AC ,∠BAC =54°,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,过点B 作直线BF ,交AC 的延长线于点F .(1)求证:BE =CE ;(2)若AB =6,求弧DE 的长;(3)当∠F 的度数是多少时,BF 与⊙O 相切,证明你的结论.21.(6分)如图,已知A (-1,0),一次函数122y x =-+的图像交坐标轴于点B 、C ,二次函数22y ax bx =++的图像经过点A 、C 、B .点Q 是二次函数图像上一动点。
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.如图,是岑溪市几个地方的大致位置的示意图,如果用()0,0表示孔庙的位置,用()1,5表示东山公园的位置,那么体育场的位置可表示为( )A .(1,1)--B .()0,1C .()1,1D .(1,1)-2.已知点P(x ,y)在第二象限,|x|=6,|y|=8,则点P 关于原点的对称点的坐标为( )A .(6,8)B .(﹣6,8)C .(﹣6,﹣8)D .(6,﹣8)3.下列方程是一元二次方程的是( )A .2(1)x x x -=B .x 2=0C .x 2-2y=1D .11x x =-4.如图,AB 是⊙O 的直径,CD ⊥AB ,∠ABD =60°,CD =23,则阴影部分的面积为( )A .23π B .π C .2π D .4π5.如图,一斜坡AB 的长为13,坡度为1:1.5,则该斜坡的铅直高度BC 的高为( )A.3m B.4m C.6m D.16m6.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次7.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m8.如图,反比例函数1yx的大致图象为()A.B.C. D.9.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A .19.4B .19.5C .19.6D .19.710.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°二、填空题(每小题3分,共24分)11.抛物线2y x bx c =-++的部分图象如图所示,对称轴是直线1x =-,则关于x 的一元二次方程20x bx c -++=的解为____.12.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .13.钟表的轴心到分钟针端的长为5,cm 那么经过40分钟,分针针端转过的弧长是_________________cm .14.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是_________15.关于x 的一元二次方程()22390m x x m -++-=有一根为0,则m 的值为______ 16.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为_____.17.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15cm ,AB =60cm ,则这个摆件的外圆半径是_____cm .18.在Rt △ABC 中,∠C =90°,如果AB =6,1cos 3A =,那么AC =_____. 三、解答题(共66分) 19.(10分)(1)已知a ,b ,c ,d 是成比例线段,其中a =2cm ,b =3cm ,d =6cm ,求线段c 的长;(2)已知234a b c ==,且a +b ﹣5c =15,求c 的值. 20.(6分)综合与探究:三角形旋转中的数学问题.''''9090AB O OB C DAO DC O ∠+∠=︒∴∠+∠=︒实验与操作: Rt △ABC 中,∠ABC =90°,∠ACB =30°. 将Rt △ABC 绕点A 按顺时针方向旋转得到Rt △AB′C′(点B′,C′分别是点B ,C 的对应点). 设旋转角为α(0°<α<180°),旋转过程中直线B′B 和线段CC′相交于点D . 猜想与证明:(1)如图1,当AC′经过点B 时,探究下列问题:①此时,旋转角α的度数为 °;②判断此时四边形AB′DC 的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD =C′D ;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD ,直接写出线段AD 与C 'C 之间的位置关系(不必证明).21.(6分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.(1)求甲、乙两种篮球每个的售价分别是多少元?(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?22.(8分)解方程:x2﹣6x﹣40=023.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).(1)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C'(2)求点C在旋转过程中所经过的路径的长.24.(8分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.25.(10分)已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M 的坐标.26.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据孔庙和东山公园的位置,可知坐标轴的原点、单位长度、坐标轴的正方向,据此建立平面直角坐标系,从而可得体育场的位置.【详解】由题意可建立如下图所示的平面直角坐标系:平面直角坐标系中,原点O表示孔庙的位置,点A表示东山公园的位置,点B表示体育场的位置--则点B的坐标为(1,1)故选:A.【点睛】本题考查了已知点在平面直角坐标系中的位置求其坐标,依据题意正确建立平面直角坐标系是解题关键.2、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x=±6,y=±8,∵点P在第二象限,∴x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A :()21x x x -=,化简后是:x 0-=,不符合一元二次方程的定义,所以不是一元二次方程; B :x 2=0,是一元二次方程;C :x 2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;D :11x x=-,分母含有未知数,是一元一次方程,所以不是一元二次方程; 故选:B .【点睛】 本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4、A【解析】试题解析:连接OD .∵CD ⊥AB ,132CE DE CD ∴===, 故OCE ODE SS =,即可得阴影部分的面积等于扇形OBD 的面积, 又60ABD ∠=,30CDB ∴∠=,60COB ∴∠=,∴OC =2,∴S 扇形OBD 260π22π.3603⨯== 即阴影部分的面积为2π.3 故选A.点睛:垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.5、B【分析】首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC 和AC 之间的倍数关系式,设BC=x ,则AC=1.5x ,再由勾股定理求得AB=132x ,从而求得BC 的值.【详解】解:∵斜坡AB 的坡度i=BC :AC=1:1.5,AB =213, ∴设BC=x ,则AC=1.5x , ∴由勾股定理得AB=2213(1.5)2x x x +=, 又∵AB=213, ∴132x =213,解得:x=4, ∴BC=4m .故选:B .【点睛】本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.6、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A 、盖面朝下的频数是55,此项正确;B 、盖面朝下的频率是55100=0.55,此项正确; C 、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D 、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D .【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.7、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴10.9=1.1 1.6AD +. ∴AD =1.∴AB =AD +DB =1+1=2.故选:B.【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.8、B【分析】比例系数k=1>0,根据反比例函数图像的特点可判断出函数图像.【详解】∵比例系数k=1>0∴反比例函数经过一、三象限故选:B.【点睛】本题考查反比例函数图像的分布,当k>0时,函数位于一、三象限.当k<0时,函数位于二、四象限.9、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.10、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30° 故选A .二、填空题(每小题3分,共24分)11、121,3x x ==-【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与x 轴的另一个交点,从而可以得到一元二次方程20x bx c -++=的解,本题得以解决.【详解】由图象可得,抛物线2y x bx c =-++与x 轴的一个交点为(1,0),对称轴是直线1x =-,则抛物线与x 轴的另一个交点为(-3,0),即当0y =时,20x bx c -++=,此时方程的解是1213x x ==-,,故答案为:1213x x ==-,.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12、2π.【解析】根据切线的性质可得出OB ⊥AB ,从而求出∠BOA 的度数,利用弦BC ∥AO ,及OB=OC 可得出∠BOC 的度数,代入弧长公式即可得出答案:∵直线AB 是⊙O 的切线,∴OB ⊥AB (切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC ∥AO ,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC ,∴△OBC 是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O 的半径为6cm ,∴劣弧BC 的长=606=2180ππ⋅⋅(cm ). 13、203π 【分析】钟表的分针经过40分钟转过的角度是240︒,即圆心角是240︒,半径是5cm ,弧长公式是180n r l π=,代入就可以求出弧长. 【详解】解:圆心角的度数是:4036024060︒⨯=︒,弧长是2405201803cmππ⋅=.【点睛】本题考查了求弧长,正确记忆弧长公式,掌握钟面角是解题的关键.14、(1,3)【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+b2a)2+244ac ba-,知顶点坐标是(-b2a,244ac ba-),把已知代入就可求出顶点坐标.【详解】解:y=ax2+bx+c,配方得y=a(x+b2a)2+244ac ba-,顶点坐标是(-b2a,244ac ba-),∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是(1,3).【点睛】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(-b2a,244ac ba-),和转化形式y=a(x+b2a)2+244ac ba-,代入即可.15、m=-1【解析】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,而m-1≠0,所以m的值为-1.故答案是:-1.【点睛】考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.16、1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a,b)在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a,b)在第二象限的有2种情况,∴点(a,b)在第二象限的概率为:21 63 .故答案为:13.【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A可能出现的结果数时,要注意审查关于事件A的说法,避免多数或少数.17、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=12AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.18、2【解析】如图所示,在Rt △ABC 中,∠C=90°,AB=6,cosA=13, ∴cosA=13AC AB =, 则AC=13AB=13×6=2, 故答案为2.三、解答题(共66分)19、 (1)1;(2)-1【分析】(1)根据比例线段的定义得到a :b=c :d ,然后把a=2cm ,b=3cm ,d=6cm 代入进行计算即可;(2)设234a b c ===k ,得出a=2k ,b=3k ,c=1k ,代入a+b-5c=15,求出k 的值,从而得出c 的值. 【详解】(1)∵a ,b ,c ,d 是成比例线段 ∴a cb d =, 即236c =, ∴c=1;(2)设234a b c ===k ,则a=2k ,b=3k ,c=1k , ∵a+b-5c=15∴2k+3k-20k=15解得:k=-1∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.20、(1)①60;②四边形AB′DC 是平行四边形,证明见解析.(2)证明见解析;(3)'AD CC ⊥【分析】(1)①根据矩形的性质、旋转的性质、等边三角形的判定方法解题;'''AO OB AB B ACD DO OC∴=∠=∠, ②根据两组对边分别平行的四边形是平行四边形解题;(2)过点'C 作''B C 的垂线,交'B D 于点E ,由旋转的性质得到对应边、对应角相等,进而证明△CDB ≌△'C DE ,即可解题;(3)先证明''AOB DOC ,再由相似三角形的性质解题,进而证明''AOD B OC 即可证明'AD CC ⊥.【详解】解:(1)①60;②四边形AB′DC 是平行四边形.证明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt △AB′C′是由 Rt △ABC 绕点A 顺时针旋转得到的,∴∠C′AB′=∠CAB=60°,'AB AB =,'AC AC =.'ACC ∴与ABB '都是等边三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC ′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD ,AC//B′D .∴四边形AB′DC 是平行四边形.(2)证明:过点'C 作''B C 的垂线,交'B D 于点E ,∴∠B′C′E=90°.∵Rt △AB′C′是由 Rt △ABC 绕点A 顺时针旋转90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,'AB AB =,''BC B C =.∴∠A 'B B=∠AB 'B =45°,BC ∥AB′∥C′E∵∠A 'B C=∠ABC=90°,∴∠B 'B 'C =∠CBE=45°.∴∠''B EC =90°-45°=45°=∠B 'B 'C . ∴'''B C C E BC ==.在△CBD 和△'C ED 中,CDB C DE CBD C ED CB C E ∠∠⎧⎪∠=∠'=''⎨⎪⎩=∴△CDB ≌△'C DE .∴CD= 'C D .(3)AD ⊥C 'C ,理由如下:设AC 与D 'B 交于点O ,连接AD ,''''AB AB CAC BA C B AC A ==∠=∠,,,''''AB B ABB ACC AC ∴∠=∠∠∠==C ,''AOB DOC ∴ ''AO DO OB OC∴= ''AOD B OC ∠=∠''AOD B OC ∴''DAO OB C ∴∠=∠∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B ,90ADC ∴='∠︒,AD CC ∴⊥'【点睛】本题考查几何综合,其中涉及三角形的旋转、等边三角形的判定与性质、平行线的判定、平行四边形的判定、全等三角形的判定等知识,综合性较强,是常见考点,掌握相关知识、学会作适当辅助线是解题关键.21、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)设学校计划购进甲种篮球m 个,则学校计划购进乙种篮球(100−m )个;根据题意列不等式即可得到结论; (3)设购买跳绳a 根,毽子b 个,根据题意得方程10a +5b =290,求得b =58−2a >0,解不等式即可得到结论..【详解】(1)设甲种篮球每个的售价为x 元,乙种篮球每个的售价为y 元.依题意,得23270,32230.x y x y +=⎧⎨+=⎩解得30,70.x y =⎧⎨=⎩答:甲种篮球每个的售价为30元,乙种篮球每个的售价为70元.(2)设学校购进甲种篮球m 个,则购进乙种篮球()100m -个.由已知,得()4100m m ≥-.解得80m ≥.又90m ≤,∴8090m ≤≤.设购进甲、乙两种篮球学校花的钱为w 元,则()300.9700.8100295600w m m m =⨯+⨯-=-+,∴当90m =时,w 取最小值,花最少钱为2990元.花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个. (3)设购买跳绳a 根,毽子b 个,则105290a b +=,5820b a =->.解得29a <.∵a 为正整数,∴有28种进货方案.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答问题.22、x 1=10,x 2=﹣1.【分析】用因式分解法即可求解.【详解】解:x 2﹣6x ﹣10=0,(x ﹣10)(x+1)=0,∴x ﹣10=0或x+1=0,∴x 1=10,x 2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.23、(1)见解析;(2)5π2【解析】(1)根据网格结构找出点A、B、C绕点O顺时针旋转90∘后的对应点的位置,然后顺次连接即可.(2)在旋转过程中,C所经过的路程为下图中扇形CO C'的弧长,即利用扇形弧长公式计算即可.【详解】(1)如图,连接OA、OB、OC并点O为旋转中心,顺时针旋转90°得到A'、B'、C',连接A'B'、B'C' 、A'C',△A'B'C'就是所求的三角形.(2)C在旋转过程中所经过的路程为扇形CO C'的弧长;所以nπr90π55πl1801802⨯===【点睛】本题考查了旋转作图以及扇形的弧长公式nπrl180=的计算,作出正确的图形是解本题的关键.24、(1)32(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而得出∠PCB=∠ACO,根据∠ACB=90°得出∠OCP=90°,从而说明切线.【详解】解:(1)、①如图,连接BD,∵AB是直径∴∠ACB=∠ADB=90°,在RT△ABC中,222210653AB BC-=-=②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形∴AD=AB=×10=5cm;(2)、直线PC与⊙O相切,理由:连接OC,∵OC=OA∴∠CAO=∠OCA∵PC=PE∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE∵CD平分∠ACB∴∠ACE=∠ECB∴∠PCB=∠ACO∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.考点:(1)、勾股定理;(2)、直线与圆的位置关系.25、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+3);(2)MD2=n2﹣n+3;点M的坐标为(2142-,12)或(2142+,12).【分析】(2)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点E作EF⊥x轴于点F,根据旋转的性质及同角的余角相等,可证出△ODP≌△FED(AAS),由抛物线的解析式可得出点D的坐标,进而可得出OD的长度,利用全等三角形的性质可得出EF的长度,再利用二次函数图象上点的坐标特征可求出DF,OP的长,结合点P在y轴正半轴即可得出点P的坐标;(2)利用二次函数图象上点的坐标特征可得出m2﹣2m=2﹣n,根据点D,M的坐标,利用两点间的距离公式可得出MD2=n2﹣n+3,利用配方法可得出当MD2取得最小值时n的值,再利用二次函数图象上点的坐标特征即可求出当MD2取得最小值时点M的坐标.【详解】(2)将A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+2.(2)过点E作EF⊥x轴于点F,如图所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵抛物线的解析式为y=﹣x2+2x+2=﹣(x﹣2)2+3,∴点D的坐标为(2,0),∴EF=DO=2.当y=2时,﹣x2+2x+2=2,解得:x2=2﹣(舍去),x2=2+,∴DF=OP=2+,∴点P的坐标为(0,2+).(2)∵点M(m,n)是抛物线上的一个动点,∴n=﹣m2+2m+2,∴m2﹣2m=2﹣n.∵点D的坐标为(2,0),∴MD2=(m﹣2)2+(n﹣0)2=m2﹣2m+2+n2=2﹣n+2+n2=n2﹣n+3.∵n2﹣n+3=(n﹣)2+,∴当n=时,MD2取得最小值,此时﹣m2+2m+2=,解得:m2=,m2=.∴MD2=n2﹣n+3,当MD2取得最小值时,点M的坐标为(,)或(,).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、全等三角形的判定与性质、二次函数的最值以及两点间的距离公式,解题的关键是:(2)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用全等三角形的性质及二次函数图象上点的坐标特征求出OP的长;(2)利用两点间的距离公式结合二次函数图象上点的坐标特征,找出MD2=n2﹣n+3.26、(1)证明见解析;(2)证明见解析;(3)tan∠ACD=23.【分析】(1)根据BM为切线,BC平分∠ABM,求得∠ABC的度数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到∠ACD=∠ABD,根据各个角之间的关系求出∠AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=12∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD ∴∠EDO=∠EDO,∠EOD=∠OCD ∴△EDO∽△ODC∴OD DE DC DO=∴OD2=DE⋅DC∴OA2=DE⋅DC=EO⋅DC(3)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF3∴BD=DF+BF3+2AD∴tan∠ACD=tan∠ABD=ADBD23+23【点睛】本题考查圆的切线、角平分线的性质,相似三角形的性质以及三角函数中正切的计算问题,属综合中档题.。
2019-2020学年广东省汕头市潮南区九年级上期末数学试卷一、选择题(每小题3分,共30分)1.抛物线y=﹣x2的顶点坐标是()A.(0,)B.(0,)C.(0,0)D.(1,﹣)2.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2B.2C.﹣4D.43.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.14.已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.已知A为⊙O外一点,若点A到⊙O上的点的最短距离为2,最长离为4,则⊙O半径为()A.4B.3C.2D.16.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.75°B.45°C.60°D.30°8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=﹣1,x2=﹣3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=1,x2=39.抛物线y=﹣x2+2x﹣2与坐标轴的交点个数为()A.0B.1C.2D.310.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10B.8C.4D.4二、填空题((每小题4分,共28分)11.(4分)若点P(﹣2,b)与点M(a,3)关于原点对称,则a+b=.12.(4分)有四张看上去无差别的卡片,正面分别写有“东山”、“莲花峰”、“大峰”、“碧石”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“大峰”的概率是.13.(4分)若x2+3x=0,则2019﹣2x2﹣6x的值为.14.(4分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,AB=8,则的长为.15.(4分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为。
广东省汕头市潮南区九年级(上)期末测试数学试卷一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.(3分)下列的一元二次方程有实数根的是()A.x2﹣x+1=0 B.x2=﹣x C.x2﹣2x+4=0 D.(x﹣2)2+1=02.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)已知点P关于x轴的对称点P1的坐标是(2,1),那么点P关于原点的对称点P2的坐标是()A.(﹣1,﹣2)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)4.(3分)已知⊙O的半径为2,圆心O到直线l的距离是4,则⊙O与直线l的关系是()A.相交B.相切C.相离D.相交或相切5.(3分)方程x2=4的解为()A.x=2 B.x=﹣2 C.x1=4,x2=﹣4 D.x1=2,x2=﹣26.(3分)如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数为()A.25°B.30°C.40°D.50°7.(3分)已知某扇形的圆心角为60°,半径为1,则该扇形的弧长为()A.πB.C.D.8.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+3=()A.﹣2 B.1 C.0 D.59.(3分)如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π10.(3分)如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.600m2B.551m2C.550m2D.500m2二、填空题(每小题3分,共20分,请把下列各题的正确答案填写在横线上。
)11.(3分)抛物线y=(x+1)2+2的对称轴为,顶点坐标是.12.(3分)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.13.(3分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.(3分)若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是cm.15.(3分)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.16.(3分)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F,若∠ACF=64°,则∠E= .三、解答题(每小题6分,共18分)17.(6分)用配方法解方程:x2﹣4x+1=0.18.(6分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.19.(12分)如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.四、解答题(每小题7分,共21分)20.(7分)如图,△ABC内接于⊙O.(1)作∠B的平分线与⊙O交于点D(用尺规作图,不用写作法,但要保留作图痕迹);(2)在(1)中,连接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.21.(7分)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1•x2,求k的值.22.(7分)在国家的宏观调控下,某市的某商品价格由去年10月份的14000元下降到12月份的11340元.(1)求11、12两月平均每月降价的百分率是多少?(2)如果该商品继续回落,按此降价的百分率,你预测到今年2月份某市该商品价格是否会跌破10000元/m2?请说明理由.五、解答题(每小题9分,共27分)23.(9分)如图,△ABC内接于⊙O,BC是直径,⊙O的切线PA交CB的延长线于点P,OE∥AC交AB于点F,交PA于点E,连接BE.(1)判断BE与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,BE=3,求AB的长.24.(9分)某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣x+120.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?25.(9分)如图,在平面直角坐标系中,抛物线y=ax2+4x+c与y轴交于点A(0,5),与x轴交于点E,B,点B坐标为(5,0).(1)求二次函数解析式及顶点坐标;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.广东省汕头市潮南区胪岗镇九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.(3分)下列的一元二次方程有实数根的是()A.x2﹣x+1=0 B.x2=﹣x C.x2﹣2x+4=0 D.(x﹣2)2+1=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,则该方程无实数根,故本选项错误;B、△=12﹣4×1×0=1>0,则该方程有实数根,故本选项正确;C、△=(﹣2)2﹣4×1×4=﹣12<0,则该方程无实数根,故本选项错误;D、由原方程得到(x﹣2)2=﹣1,而(x﹣2)2≥0,则该方程无实数根,故本选项错误;故选:B.2.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.3.(3分)已知点P关于x轴的对称点P1的坐标是(2,1),那么点P关于原点的对称点P2的坐标是()A.(﹣1,﹣2)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)【解答】解:∵点P关于x轴的对称点P1的坐标是(2,1),∴P(2,﹣1),∵点P关于原点的对称点P2,∴P2(﹣2,1).故选D.4.(3分)已知⊙O的半径为2,圆心O到直线l的距离是4,则⊙O与直线l的关系是()A.相交B.相切C.相离D.相交或相切【解答】解:∵圆心O到直线l的距离是4,大于⊙O的半径为2,∴直线l与⊙O相离.故选C.5.(3分)方程x2=4的解为()A.x=2 B.x=﹣2 C.x1=4,x2=﹣4 D.x1=2,x2=﹣2【解答】解:x2=4,x1=2,x2=2,故选D.6.(3分)如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数为()A.25°B.30°C.40°D.50°【解答】解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选C7.(3分)已知某扇形的圆心角为60°,半径为1,则该扇形的弧长为()A.πB.C.D.【解答】解:弧长l==.故选C.8.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+3=()A.﹣2 B.1 C.0 D.5【解答】解:把x=m代入方程x2﹣x﹣2=0可得:m2﹣m﹣2=0,即m2﹣m=2,∴m2﹣m+3=2+3=5;故选D.9.(3分)如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π【解答】解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选A.10.(3分)如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.600m2B.551m2C.550m2D.500m2【解答】解:30×20﹣30×1﹣20×1+1×1=600﹣30﹣20+1=551(平方米),故选:B.二、填空题(每小题3分,共20分,请把下列各题的正确答案填写在横线上。
广东省汕头市潮南区九年级(上)期末数学模拟试卷(一)一.选择题(共10小题,满分30分)1.方程﹣52=1的一次项系数是()A.3B.1C.﹣1D.02.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.方程22﹣2=0的根是()A.1=2=1B.1=2=﹣1C.1=1,2=﹣1D.1=2,2=﹣25.已知二次函数的图象(0≤≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.7.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOD=110°,AC∥OD,则∠AOC的度数()A.70°B.60°C.50°D.40°8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果2>0,那么>0.A.1个B.2个C.3个D.4个9.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:甲:(1)取AB中点D(2)过D作直线AC的平行线,交于P,则P即为所求乙:(1)取AC中点E(2)过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误C D.甲错误,乙正确10.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为()A.10°B.60°C.90°D.120°二.填空题(共6小题,满分24分,每小题4分)11.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(+1)※(﹣2)=6,则的值为.12.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是,第(2018)个三角形的直角顶点的坐标是.13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.14.如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为.15.如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E 两点,过点D作直径DF,连结AF,则∠DFA=.16.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为.三.解答题(共3小题,满分18分,每小题6分)17.(6分)已知=1是关于的方程2﹣m﹣2m2=0的一个根,求m(2m+1)的值.18.(6分)已知:△ABC(如图),(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.19.(6分)如图,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.四.解答题(共3小题,满分21分,每小题7分)20.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(7分)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?22.(7分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为.五.解答题(共3小题,满分27分,每小题9分)23.(9分)已知关于的一元二次方程(﹣3)(﹣2)=m2(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.24.(9分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)25.(9分)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥轴于点C.A(1,1)、B (3,1).动点P从O点出发,沿轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q,设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线解析式;(2)求S与t的函数关系式;(3)将△OPQ绕着点P顺时针旋转90°,是否存t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:﹣52﹣1=0,则一次项系数为0,故选:D.2.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.解:方程整理得:2=1,开方得:=±1,则1=1,2=﹣1.故选:C.5.解:∵二次函数的图象(0≤≤4)如图,关于该函数在所给自变量的取值范围内,∴=1时,有最大值2,=4时,有最小值﹣2.5.故选:A.6.解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是=,故选:B.7.解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BOD=110°,∴∠AOD=180°﹣110°=70°,∵AC∥OD,∴∠CAB=∠AOD=70°,∵△ABC是直角三角形,∴∠ABC=90°﹣∠AOC=90°﹣70°=20°,∴∠AOC=2∠ABC=2×20°=40°.故选:D.8.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果2>0,那么≠0,所以④错误.故选:A.9.解:(1)由甲的作法可知,DP是△ABC的中位线,∵DP不垂直于BC,∴≠;(2)由乙的作法,连BE,可知△BEC为等腰三角形∵直线PE⊥BC,∴∠1=∠2故=;∴甲错误,乙正确.故选:D.10.解:根据弧长的公式l=,得到:4π=,解得n=60°,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:由题意得,(+1)2﹣(+1)(﹣2)=6,整理得,3+3=6,解得,=1,故答案为:1.12.解:∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)个三角形的直角顶点的坐标是(4,);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(,),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(8068,).故答案为:(16,);(8068,)13.解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.故答案为:.14.解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故答案为:215.解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°16.解:依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣1.三.解答题(共3小题,满分18分,每小题6分)17.解:∵=1是关于的方程2﹣m﹣2m2=0的一个根,∴1﹣m﹣2m2=0.∴2m2+m=1.∴m(2m+1)=2m2+m=1.18.解:(1)如图,⊙I为所作;(2)∵⊙I为△ABC的内切圆,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠BAC)=(180°﹣88°)=46°,∴∠BIC=180°﹣∠IBC﹣∠ICB=180°﹣(∠IBC+∠ICB)=180°﹣46°=134°.19.解:BD存在最大值.如图:以AD为边作等边△ADE,连接CE.∵△ABC,△ADE都是等边三角形∴AB=AC,AD=AE=DE=2,∠BAC=∠EAD=60°.∵∠BAD=∠BAC+∠DAC,∠EAC=∠EAD+∠DAC∴∠BAD=∠EAC,且AB=AC,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE若点E,点D,点C不共线时,EC<ED+DC;若点E,点D,点C共线时,EC=ED+DC.∴EC≤ED+CD=2+4=6∴BD≤6∴BD最大值为6.四.解答题(共3小题,满分21分,每小题7分)20.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.21.解:(1)设二、三这两个月的月平均增长率为,根据题意可得:256(1+)2=400,解得:1=,2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.22.解:(1)∠AED=∠C,证明如下:连接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切线,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)连接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圆AB的中点,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案为:五.解答题(共3小题,满分27分,每小题9分)23.解:(1)∵关于的一元二次方程(﹣3)(﹣2)=m2,∴2﹣5+6﹣m2=0,∴△=25﹣4(6﹣m2)=1+4m2>0,∴对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,则(1﹣3)×(1﹣2)=m2,2=m2,m=±,原方程变形为2﹣5+4=0,设方程的另一个根为a,则1×a=4,a=4,则方程的另一个根为4.24.(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,则AC与圆O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC与Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积=.25.解:(1)解法一:由图象可知:抛物线经过原点,设抛物线解析式为y=a2+b(a≠0).把A(1,1),B(3,1)代入上式得,解得,∴所求抛物线解析式为y=﹣2+;解法二:∵A(1,1),B(3,1),∴抛物线的对称轴是直线=2.设抛物线解析式为y=a(﹣2)2+h(a≠0),把O(0,0),A(1,1)代入得解得∴所求抛物线解析式为:y=﹣(﹣2)2+.(2)分三种情况:,过点A作AF⊥轴于点F,①当0<t≤2,重叠部分的面积是S△OPQ∵A(1,1),在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,∴PQ=OQ=tcos45°=t,∴S=(t)2=t2.②当2<t≤3,设PQ交AB于点G,作GH⊥轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,.重叠部分的面积是S梯形OAGP∴AG=FH=t﹣2,∴S=(AG+OP)AF=(t+t﹣2)×1=t﹣1.③当3<t<4,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S.五边形OAMNC因为△PNC和△BMN都是等腰直角三角形,=S梯形OABC﹣S△BMN.所以重叠部分的面积是S五边形OAMNC∵B(3,1),OP=t,∴PC=CN=t﹣3,∴BM=BN=1﹣(t﹣3)=4﹣t,∴S=(2+3)×1﹣(4﹣t)2 S=﹣t2+4t﹣;(3)存在t1=1,t2=2.将△OPQ绕着点P顺时针旋转90°,此时Q(t+,),O(t,t)①当点Q在抛物线上时,=×(t+)2+×(t+),解得t=2;②当点O在抛物线上时,t=﹣t2+t,解得t=1.。
2017-2018学年广东省汕头市潮南区两英镇九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列方程是一元二次方程的是()A.a2+b+c=0 B.32﹣2=3(2﹣2)C.3﹣2﹣4=0 D.(﹣1)2+1=02.已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.二次函数y=2+2的顶点坐标是()A.(1,﹣2)B.(1,2) C.(0,﹣2)D.(0,2)4.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45°C.35°D.30°5.若2+4﹣4=0,则3(﹣2)2﹣6(+1)(﹣1)的值为()A.﹣6 B.6 C.18 D.306.正十二边形的每一个内角的度数为()A.120°B.135°C.150° D.1080°7.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.﹣3 B.3 C.﹣1 D.18.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB.C.πD.π10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC ﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为(s),△BPQ的面积为y(cm2),则y关于的函数图象是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.一元二次方程(+3)=0的根是.12.将二次函数y=2的图象沿轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为.13.若|b﹣1|+=0,且一元二次方程2+a+b=0有两个实数根,则的取值范围是.14.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.15.(4分)如图,正方形OABC的两边OA、OC分别在轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.16.(4分)如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=.三、解答题(共3小题,满分18分)17.(6分)用公式法解方程:2﹣﹣2=0.18.(6分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.19.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B (0,4),C(0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,并写出A1,B1的坐标.四、解答题(共3小题,满分21分)20.(7分)某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人自不同班级的概率.21.(7分)已知抛物线y=a2+b﹣8(a≠0)的对称轴是直线=1,(1)求证:2a+b=0;(2)若关于的方程a2+b﹣8=0,有一个根为4,求方程的另一个根.22.(7分)如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.五、解答题(共3小题,满分27分)23.(9分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当为多少时,矩形框架ABCD的面积S最大?最大面积是多少?24.(9分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.25.(9分)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣22+4+2与C2:y2=﹣2+m+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥轴,Q为垂足,求AQ+OQ 的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.2017-2018学年汕头市潮南区两英镇九年级(上)期末数学试卷参考答案一、选择题(共10小题,每小题3分,满分30分)1.D;2.C;3.D;4.D;5.B;6.C;7.A;8.A;9.C;10.C;二、填空题(共6小题,每小题4分,满分24分)11.=0或﹣3;12.y=2+4+4;13.≤4且≠0;14.π;15.(﹣2,0)或(2,10);16.210°;三、解答题(共3小题,满分18分)。
2023-2024学年广东省汕头市潮南区九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.以下是我国部分博物馆标志的图案,其中是中心对称图形的是( )A. B. C. D.2.下列事件为必然事件的是( )A. 中秋节晚上一定能看到月亮B. 明天的气温一定会比今天的高C. 某彩票中奖率是1%,买100张彩票一定会中奖D. 地球上,上抛的篮球一定会下落3.抛物线y=(x+3)2+1的对称轴是( )A. 直线x=3B. 直线x=−3C. 直线x=−1D. 直线x=14.一元二次方程x2−4x+3=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的直径AB为( )A. 5cmB. 4cmC. 6cmD. 8cm6.若关于x的一元二次方程ax2+bx−4=0的一个根是x=1,则代数式2027−a−b的值为( )A. −2023B. 2023C. −2024D. 20247.如图,将△OAB绕点O逆时针旋转80°,得到△OCD.若∠A=2∠D=100°,则∠α的度数是( )A. 50°B. 60°C. 40°D. 30°8.已知二次函数y=(x+1)2−2的图象上有三点A(1,y1),B(2,y2),C(−2,y3),则y1,y2,y3的大小关系为( )A. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y3>y2>y19.如图,四边形ABCD内接于⊙O,如果∠BOD的度数为122°,则∠DCE的度数为( )A. 64°B. 61°C. 62°D. 60°10.已知三角形的两条边分别是3和8,第三边是方程x2−13x+42=0的根,则这个三角形的周长为( )A. 17或18B. 17C. 18D. 不能确定二、填空题:本题共6小题,每小题3分,共18分。
2017-2018学年广东省汕头市潮南区两英镇九年级(上)期末数学试
卷
一、选择题(共10小题,每小题3分,满分30分)
1.下列方程是一元二次方程的是()
A.a2+b+c=0 B.32﹣2=3(2﹣2)C.3﹣2﹣4=0 D.(﹣1)2+1=0
2.已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()
A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断
3.二次函数y=2+2的顶点坐标是()
A.(1,﹣2)B.(1,2) C.(0,﹣2)D.(0,2)
4.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()
A.60° B.45°C.35°D.30°
5.若2+4﹣4=0,则3(﹣2)2﹣6(+1)(﹣1)的值为()
A.﹣6 B.6 C.18 D.30
6.正十二边形的每一个内角的度数为()
A.120°B.135°C.150° D.1080°
7.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()
A.﹣3 B.3 C.﹣1 D.1
8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()
A.40cm B.60cm C.80cm D.100cm
9.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()
A.10πB.C.πD.π
10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC ﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为(s),△BPQ的面积为y(cm2),则y关于的函数图象是()
A.B.C.
D.
二、填空题(共6小题,每小题4分,满分24分)
11.一元二次方程(+3)=0的根是.
12.将二次函数y=2的图象沿轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为.
13.若|b﹣1|+=0,且一元二次方程2+a+b=0有两个实数根,则的取值范围
是.
14.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.
15.(4分)如图,正方形OABC的两边OA、OC分别在轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.
16.(4分)如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=.
三、解答题(共3小题,满分18分)
17.(6分)用公式法解方程:2﹣﹣2=0.
18.(6分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.
19.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B (0,4),C(0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,
并写出A1,B1的坐标.
四、解答题(共3小题,满分21分)
20.(7分)某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C 表示,女生用b表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人自不同班级的概率.
21.(7分)已知抛物线y=a2+b﹣8(a≠0)的对称轴是直线=1,
(1)求证:2a+b=0;
(2)若关于的方程a2+b﹣8=0,有一个根为4,求方程的另一个根.
22.(7分)如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.
(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.
五、解答题(共3小题,满分27分)
23.(9分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设
竖档AB=米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)
(1)在图①中,如果不锈钢材料总长度为12米,当为多少时,矩形框架ABCD的面积为3平方米?
(2)在图②中,如果不锈钢材料总长度为12米,当为多少时,矩形框架ABCD的面积S最大?最大面积是多少?
24.(9分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
25.(9分)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣22+4+2与C2:y2=﹣2+m+n为“友好抛物线”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥轴,Q为垂足,求AQ+OQ 的最大值.
(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.
2017-2018学年汕头市潮南区两英镇九年级(上)期末数学试卷
参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.D;2.C;3.D;4.D;5.B;6.C;7.A;8.A;9.C;10.C;
二、填空题(共6小题,每小题4分,满分24分)
11.=0或﹣3;12.y=2+4+4;13.≤4且≠0;
14.π;15.(﹣2,0)或(2,10);16.210°;
三、解答题(共3小题,满分18分)。