第13章 齿轮传动
- 格式:ppt
- 大小:2.43 MB
- 文档页数:43
机械设计基础知识点详解绪论1、机器的特征:(1)它是人为的实物组合;(2)各实物间具有确定的相对运动;(3)能代替或减轻人类的劳动去完成有效的机械功或转换机械能。
第一章平面机构的自由度和速度分析要求:握机构的自由度计算公式,理解的基础上掌握机构确定性运动的条件,熟练掌握机构速度瞬心数的求法。
1、基本概念运动副:凡两个构件直接接触而又能产生一定相对运动的联接称为运动副。
低副:两构件通过面接触组成的运动副称为低副。
高副:两构件通过点或线接触组成的运动副称为高副。
复合铰链:两个以上的构件同时在一处用回转副相联构成的回转副。
局部自由度:机构中常出现的一种与输出构件运动无关的自由度,称为局部自由度或多余自由度。
虚约束:对机构运动不起限制作用的重复约束称为虚约束或称消极约束。
瞬心:任一刚体相对另一刚体作平面运动时,其相对运动可看作是绕某一重合点的转动,该重合点称为瞬时回转中心或速度瞬心,简称瞬心。
如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;如果两个刚体之一是静止的,则其瞬心称为绝对速度瞬心。
2、平面机构自由度计算作平面运动的自由构件具有三个自由度,每个低副引入两个约束,即使构件失去两个自由度;每个高副引入一个约束,使构件失去一个自由度。
计算平面机构自由度的公式:F=3n-2PL -PH机构要具有确定的运动,则机构自由度数必须与机构的原动件数目相等。
即,机构具有确定运动的条件是F>0,且F等于原动件个数。
3、复合铰链、局部自由度和虚约束(a)K个构件汇交而成的复合铰链应具有(K-1)个回转副。
(b)局部自由度虽然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变成滚动摩擦,减少磨损,所以实际机械中常有局部自由度出现。
(c)虚约束对机构运动虽不起作用,但是可以增加构件的刚性和使构件受力均衡,所以实际机械中虚约束随处可见。
4、速度瞬心如果一个机构由K个构件组成,则瞬心数目为N=K(K-1)/2瞬心位置的确定:(a)已知两重合点相对速度方向,则该两相对速度向量垂线的交点便是两构件的瞬心。
第四章齿轮传动基本要求:了解齿轮机构的模型及应用;了解齿廓啮合基本定律,渐开线及其性质、渐开线齿轮能保证定传动比;掌握齿轮各部分名称,渐开线标准齿轮尺寸计算;了解渐开线齿轮啮合过程;掌握渐开线齿轮正确啮合条件;了解渐开线齿轮切齿原理,根切现象及最少齿数齿轮;了解齿轮轮齿失效形式及计算准则,齿轮材料和热处理,齿轮的精度等;掌握直齿圆柱齿轮传动的受力分析、强度计算;了解斜齿圆柱齿轮机构的参数关系;了解直齿圆锥齿轮机构的齿廓曲面、背锥、当量齿数,受力分析;了解蜗杆传动的类型、应用;了解齿轮、蜗杆、蜗轮的构造。
重点:齿轮各部分名称及标准直齿圆柱齿轮的基本尺寸;渐开线齿轮的正确啮合和连续传动条件;轮齿的失效和齿轮材料;直齿圆柱齿轮传动的受力分析、强度计算。
难点: 轮齿的根切现象及最少齿数;直齿圆柱齿轮传动的受力分析、强度计算;斜齿圆柱齿轮机构的参数关系;直齿圆锥齿轮机构的齿廓曲面、当量齿数。
学时:课堂教学:10学时,实验教学:2学时。
教学方法:多媒体结合板书。
第一节 齿轮传动的类型和特点4.1.1齿轮传动的类型4.1.1.1 根据其传动比(i 12=ω1/ω2)是否恒定分1、定传动比(i 12 = 常数)传动的齿轮机构,圆形齿轮机构。
2、变传动比(i 12按一定的规律变化)传动的齿轮机构,非圆形齿轮机构。
4.1.1,2 在定传动比中两啮合齿轮的相对运动是平面运动还是空间运动分 1、平面齿轮机(圆柱齿轮传动)⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩外啮合齿轮传动(图4-1a)直齿圆柱齿轮内啮合齿轮传动(图4-1b)齿轮与齿条传动斜齿圆柱齿轮传动(图4-1c)人字齿轮传动(图4-1d)(a) (b) (c) (d)图4-1 齿轮传动类型2、空间齿轮机构⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩直齿圆锥齿轮传动(图4-2a)圆锥齿轮传动(伞齿轮传动)斜齿圆锥齿轮传动(图4-2b)曲齿圆锥齿轮传动(图4-2c)交错轴齿轮传动(螺旋齿轮传动)(图4-2d)蜗杆传动(图4-2e)(d) (e)图4-2 齿轮传动类型4.1.2齿轮传动的特点 1.优点:①传动比准确; ②传动效率高; ③工作可靠、寿命长; ④结构紧凑; ⑤适用范围广。
齿轮传动装置原理
齿轮传动装置是一种常用的机械传动装置,通过两个或多个齿轮之间的相互咬合,将动力从一个轴传递到另一个轴上。
它主要由驱动轴、从动轴和齿轮组成。
在齿轮传动装置中,驱动轴是提供动力的轴,从动轴是接受动力的轴。
齿轮则是将动力传递的媒介,它们通过在齿轮上的齿与相邻齿轮的齿之间的啮合来传递动力。
齿轮传动装置利用齿轮的传动原理实现速度和扭矩的转换。
根据齿轮齿数的不同,可以实现不同的转速比和扭矩比。
当驱动轴旋转时,驱动轴上的齿轮通过齿与从动轴上的齿轮的啮合,将动力传递到从动轴上。
在传递过程中,齿轮的大小、齿数以及安装位置等因素会影响传动的速度和扭矩。
齿轮传动装置具有传递效率高、承载能力强、传动稳定等优点。
它广泛应用于各种机械设备中,例如汽车变速器、工业机器人、起重机械等。
同时,齿轮传动装置的结构也可以根据具体需求进行设计和优化,以满足不同的传动要求。
总之,齿轮传动装置通过齿与齿的啮合将动力传递到从动轴上,实现了速度和扭矩的转换。
它是一种常用且可靠的机械传动装置,广泛应用于各个领域。
机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
齿轮传动工作原理
齿轮传动是一种常见的机械传动方式,主要由一个或多个齿轮组成。
齿轮传动的工作原理基于齿轮之间的啮合,通过齿轮之间的转动来传递动力和运动。
在齿轮传动中,通常会有两个或多个齿轮,分别称为主动齿轮和从动齿轮。
主动齿轮通过外部力或动力源提供动力,从而驱动从动齿轮的转动。
主动齿轮一般具有较大的齿数,用来提供起动力和传递动力,而从动齿轮则根据主动齿轮的转动来实现相应的转动。
齿轮传动的关键在于齿轮之间的啮合。
两个齿轮之间的啮合会导致相互之间的力矩传递和转动。
主动齿轮转动时,通过齿轮的齿面与从动齿轮的齿面相互啮合,使得从动齿轮也开始转动。
齿轮传动的速度比和力矩比由齿轮的齿数比所决定,可以通过改变齿轮的齿数来实现不同的传动比。
齿轮传动拥有许多优点,例如高传动效率、稳定的传动比、较大的传动力矩和紧凑的结构等。
其应用范围十分广泛,可以用于汽车、机械设备、工程机械、机床以及各种其他需要传递动力和运动的领域。
总之,齿轮传动通过齿轮之间的啮合实现动力和运动的传递。
其简单可靠的工作原理使得其成为一种常见且重要的传动方式。
第五章 圆锥齿轮传动一、 主 要 内 容本章主要讨论直齿轮圆锥齿轮的几何计算、受力分析、强度计算及传动设计。
其中以直齿圆锥齿轮的受力分析为重点内容,而强度计算只介绍其特点,下边分别简述如下。
1.直齿圆锥齿轮的几何计算本节主要内容在机械原理课中已有详尽的论述,要求掌握轴间夹角 90=∑的直齿圆锥齿轮传动的主要参数,如节锥角1δ,2δ,锥距e L ,齿宽系数L ψ,平均直径m d 及平均模数m m 的计算方法。
如:平均直径 d d L m )5.01(ψ-= 平均模数 m m L m )5.01(ψ-=式中:d ,m 分别为大端分度圆直径及大端模数。
其它主要参数计算式见教科书表5-1。
2.直齿圆锥齿轮的受力分析作用在直齿圆锥齿轮齿廓面上的法向力,可视为是作用在齿宽节线中点处。
法向力可以分解为圆周力t F 、轴向力a F 、法向力r F 三个相互垂直的分力。
各分力的计算式为 圆周力 111)5.01(2000d T F L t ψ-=(N )轴向力 111s i n δαtg F F t a = (N ) 径向力 111c o sδαtg F F t r = (N ) 式中:1T ——作用于主动小齿轮上的工作转矩(N .M); L ψ——齿宽系数e LL b /=ψ;e L ——锥距(mm ); 1δ——主动小齿轮的节锥角。
当︒=+=∑9021ξξ时,一轮的径向力与另一轮轴向力数值相等而方向相反,因而有 21t t F F -= 21r a F F -= 21a r F F -=各力的方向如图5-1所示。
圆周力方向:作用于主动轮上的圆周力与转向相反,作用于从动轮上的圆周力与转向相同;径向力方向:不论主、从动轮,其径向力均指向各自的轮心;轴向力方向:由小端指向大端。
3.直齿圆锥齿轮传动的强度计算本节要求掌握如何运用当量齿轮的概念将一对直齿圆锥齿轮传动转化为一对当量直齿圆柱齿轮传动来进行强度计算。
一对直齿圆锥齿轮传动可视为圆锥齿轮宽度中点处的一对当量圆柱齿轮传动,这样就可直接引用前边所述的直齿圆柱齿轮相应的公式。
第一章平面机构的自由度1. 试述运动副的定义,分类,运动副元素的定义。
2. 低副和高副的特点是什么?3. 什么是平面运动副?4. 机构有确定运动的条件是什么 ?5. 机构自由度如何计算?计算时应注意什么问题?6. 局部自由度的作用是什么?虚约束的作用是什么?第二章平面连杆机构1 .铰链四杆机构有那几种基本型式?各有什么特点?2. 铰链四杆机构可以通过那几种方式演变成其它型式的四杆机构?试说明曲柄摇块机构是如何演化而来的?3. 什么是偏心轮机构?它主要用于什么场合?4 .双摇杆机构的四个构件长度应满足什么条件?5. 曲柄存在的条件是什么?6 .什么是连杆机构的压力角、传动角?它们的大小对连杆机构的工作有什么影响?偏置曲柄滑块机构的最小传动角γ min 发生在什么位置?第三章凸轮机构1 .滚子从动件盘形凸轮机构凸轮的理论轮廓线与实际轮廓线之间存在什么关系?两者是否相似?2. 已知一滚子摆动从动件盘形凸轮机构,因滚子损坏,现更换了一个外径与原滚子不同的新滚子。
试问更换滚子后从动件运动规律和最大摆角是否发生变化?为什么?3. 凸轮机构的压力角是什么?为什么要规定许用压力角?回程压力角为什么可以大一些?凸轮机构的压力角与凸轮的压力角有何区别?4 .图示尖底直动从动件圆盘凸轮机构中,凸轮作逆时针转动,试从减小推程压力角方面考虑从动件导路相对于凸轮回转中心的偏置方向是否合理,并标出图示位置的压力角。
又若将凸轮转向改为顺时针,从动件运动规律是否发生变化?为什么?5 .平底从动件盘形凸轮机构凸轮轮廓曲线为何一定要外凸?而滚子从动件盘形凸轮机构凸轮理论廓线却允许内凹,且在内凹段一定不会出现运动失真?第四章齿轮机构1 .什么是齿廓啮合基本定律?为什么渐开线圆柱齿轮传动可以保证瞬时传动比为常数?2. 渐开线有哪些重要性质?渐开线齿廓啮合有哪些重要特点?3. 渐开线标准直齿圆柱齿轮有哪些基本参数?它们与齿轮几何尺寸计算有什么关系?4 .渐开线齿廓的压力角是怎样确定的?渐开线齿轮齿廓各处的压力角是变化的还是一个定值?所谓标准压力角是指何处的压力角?5 .什么是齿轮的分度圆?为什么要规定齿轮的分度圆?6 .何谓齿顶圆、齿根圆和基圆?7 .何谓齿轮的模数?为什么要规定模数系列 ? 渐开线齿轮的模数与牙齿大小有什么关系?8 .渐开线的形状因何而异?一对互相啮合的渐开线齿轮,若其齿数不同,它们齿廓的渐开线形状是否相同 ? 又如有两个齿轮,它们的分度圆及压力角都相同,但模数不同,试问它们齿廓的渐开线形状是否相同?而若两个齿轮的模数相同,齿数相同,但压力角不同,它们齿廓的渐开线形状是否相同?9 .齿轮的齿顶圆是否一定比齿根圆大 ? 有没有基圆大于分度圆的情况?10 .什么是啮合角?它与齿轮的压力角有何区别?在什么条件下啮合角与压力角相等?11. 什么是渐开线齿轮传动的正确啮合条件?12. 什么是渐开线齿轮传动的标准安装条件?13 .什么是渐开线齿轮传动的连续传动条件?14. 什么是重合度?渐开线直齿轮传动的重合度的最大值是多少?增大齿轮的模数对于提高重合度有无作用?渐开线斜齿圆柱齿轮的重合度为什么可以比直齿轮的重合度大?15 .试分析影响重合度大小的因素有哪些?16. 有一对标准齿轮传动,已知试求它们的标准中心距 ? 又如其实际中心距大于标准中心距,这时其传动比有无变化 ? 分度圆与分度圆压力角有无变化 ? 节圆与啮合角有无变化 ? 它们还能否继续正确啮合 ?17 .分析渐开线齿条与渐开线齿轮齿形的异同,几何尺寸计算公式的异同。