松江区初三数学中考模拟考试
- 格式:doc
- 大小:394.50 KB
- 文档页数:7
上海市松江区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°2.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.4.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.25.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.46.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°8.计算(2017﹣π)0﹣(﹣13)﹣1+3tan30°的结果是()A.5 B.﹣2 C.2 D.﹣1 9.|﹣3|的值是()A.3 B.13C.﹣3 D.﹣1310.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个12.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.14.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________15.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.17.已知a+b=4,a-b=3,则a2-b2=____________.18.解不等式组1(1)1212xx⎧-≤⎪⎨⎪-<⎩,则该不等式组的最大整数解是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.20.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.23.(8分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.24.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.25.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.26.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.27.(12分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP 的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b 是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.2.C【分析】,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】<即67<<故选:C .【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.3.B【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a ->0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .4.B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为15[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B .5.B试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图6.D【解析】【分析】先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.7.C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.8.A试题分析:原式=1-(-3)+33⨯=1+3+1=5,故选A.9.A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.10.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.11.C【解析】【详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.12.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y 值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1. 故选D .【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.14.17【解析】过点B 作EF ⊥l 2,交l 1于E ,交l 1于F ,如 图,∵EF ⊥l 2,l 1∥l 2∥l 1,∴EF ⊥l 1⊥l 1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解. 15.75°【解析】试题解析:∵直线l1∥l2,∴130.A∠=∠=o,AB ACQ=75.ACB B∴∠=∠=o2180175.ACB∴∠=-∠-∠=o o故答案为75.o16.4n﹣1.【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.17.1.【解析】【分析】【详解】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.18.x=1.【解析】【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】()111212x x ⎧-≤⎪⎨⎪-⎩①<②, 由不等式①得x≤1,由不等式②得x >-1,其解集是-1<x≤1,所以整数解为0,1,2,1,则该不等式组的最大整数解是x=1.故答案为:x=1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM ,然后求出△MBC 的周长=AC+BC ,再代入数据进行计算即可得解;②当点P 与M 重合时,△PBC 周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC ,∴∠C=∠ABC=70°,∴∠A=40°.∵AB 的垂直平分线交AB 于点N ,∴∠ANM=90°,∴∠NMA=50°.故答案为50;(2)①∵MN 是AB 的垂直平分线,∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC .∵AB=8,△MBC 的周长是1,∴BC=1﹣8=6;②当点P 与M 重合时,△PBC 周长的值最小,理由:∵PB+PC=PA+PC ,PA+PC≥AC ,∴P 与M 重合时,PA+PC=AC ,此时PB+PC 最小,∴△PBC 周长的最小值=AC+BC=8+6=1.20.(1)60°;(2)证明略;(3)8 3π【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.21.(1)13(2)23.【解析】【分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.22.(1)75°(2)见解析【解析】【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.23.(1)AD=DE;(2)AD=DE,证明见解析;(3)13.【解析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3)13.考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.24.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF ⊥DP ,∠AOD =90°,∠DAG =∠PAG ,∴∠AGE =90°,∠DAO =45°,∴∠EAG =45°,∠DAG =∠PEG =22.5°,∴∠EAD =∠DAG+∠EAG =22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP 是正方形,∴BF =FD =DP =PB ,∠DPB =∠PBF =∠BFD =∠FDP =90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.25.(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解析】试题分析:()1AE CG AE CG =⊥,,证明ADE V ≌CDG V ,即可得出结论. ()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG V V ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,,理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE V ≌CDG V ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF V 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O e 的直径,∵DF EG =,∴EG 也是O e 的直径,∴∠ECG=90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒,∴DAC DCG ∠=∠, ∵ADE CDG ∠=∠,∴ADE CDG V V ∽,∴3.4CG DC AE AD == ②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =, 5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,,∴CDH CAD V V ∽,∴,CD CH CA CD= 3,53CH ∴= ∴95CH =, ∴97425255AE x AC CH ==-=-⨯=, 720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=, 12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.26.(1)1;(2)详见解析;(3)750;(4)15. 【解析】【分析】 (1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图; (3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A 、B 、C 、D 、E 分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.27.(1)8cm(2)24cm2(3)60cm2(4) 17s【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【详解】(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;(2) a=S△ABC=12×6×8=24(㎝2) ;(3) 同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2 ;(4) 图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.。
上海市松江区2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,33.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣34.若代数式11xx+-有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 5.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=96.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A.4 B.5 C.10 D.117.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)9.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.10.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤11.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm12.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.14.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.15.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.16.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.17.如图,PA ,PB 分别为O e 的切线,切点分别为A 、B ,P 80∠=o ,则C ∠=______.18.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.20.(6分)计算:﹣(﹣2)0+|1﹣|+2cos30°.21.(6分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.89.3 4 6.58.59.99.6乙 5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲 1 0 1 2 1 5乙____ ____ _____ ______ _____ _______(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.2 8.9 9.6乙8.2 8.4 9.7(1)估计乙业务员能获得奖金的月份有______个;(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)22.(8分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.23.(8分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,FG∥AD,且FG=EF.(1)求证:四边形ABED是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED = .24.(10分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.25.(10分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.26.(12分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式: (1)若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案) 27.(12分)如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AC 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C . (1)求证:AB=BC ; (2)如果AB=5,tan ∠FAC=12,求FC 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 2.A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系. 3.D 【解析】 【分析】先得到抛物线y=x 2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式. 【详解】解:抛物线y=x 2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1. 故选:D . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 4.D 【解析】试题分析:∵代数式11x +- ∴10{x x -≠≥,解得x≥0且x≠1. 故选D .考点:二次根式,分式有意义的条件. 5.D 【解析】 【分析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.解:A、a﹣3a=﹣2a,故此选项错误;B、(ab2)0=1,故此选项错误;C=故此选项错误;D,正确.故选D.【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.6.B【解析】试题分析:(4+x+3+30+33)÷3=7,解得:x=3,根据众数的定义可得这组数据的众数是3.故选B.考点:3.众数;3.算术平均数.7.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.8.C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案. 【详解】解:由二次函数26y x x m =-+得到对称轴是直线3x =,则抛物线与x 轴的两个交点坐标关于直线3x =对称,∵其中一个交点的坐标为()1,0,则另一个交点的坐标为()5,0, 故选C . 【点睛】考查抛物线与x 轴的交点坐标,解题关键是掌握抛物线的对称性质. 9.D 【解析】 【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可. 【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4, 当y=0时,x=1. 故选D . 【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解. 10.B 【解析】 试题分析:①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变;④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变; ⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化. 故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线 11.C 【解析】设这块圆形纸片的半径为R ,圆锥的底面圆的半径为r ,利用等腰直径三角形的性质得到R ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=90π180⋅,解得r=4R R )2=(2+(4R )2,再解方程求出R 即可得到这块圆形纸片的直径. 【详解】设这块圆形纸片的半径为R ,圆锥的底面圆的半径为r ,则R ,根据题意得:2πr=90π180⋅,解得:r=4R R )2=(2+(4R )2,解得:R=12,所以这块圆形纸片的直径为24cm . 故选C . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 12.D 【解析】 【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限. 【详解】 ∵k <0,∴一次函数y=kx+b 的图象经过第二、四象限. 又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一、二、四象限. 故选D . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=420=15.故答案为1 5 .14.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.15.1【解析】【分析】利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴CD BD AD CD=,∴49CD CD=, ∴CD=1. 【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键. 16.10 【解析】 【分析】连接OC ,当CD ⊥OA 时CD 的值最小,然后根据垂径定理和勾股定理求解即可. 【详解】连接OC ,当CD ⊥OA 时CD 的值最小, ∵OA=13,AB=1, ∴OB=13-1=12,∴, ∴CD=5×2=10. 故答案为10. 【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 . 17.50° 【解析】 【分析】由PA 与PB 都为圆O 的切线,利用切线长定理得到PA PB =,再利用等边对等角得到一对角相等,由顶角P ∠的度数求出底角BAP ∠的度数,再利用弦切角等于夹弧所对的圆周角,可得出BAP C ∠∠=,由BAP ∠的度数即可求出C ∠的度数. 【详解】解:PA Q ,PB 分别为O e 的切线,PA PB ∴=,AP CA ⊥,又P 80∠=o ,()1BAP 18080502o o o ∠∴=-=, 则C BAP 50∠∠==o . 故答案为:50o【点睛】此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键.18.32°【解析】【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)59.【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120360︒︒=13;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为1,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为9.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20..【解析】【分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【详解】原式,,.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【解析】【分析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0x人员甲 1 0 1 2 1 5乙0 1 3 0 2 4(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.22.(1)y=﹣x 2+2x+1;(2)P (97 ,127);(1)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似. 【解析】 【分析】(1)先求得点B 和点C 的坐标,然后将点B 和点C 的坐标代入抛物线的解析式得到关于b 、c 的方程,从而可求得b 、c 的值;(2)作点O 关于BC 的对称点O′,则O′(1,1),则OP+AP 的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P 的坐标;(1)先求得点D 的坐标,然后求得CD 、BC 、BD 的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC ∽△DCB 和△ACQ ∽△DCB 两种情况求解即可. 【详解】(1)把x=0代入y=﹣x+1,得:y=1, ∴C (0,1).把y=0代入y=﹣x+1得:x=1, ∴B (1,0),A (﹣1,0).将C (0,1)、B (1,0)代入y=﹣x 2+bx+c 得:9303b c c -++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x 2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称, ∴PO=PO′.∴OP+AP=O′P+AP≤AO′. ∴OP+AP 的最小值=O′A=()()221330--+-=2.O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97,127)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=2,BC=12,DB=25.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴13 AO CDCO BC==.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=21025=AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.23.(1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形.再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EFAB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论.详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CFAD CA=. 同理EF CFAB CA = . 得:FG AD =EFAB∵FG EF =,∴AD AB =. ∴四边形ABED 是菱形. (2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠=o .同理90AFE o ∠=. ∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DEEF AE=. ∴21·2AE EF ED =.点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.24.(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ. 【解析】试题分析:(1)利用AAS 证明△AQB ≌△DPA ,可得AP=BQ ;(2)根据AQ ﹣AP=PQ 和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD 中,AD=BA ,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP ⊥AQ ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP ,∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB=∠DPA=90°,∴△AQB ≌△DPA (AAS ),∴AP=BQ.(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ. 考点:(1)正方形;(2)全等三角形的判定与性质. 25.见解析 【解析】 【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可. 【详解】如图所示:P 点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键. 26.(1)这种篮球的标价为每个50元;(2)见解析 【解析】 【分析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x个,在A 超市可买篮球42003000.9x+个,根据在B 商场比在A 商场多买5个列方程进行求解即可;(2)分情况,单独在A 超市买100个、单独在B 超市买100个、两家超市共买100个进行讨论即可得. 【详解】(1)设这种篮球的标价为每个x 元, 依题意,得4200420030050.80.9x x+-=, 解得:x=50,经检验:x=50是原方程的解,且符合题意, 答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A 超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:20000.950=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.27.(1)见解析;(2)10 3.【解析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH 的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.。
年松江区中考数学模拟考试卷题号 一 二三 四 五总分 19 20 21 22 23 24 2625 得分一、填空题:(本大题共14题,每题3分,满分42分) 1.计算:=-2)2( .2.分解因式:=-12a . 3.不等式组⎩⎨⎧<>-45012x x 的解集为 .4.计算:)11(1x x x -÷-= . 5.函数321-=x y 的自变量x 的取值范围是 .6.点)1,3(-A 关于x 轴对称的点B 的坐标是 . 7.如果3)(-=kx x f ,且1)2(=f ,那么=k . 8.方程x x =+2的解是 . 9.已知反比例函数xky =与正比例函数x y 2=的一个交点的纵坐标是2-,则此反比例函数的解析式为 .10.已知在△ABC 中,∠ACB=90º,∠B=30º,AB=2,则AC= .11.在⊙O 中,直径为10,AB 是弦,且 AB=8,则圆心O 与弦AB 的距离为 .12.小明在距离一铁塔的底部30米处测得此铁塔的顶部的仰角为α,那么这一铁塔的高度为 米(用含α的三角比表示). 13.如图,△ABC 中,AB=AC ,把△ABC 沿着DE 翻折, 使点A 与点C 重合,要使△BCD 也是等腰三角形, 且BC=DC ,则∠A= .DEA14.已知直角梯形的一腰与下底的夹角为60º,下底与其中的一腰 都等于6,则梯形的中位线的长为 .二、选择题(本大题共4题,每题3分,满分12分)[每小题列出的四个答案中,只有一个是正确的,把正确的答案的代号填入括号内] 15.若0≠a ,下列运算结果正确的是…………………………………( ) (A )1055a a a =+; (B )156--=⋅a a a ;(C )5210a a a=÷; (D )725)(a a =.16.用换元法解方程8220222=+-+xx x x ,若设y x x =+22,则原方程可化为……………………………………………………………………………( ) (A )02082=--y y ; (B )012082=+-y y ; (C )02082=-+y y ; (D )018202=-+y y .17.在下列图形中,既是中心对称图形又是轴对称图形的是…………( ) (A )等腰三角形 ; (B )梯形; (C )圆; (D )平行四边形. 18.下列命题中正确的是…………………………………………………( ) (A )圆内两条互相垂直且相等的弦一定互相平分; (B )垂直平分弦的直线一定经过这个圆的圆心; (C )无公共点的两圆必外离; (D )两圆外公切线的长等于圆心距. 三、(本大题共3题,每题8分,满分24分) 19.计算:21)18382(⋅- .20.如图,已知:矩形ABCD 中,AD=2,点E 、F 分别在边CD 、AB 上,且四边形AECF 是菱形,21=∠DAE tg . 求:(1)DE 的长;(2)菱形AECF 的面积.21.某校在一次健康知识竞赛活动中,随机抽取了一部分同学测试的成绩为样本,绘制的成绩统计图如下,请结合统计图回答下列问题: (1)本次测试中,抽样的学生有 人. (2)分数在90.5~100.5这一组的频率是 .(3)这次测试成绩的中位数落在 小组内. (4)若这次测试成绩80分以上 (含80分)为优秀,则优秀率 不低于 %.FED CBA328 6 4 人数四.(本大题共3题,每题10分,满分30分)22.已知:如图,过正方形ABCD 的顶点A 作一条直线,分别交BD 、CD 、BC 的延长线于E 、F 、G .求证:(1)∠DAF=∠DCE ;(2)CE 与△CGF 的外接圆⊙O 相切.23.王云在超市用30元买了某种品牌的电池若干节.过一段时间再去该超市,发现这种电池进行让利销售,每节让利0.5元,他同样用30元钱比上次多买了2节.求王云第一次买了多少节这种品牌的电池.G FE DCB A OG FEDCB A24.已知抛物线m x m x y ---=)1(222.(1)求证:无论m 为任何实数,此抛物线与x 轴总有两个交点; (2)设抛物线与x 轴交于点)0,(1x A 、点)0,(2x B ,且210x x <<. ①当2=+OB OA 时,求此抛物线的解析式;②若抛物线与y 轴交于点C ,是否存在这样的抛物线,使△ABC 为直角三角形;若存在,求出抛物线的解析式;若不存在,说明理由.五.(本大题只有1题,满分12分,(1)、(2)、(3)题满分各为4分、4分、4分)25.如图,已知AC ⊥CM,点B 是射线CM 上一点(点B 不与点C 重合),AC=4,∠CAB 的平分线AD 与射线CM 交于点D,过点D 作DN ⊥AB,垂足为N . (1)如果AB=5,求BD 的长;(2)设y BD x AB ==,,求出y 关于x 的函数解析式,并写出x 的取值范围; (3)当AB 取何值时,四边形ACDN 的面积是△BDN 面积的3倍.N MD C B A松江区年中考数学模拟考试卷参考答案及评分标准一、填空题:(本大题共14题,每题3分,满分42分)1.4 ; 2.)1)(1(+-a a ; 3.5421<<x ; 4.1 ; 5.23≠x ; 6.)1,3(--; 7.2; 8.2=x ; 9.xy 2=; 10.1; 11.3;12.αctg 30; 13.36; 14.29或36-.二、选择题:(本大题共4题,每题3分,满分12分) 15.B ; 16.A ; 17.C ; 18.B . 三、(本大题共3题,每题8分,满分24分) 19.解:原式22)2924(⋅-=………………………………………(4分) 2225⨯-= ……………………………………………(2分) 5-= ………………………………………………………(2分) 20.解:(1)∵点E 在矩形ABCD 的CD 边上∴90=∠ADE ……………………………………………………(1分) 在直角三角形ADE 中,90=∠ADE ,21,2=∠=DAE tg AD ∴1=∠⋅=DAE tg AD DE …………………………………………(2分) ∴522=+=DE AD AE ………………………………………(2分)(2)∵四边形AECF 是菱形, ∴5==AE AF …………(1分)又∵AD ⊥AF ∴5252=⨯=⋅=AF AD S AECF 菱形 ……(2分) 21.(1)50 ………………………………………………………………(2分)(2)0.16 ……………………………………………………………(2分) (3)80.5~90.5 ……………………………………………………(2分) (4)76 ………………………………………………………………(2分)四、(本大题共3题,每题10分,满分30分) 22.(1)证明:∵ BD 是正方形ABCD 的对角线∴∠ADE =∠CDE =45º ………………………………………………(1分)在△ADE 和△CDE 中 AD =CD ,∠ADE =∠CDE ,DE =DE∴△ADE ≌△CDE ……………………………………………………(2分) ∴∠DAE =∠DCE ,既∠ADF =∠DCE …………………………(1分) (2)∵∠GCF =90º ∴△CGF 是直角三角形 …………………(1分) ∴△CGF 的外接圆圆心O 为GF 的中点 …………………………(1分) 连接OC ,∵OC =OF ∴∠OCF =∠OFC =∠AFD ………………(1分) ∴∠DCF +∠FCE =∠AFD+∠DAF =90º ………………………(2分) ∴∠OCE =90º ∴CE 与△CGF 的外接圆⊙O 相切 ………………(1分) 23.解:设第一次买了x 节电池 ………………………………………(1分)由题意得:30)2)(5.030(=+-x x………………………………(3分) 化简得:012022=-+x x ……………………………………(1分) 解方程得:101221=-=x x , …………………………………(2分)经检验101221=-=x x ,都是原方程的根 ……………………(1分) 但121-=x 不合题意,舍去 ∴10=x ………………………(1分) 答:王云第一次买了10节这种品牌的电池. ………………………(1分) 24.解:(1)和抛物线m x m x y ---=)1(222对应的一元二次方程为0)1(222=---m x m x⊿m m 8)1(42+-= ……………………………………………………(1分)442+=m ∵02≥m ∴0442>+m ∴⊿0> ……………(1分)∴方程0)1(222=---m x m x 必有两个不相等的实数根∴无论m 为任何实数,此抛物线与x 轴总有两个交点.……………(1分)(2)由题意可知21,x x 是方程0)1(342=-+-m x x 的两个实数根 ∴121-=+m x x ,221mx x -=⋅ ………………………………(1分) ① ∵210x x << ∴21,x OB x OA =-= ∴21x x OB OA +-=+∴221=+-x x ∴44)(21221=-+x x x x ………………………(1分)∴4)2(4)1(2=-⨯--mm ,解得:3±=m ……………………(1分) ∵021<⋅x x ∴0>m ∴3=m∴所求抛物线的解析式为3)13(222---=x x y ……………(1分)② 设存在这样的抛物线,使△ABC 为直角三角形 ∵点A 、B 分别在原点的两侧,点),0(m C -∴只可能有∠ACB =90º………………………………………………………(1分) 又∵点)0,(1x A 、点)0,(2x B ,且222AB BC AC =+∴212222221)(x x m x m x -=+++ ∴22m m =解得0=m 或21=m ………………………………………………………(1分) 但0=m 不合题意,舍去, ∴21=m ∴2122-+=x x y所以存在抛物线2122-+=x x y ,使△ABC 为直角三角形 …………(1分)五.(本题满分12分,第(1)题4分,第(2)题4分,第(3)题4分) 25.解:(1)在直角三角形ABC 中,∠ACB =90º,5,4==AB AC∴3452222=-=-=AC AB BC ………………………………(1分)∵AD 是∠CAB 的平分线,且DC ⊥AC ,DN ⊥AB ∴DN =DC …(1分) 在Rt △DNB 和Rt △ACB 中,∠DBN =∠ABC ∴△DNB ∽△ACB …(1分) ∴AB DB AC DN = ∴543BD BD =- ∴35=BD ……………………(1分) (2)在Rt △ACB 中,∠ACB =90º,x AB AC ==,4∴16222-=-=x AC AB BC …………………………………(1分)∵△DNB ∽△ACB ∴ABDBAC DN =∴x y y x =--4162 ………(1分) ∴1642-+=x xxy …………………………………………………(1分)(4>x ) ……………………………………………………………(1分)(3)∵BDN ACDN S S ∆=3四边形 ∴BDN ABC S S ∆∆=4 又∵△ACB ∽△DNB ∴4)(2==∆∆BDAB S S BDN ABC ∴BD AB 2= ………………………………(1分)设x AB =, 则21421162=--xx ………………………………(1分)解方程得:432021-==x x , ………………………………………(1分) 经检验432021-==x x , 都是原方程的根,但42-=x 不合题意,舍去. ∴320=x 即320=AB 时,四边形ACDN 的面积是△BDN 面积的3倍.…………………………………………………………………(1分)注:以上各题如有其他不同的解法,则相应给分.。
2022年上海松江区中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,已知点A 表示的数是12,那么点B 表示的数是( )A .113B .114 C .115 D .1162、一个长方体的棱长总和为84cm ,长:宽:高4:2:1=,则长方体的体积为( ) A .321cm B .3126cm C .3216cm D .3252cm3、一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为( ) A .13 B .14C .15D .16 4、在正整数1到10中,最小的合数与最大的素数分别是( ) A .2,5 B .2,7 C .4,7 D .4,95、在数学兴趣班中,男生有20名,女生有16人,则下列说法正确的是( ) ·线○封○密○外A .男生比女生多20%B .女生比男生少20%C .男生占数学兴趣班总人数的80%D .女生占数学兴趣班总人数的80%6、你知道废电池是一种危害严重的污染源吗?一粒纽扣电池可以污染600000升水,用科学记数法表示为( )A .60.610升B .6610⨯升C .5610⨯升D .46.010⨯升7、下列各数不能与4、5、6组成比例的是( )A .3B .7.5C .103D .4458、有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( )A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1009、下列计算正确的是( )A .1=B =C .3+=D .=10、方程231y -=的解是( )A .2y =B .1y =C .2y =或1y =D .1y =或1y =-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、求比值:1.2分钟:48秒=______.2、如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A '处,折痕为CD ,则A DB '∠=___.3、比较大小:2.4______135(填“>”或“<”).4、计算:32()x =______.5、写出16的所有因数:__________________________. 三、解答题(5小题,每小题10分,共计50分) 1、求19962的末三位是多少. 2、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米? 3、小明的妈妈把5000元钱存入银行,定期2年,按年利率3.69%,银行利息税税率为20%,到期后应得的本利和是多少元? 4、求下列图形的周长(单位:厘米,π取3.14). 5、小亮家打算把收入的2万元存入银行两年,现有两种储蓄方式供选择:一种是直接存一个两年期的,年利率是2.70%;另一种是先存一年期的,年利率为2.25%,第一年到期后,把本息和取出来再转存一年.另外,两种方式都需要向国家缴纳20%的利息税.你认为选择哪种储蓄方式得到的税后利息多一些?多多少元? -参考答案- 一、单选题 ·线○封○密○外1、D【分析】0~1之间被等分成6份,其中点A 为从0开始自左向右的第3个点,为36,则数轴上每一份表示16,即可得到点B 表示的数.【详解】由题意,知点A 表示的数是12.又0~1之间被等分成6份,其中点A 为从0开始自左向右的第3个点,为36,则数轴上每一份表示16,即B 点表示的数为111166+=. 故选:D .【点睛】 本题考查分数的意义,得到数轴上每一份表示16是解题的关键. 2、C【分析】由长方体的特点可知:长方体的棱长之和=(长+宽+高)×4,棱长总和已知,于是可以求出长、宽、高的和,进而利用按比例分配的方法即可求出长、宽、高的值,从而利用长方体的体积V=abh ,【详解】解:84421÷=(厘米),4217++=, 所以:长是()42112cm 7⨯=, 宽是()2216cm 7⨯=, 高是()1213cm 7⨯=,所以长方体的体积为()31263216cm ⨯⨯=, 故选C . 【点睛】 本题主要考查长方体体积的计算方法以及按比例分配的解答方法,关键是依据长方体的特点先求出长方体的长、宽、高的值,进而逐步求解. 3、C 【分析】 利用这条弧所对的圆心角的度数除以360°即可求出结论. 【详解】 解:72÷360=15 即这条弧长与这条弧所在圆的周长之比为15 故选C . 【点睛】 此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 4、C 【分析】 由题意根据质数与合数的意义即一个自然数如果只有1和它本身两个因数,这样的数叫做质数.一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此找出10以内的最小的合数与最大的素数. 【详解】 解:根据质数、合数的意义可知: 在正整数10以内,最小的合数是4,最大的素数7;·线○封○密○外故选:C.【点睛】本题考查质数与合数的意义,知道正整数10以内,最小的合数和最大的素数是多少是解答此题的关键.5、B【分析】根据百分率=比较量(部分量)÷单位“1”,即可得出结论.【详解】解:A.男生比女生多(20-16)÷16=25%,故本选项错误;B.女生比男生少(20-16)÷20=20%,故本选项正确;C.男生占数学兴趣班总人数的20÷(20+16)≈55.56%,故本选项错误;D.女生占数学兴趣班总人数的16÷(20+16)≈44.44%,故本选项错误.故选B【点睛】此题考查的是百分数应用题,掌握百分率=比较量(部分量)÷单位“1”是解题关键.6、C【分析】根据科学记数法的表示方法,将原数写成10na⨯(a是大于等于1小于10的数)的形式.【详解】解:5=⨯.600000610故选:C.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.7、A【分析】根据比例的定义去判断下面选项中能够与4、5、6构成比例的选项.【详解】A 选项不正确;B 选项正确,4:56:7.5=;C 选项正确,10:45:63=;D 选项正确,44:45:65=. 故选:A . 【点睛】 本题考查比例的定义,解题的关键是掌握比例的定义去判断比例能否成立. 8、C 【分析】 由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】 由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n , ∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】 ·线○封○密○外本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.9、D【分析】根据二次根式的性质和运算法则可以选出正确选项.【详解】解:∵=错误;B错误;∵3为有理数,错误;∵2===,∴D正确,故选D.【点睛】本题考查二次根式的应用,熟练掌握二次根式的化简方法和合并方法是解题关键.10、C【分析】去绝对值符号:如果原代数式为正,去掉绝对值后,其结果为本身;如果原代数式为负,去掉绝对值后,其结果为相反数;利用绝对值的代数意义化解已知方程,转化两个一元一次方程,求出方程的解后即可解题.【详解】y->时,解:当230y-=,2312y=,y-<时当230231y -=-,1y =,∴2y =或1y =; 故选C . 【点睛】 本题主要考查了解含绝对值符号的一元一次方程,熟练掌握绝对值的代数意义是解题的关键,忘记考虑绝对值符号内的原代数式为负是本题的易错点. 二、填空题 1、32 【分析】 先统一单位,然后化简比即可. 【详解】 解:1.2分钟:48秒 =72秒:48秒 =32 故答案为:32. 【点睛】 此题考查的是求比值,掌握比的基本性质是解决此题的关键.2、10°【分析】根据折叠的性质可知50CA D A '∠=∠=︒,根据三角形内角和定理可得18040B ACB A ∠=︒-∠-∠=︒,根据三角形的外角性质可得DAC B A DB ''∠=∠+∠,进而可得A DB '∠ ·线○封○密○外【详解】折叠50CA D A '∠=∠=︒18040B ACB A ∠=︒-∠-∠=︒,DAC B A DB ''∠=∠+∠,∴A DB '∠504010DA C B '=∠-∠=︒-︒=︒故答案为:10︒【点睛】本题考查了折叠的性质,三角形内角和定理,三角形的外角性质,掌握以上知识是解题的关键.3、<【分析】把2.4化为125,然后与135进行比较大小即可. 【详解】 解:∵2.4=125,125<135, ∴2.4<135, 故答案为:<.【点睛】此题主要考查了有理数的大小比较,熟练掌握比较方法是解答此题的关键.4、6x【分析】根据乘方的计算方法进行计算即可得到答案.【详解】32()x =6x ,故答案为6x .【点睛】本题考查乘方,解题的关键是掌握乘方的计算方法.5、1,2,4,8,16【分析】根据找一个数因数的方法进行列举即可.【详解】 解:∵161162844=⨯=⨯=⨯, ∴16的所有因数是:1,2,4,8,16, 故答案为:1,2,4,8,16. 【点睛】 本题考查因数的意义,掌握求一个数的因数的方法是解题的关键. 三、解答题 1、336. 【分析】 末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336,依此即可求解. 【详解】 解:末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环. 因此199631993-=,1993/100余93,因此从008向前找7个即为336. ·线○封○密○外故答案为:336.【点睛】本题主要考查了数字类规律探索,解题的关键是从简单的乘方运算开始,通过运算找出规律解决问题.2、49厘米【分析】先算出每本书的厚度,再乘以书的总本数即可得到解答.【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米.【点睛】本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键 . 3、5295.2元【分析】根据题意列出算式()5000 3.6921205000⨯%⨯⨯-%+,计算即可.【详解】解:()5000 3.6921205000⨯%⨯⨯-%+295.25000=+5295.2=(元),答:到期后应得的本利和是5295.2元.【点睛】本题考查百分数的实际应用,掌握年利率和利息税税率的意义是解题的关键.4、图形的周长为24.56厘米.【分析】将图形的周长转化成两条线段的长度和一个圆的周长的和即可.【详解】图形的周长为624=624 3.14=24.56cm π⨯+⨯+⨯ .【点睛】 本题主要考查图形的周长,掌握圆的周长的计算公式是解题的关键. 5、选择第一种储蓄方式得到的税后利息多一些,多137.52(元) 【分析】 本题中,本金是2万元,时间是2年,第一种方式,年利率是2.70%,要求利息,根据关系式:利息=本金×利率×时间×(1-20%),计算税后利息.先存一年期,年利率是2.25%,计算出税后利息,然后把本金和利息取出来和在一起,再存入一年,计算出税后利息,然后通过比较,解决问题. 【详解】 解:第一种储蓄方式可得税后利息: 20000 2.70%2(120%)864⨯⨯⨯-=(元); 第二种储蓄方式可得税后利息: 20000 2.25%(120%)360⨯⨯-=(元); 360(20000360) 2.25%(120%)726.48++⨯⨯-=(元). 所以选择第一种储蓄方式得到的税后利息多一些,多864726.48137.52-=(元). 【点睛】 此题属于利息问题,运用了关系式:利息=本金×利率×时间,进行解答,正确理解题意准确计算税后利息是解题关键. ·线○封○密·○外。
2019-2020学年上海市松江区初三数学第一学期中考一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)已知二次函数2y ax bx c =++的图象如图所示,那么下列判断正确的( )A .0a >,0b >,0c >B .0a <,0b <,0c <C .0a <,0b >,0c >D .0a <,0b <,0c >2.(4分)如果点(1,3)A 、(,3)B m 是抛物线2(2)y a x h =-+上两个不同的点,那么m 的值为( ) A .2B .3C .4D .53.(4分)在以O 为坐标原点的直角坐标平面内,有一点(3,4)A ,射线OA 与x 轴正半轴的夹角为α,那么cos α的值为( ) A .35B .43C .45D .344.(4分)下列两个三角形不一定相似的是( ) A .两条直角边的比都是2:3的两个直角三角形 B .腰与底的比都是2:3的两个等腰三角形 C .有一个内角为50︒的两个直角三角形D .有一个内角是50︒的两个等腰三角形5.(4分)如果a b c +=,3a b c -=,且0c ≠,下列结论正确的是( ) A .||||a b =B .20a b +=C .a 与b 方向相同D .a 与b 方向相反 6.(4分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是1.5.那么sin α的值为( )A .34B .12C .23D .32二、填空题:(本大题共12题,每題4分,满分48分) 7.(4分)已知:23x y =,那么2x yx y-=+ . 8.(4分)已知线段a 是线段b 、c 的比例中项,如果2a =,3b =,那么c = . 9.(4分)若两个相似三角形的面积比为3:4,则它们的相似比为 .10.(4分)已知点P 是线段AB 的黄金分割点()AP BP >,若2AP =,则BP = . 11.(4分)已知Rt ABC ∆中,若90C ∠=︒,3AC =,2BC =,则A ∠的余切值为 . 12.(4分)已知二次函数21()2f x x bx c =++图象的对称轴为直线4x =,则f (1) f (3).(填“>”或“<”)13.(4分)在直角坐标平面中,将抛物线22(1)y x =+先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线表达式是 .14.(4分)如图,已知D 是ABC ∆的边AC 上一点,且2AD DC =,如果AB a =,AC b =,那么向量BD 关于a 、b 的分解式是 .15.(4分)如图,在正方形网格中,点A ,B ,C 是小正方形的顶点,那么tan BAC ∠的值为 .16.(4分)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为 .17.(4分)以一个等腰直角三角形的腰为边分别向形外作等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”,如果一个等腰直角三角形的腰长为2,那么它的“肩心距”为 .18.(4分)如图,矩形ABCD 中,1AD =,AB k =,将矩形ABCD 绕着点B 顺时针旋转90︒得到矩形A BC D ''',联结AD ',分别交边CD ,A B '于E 、F ,如果2AE D F =',那么k = .三、解答题:(本大题共7题,满分78分)19.(10分)计算:223(2cos45)3tan30260cos60cot 30sin -︒+︒︒-︒-︒20.(10分)已知二次函数241y x x =--.(1)将函数241y x x =--的解析式化为2()y a x m k =++的形式,并指出该函数图象顶点B 坐标; (2)在平面直角坐标系xOy 中,设抛物线241y x x =--与y 轴交点为C ,抛物线的对称轴与x 轴交点为A ,求四边形OABC 的面积.21.(10分)如图,在梯形ABCD 中,//AD BC ,90C ∠=︒,13AD AB ==,24BD =,求边DC 的长.22.(10分)如图,小岛A 在港口P 的南偏西45︒方向上,一艘船从港口P ,沿着正南方向,以每小时12海里的速度航行,1小时30分钟后到达B 处,在B 处测得小岛A 在它的南偏西60︒的方向上,小岛A 离港口P 有多少海里?23.(12分)已知:如图,点D ,F 在ABC ∆边AC 上,点E 在边BC 上,且//DE AB ,2CD CF CA =. (1)求证://EF BD ;(2)如果AC CF BC CE =,求证:2BD DE BA =.24.(12分)如图,已知抛物线2y x bx c =-++经过点(3,0)A ,点(0,3)B .点(,0)M m 在线段OA 上(与点A ,O 不重合),过点M 作x 轴的垂线与线段AB 交于点P ,与抛物线交于点Q ,联结BQ . (1)求抛物线表达式;(2)联结OP ,当BOP PBQ ∠=∠时,求PQ 的长度; (3)当PBQ ∆为等腰三角形时,求m 的值.25.(14分)已知tan 2MON ∠=,矩形ABCD 的边AB 在射线OM 上,2AD =,AB m =,CF ON ⊥,垂足为点F .(1)如图(1),作AE ON ⊥,垂足为点E ,当2m =时,求线段EF 的长度. (2)如图(2),联结OC ,当2m =,且CD 平分FCO ∠时,求COF ∠的正弦值;(3)如图(3),当AFD∆与CDF∆相似时,求m的值.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位R 上】1.【解答】解:抛物线开口向下,因此0a <,对称轴在y 轴的右侧,a 、b 异号,所以0b >,抛物线与y 轴交在正半轴,因此0c >, 故选:C .2.【解答】解:由点(1,3)A 、(,3)B m 是抛物线2(2)y a x h =-+上两个不同的点,得 (1,3)A 与(,3)B m 关于对称轴2x =对称, 221m -=-,解得3m =, 故选:B .3.【解答】解:过点A 作AB x ⊥轴,垂足为B ,在Rt OAB ∆中,由题意得: AOB α∠=,(3,4)A ,3OB ∴=,4AB =, 2233cos 534OB OA α∴===+, 故选:A .4.【解答】解:A 、两条直角边之比为2:3的两个直角三角形,一定相似,故此选项不合题意;B 、两个等腰三角形的腰与底边对应成比例,则这两个等腰三角形必相似,故此选项不合题意;C 、有一个内角为50︒的两个直角三角形,一定相似,故此选项不合题意;D 、有一个内角是50︒的两个等腰三角形,因为50︒是等腰三角形的顶角与底角不能确定,则两个三角形不一定相似,故此选项符合题意. 故选:D .5.【解答】解:a b c +=,3a b c -=,∴2a c =,b c =-, ∴2a b =-, ∴a 与b 方向相反,故选:D .6.【解答】解:如图,过点A 作AE BC ⊥,AF CD ⊥,//AD BC ,//AB CD ,∴四边形ABCD 是平行四边形,四边形ABCD 的面积是1.5,BC AE CD AF ∴⨯=⨯,且1AE AF ==, BC CD ∴=,∴四边形ABCD 是菱形,AD CD ∴=, 1.5CD AF =⨯,32CD ∴=, 32AD CD ∴== 2sin 3AF AD α∴==, 故选:C .二、填空题:(本大题共12题,每題4分,满分48分) 7.【解答】解:23x y =, ∴设2x a =,3y a =, ∴2431235x y a a x y a a --==++. 故答案为:15.8.【解答】解:线段a 是线段b 、c 的比例中项,2a bc ∴=, 2a =,3b =,243a cb ∴==故答案为:43.9.【解答】解:两个相似三角形的面积比为3:4,∴它们的相似比为3:2,故答案为:3:2.10.【解答】解:根据黄金分割定义,得2AP AB BP =4(2)BP BP =+ 2240BP BP +-=解得15(15BP =-±--舍去) 51BP ∴=-故答案为51-.11.【解答】解:在Rt ABC ∆中,90C ∠=︒,3AC =,2BC =, 3cot 2AC A BC ∴==, 故答案为32.12.【解答】解:二次函数()y f x =的图象开口向上,对称轴为直线4x =,∴在对称轴的左侧y 随x 的增大而减小,134<<,f ∴(1)f >(3), 故答案为:>.13.【解答】解:抛物线22(1)y x =+向上平移1个单位后的解析式为:22(1)1y x =++. 再向右平移1个单位所得抛物线的解析式为:221y x =+. 故答案为:221y x =+. 14.【解答】解:2AD CD =,∴2233AD AC b ==, BD BA AD =+,BA a =-,∴23BD b a =-, 故答案为23b a -.15.【解答】解:连接BC ,由正方形的性质可知,45ABD ∠=︒,45CBE ∠=︒, 180ABD ABC CBE ∠+∠+∠=︒, 90ABC ∴∠=︒, AB BC ∴⊥,在Rt ABC ∆中,22112AB =+=,222222BC =+=, 22tan 22BC BAC AB ∴∠===, 故答案为:2.16.【解答】解:斜面AB 的坡度为20:301:1.5=, 故答案为:1:1.5.17.【解答】解:如图,ABC ∆中,2AB AC ==,90BAC ∠=︒,ABD ∆,ACE ∆都是等边三角形,P ,Q 是ABD ∆,ACE ∆的重心.取BC 的中点H ,连接AH .AB AC =,BH CH =,90BAC ∠=︒, HA HB HC ∴==,DA DB =,EA EC =,DH ∴垂直平分线段AB ,EH 垂直平分线段AC , P ∴,Q 分别在DH ,EH 上,PQH ∆是等腰直角三角形, 2AB =,sin 603DF BD ∴=⋅︒=,P 是重心,3PF ∴ 112FH AB ==, 31PH QH ∴==+, 622PQ PH ∴== 62. 18.【解答】解:将矩形ABCD 绕着点B 顺时针旋转90︒得到矩形A BC D ''',1AD A D ''∴==,AB A B k '==,90A DAB DCB ABC '∠=∠=︒=∠=∠,////A D BA CD ''∴A D F FEC DEA ''∴∠=∠=∠,且90D A '∠=∠=︒,ADE ∴∆∽△FA D '', ∴AD DE AE A F A D D F =='''',且2AE D F =', 22DE A D ''∴==,1222A F AD '==, 90A DCF '∠=∠=︒,A FD EFC ''∠=∠,∴△A D F CEF ''∆∽,∴EC FC A D A F=''', ∴2122122k k ---= 21k ∴=+,故答案为:21+.三、解答题:(本大题共7题,满分78分)19.【解答】解:原式22233(2)323312()322-⨯+⨯=⨯-- 1313+=-23=--.20.【解答】解:(1)2241(2)5y x x x =--=--, 该函数图象顶点B 坐标为(2,5)-;(2)如图,令0y =,1x =-,(0,1)C ∴-,(2,5)B -,(2,0)A ∴,∴四边形OABC 的面积11()62622AB OC OA =⨯+⨯=⨯⨯=. 21.【解答】解:如图,//AD BC ,ADB DBC ∴∠=∠,AB AD =,ADB ABD ∴∠=∠,ABD DBC ∴∠=∠,AE BD ⊥,AB AD =,90AEB C ∴∠=∠=︒,12BE DE ==,221691445AE AB BE ∴=-=-,ABD DBC ∠=∠,90AEB C ∠=∠=︒, ABE DCB ∴∆∆∽,∴ABAEBD CD =,∴13524CD =,12013CD ∴=.22.【解答】解:作AE PB ⊥于E ,由题意得,12 1.518PB =⨯=海里, 设AE x =海里,45APE ∠=︒,PE AE x ∴==,60ABE ∠=︒,由题意得,3183x x-=,解得,2793x=+,则27296AP=+,答:小岛A离港口P有(27296)+海里.23.【解答】证明:(1)//DE AB,∴CD CEAC CB=,2CD CF CA=.∴CD CF AC CD=,∴CF CE CD CB=,//EF BD∴;(2)//EF BD,CEF CBD∴∠=∠,AC CF BC CE=,∴AC CEBC CF=,且C C∠=∠,CEF CAB∴∆∆∽,CEF A∴∠=∠,DBE A∴∠=∠,//DE AB,EDB DBA∴∠=∠,且DBE A∠=∠,BAD DBE∴∆∆∽,2BD BA DE ∴=24.【解答】解:(1)将(3,0)A ,(0,3)B 分别代入抛物线解析式,得 9303b c c -++=⎧⎨=⎩. 解得23b c =⎧⎨=⎩. 故该抛物线解析式是:223y x x =-++;(2)设直线AB 的解析式是:(0)y kx t k =+≠,把(3,0)A ,(0,3)B 分别代入,得303k t t +=⎧⎨=⎩. 解得1k =-,3t =.则该直线方程为:3y x =-+.故设(,3)P m m -+,2(,23)Q m m m -++.则BP =,23PQ m m =-+.3OB OA ==,45BAO ∴∠=︒.QM OA ⊥,90PMA ∴∠=︒.45AMP ∴∠=︒.45BPQ APM BAO ∴∠=∠=∠=︒.又BOP QBP ∠=∠,POB QBP ∴∆∆∽.于是BP OBPQ BP ==. 解得195m =,20m =(舍去). 254325PQ m m ∴=-+=;(3)由两点间的距离公式知,222BP m =,222(3)PQ m m =-+,2222(2)BQ m m m =+-+. ①若BP BQ =,22222(2)m m m m =+-+,解得11m =,23m =(舍去).即1m =符合题意.②若BP PQ =,2222(3)m m m =-+, 解得132m =-,232m =+(舍去). 即32m =-符合题意. ③若PQ BQ =,22222(3)(2)m m m m m -+=+-+, 解得2m =.综上所述,m 的值为1或32-或2.25.【解答】解:(1)如图1,延长FC 交OM 于点G ,90BCG CGB ∠+∠=︒,90MON CGB ∠+∠=︒,BCG MON ∴∠=∠,则tan tan 2BCG MON ∠=∠=,24BG BC ∴==,525CG BC =在Rt AOE ∆中,设OE a =,由tan 2MON ∠=, 可得5OA a =,则56OG a =+,16555OF OG a ==+, 655EF OF OE ∴=-=; (2)如图2,延长FC 交OM 于点G ,由(1)得25CG =,CD 平分FCO ∠,FCD DCO ∴∠=∠,//CD OM ,FCD CGO ∴∠=∠,DCO COG ∠=∠,CGO COG ∴∠=∠,25CO CG ∴==,在Rt COB ∆中,由222BC BO OC +=,得2222(52)(25)a ++=,解得165a =(舍去),225a = 6585OF a ∴= 4cos 5OF COF OC ∠==, 3sin 5COF ∴∠=; (3)当D 在MON ∠内部时,①如图31-,FDA FDC ∆∆∽时,此时2CD AD ==,2m∴=;②当FDA CDF∆∆∽时,如图32-,延长CD交ON于点Q,过F作FP CQ⊥于P,则135FDC FDA∠=∠=︒,45FDP∴∠=︒,tan tan22PC FP PFC FP MON FP DP CD DP =⋅∠=⋅∠===+,FP PD CD m∴===,2FD m∴=,FDA CDF∆∆∽,∴FD CDDA FD=,2 FD AD CD m∴⋅=∴22m m,1m∴=;当D在MON∠外部时,90ADF∠>︒,90DFC∠>︒,ADF DFC∴∠=∠,DFI FDI∴∠=∠,ID IF=,①如图33-,FDA DFC∆∆∽时,此时FDA DFC∆≅∆,2CF AD ∴==,DAF FCD FHD ∠=∠=∠, A ∴、O 重合,延长BC 交ON 于R ,24FR CF ∴==,25CR =,225BR =+, 1152m CD AB BR ∴====+; ②如图34-,FDA CFD ∆∆∽时,设25(0)CF t t =>,延长BC 交ON 于R ,过F 作FS CD ⊥于S , DFC FDH ∆≅∆,DH FC ∴=,12ID IF CF ∴===,IS t ∴=,2FS t =,4CS t =,1)DS t =,DH FC ==, FDA CFD ∆∆∽, ∴ADDFDF FC =,22DF AD FC DH ∴=⋅==, 222DF DS FS =+,22241)t t ∴=++,解得1t =,20t =(舍去),52DH AD ∴==>=,矛盾,综上所述:1m =或2m =,或1m =。
上海市松江区初中毕业生学业模拟考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】-8的绝对值等于( )A. 8B. -8C. -D.【答案】B【解析】根据负数的绝对值等于其相反数可得-8的绝对值是8,故选B.【题文】下列运算中,计算结果正确的是()A. ;B. ;C. ;D. .【答案】D【解析】选项A,原式=3a-3;选项B,原式=;选项C,原式=;选项D,原式=9,故选D.【题文】一组数据2,4,5,2,3的众数和中位数分别是()A. 2,5;B. 2,2;C. 2,3;D. 3,2.【答案】C【解析】在这一组数据中2是出现次数最多的,故众数是2;将这组数据已从小到大的顺序排列,处于中间位置的数是3,那么由中位数的定义可知,这组数据的中位数是3.故选C.【题文】对于二次函数,下列说法正确的是()A. 图像开口方向向下;B. 图像与y轴的交点坐标是(0,-3);C. 图像的顶点坐标为(1,-3);D. 抛物线在x>-1的部分是上升的.【答案】D【解析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.【题文】一个正多边形内角和等于540°,则这个正多边形的每一个外角等于()A. 72°;B. 60°;C. 108°;D. 90°.【答案】A【解析】已知正多边形的内角和是540°,所以多边形的边数为540°÷180°+2=5,再由多边形的外角和都是360°,即可得多边形的每个外角=360÷5=72°.故选A.【题文】下列说法中正确的是()A. 有一组邻边相等的梯形是等腰梯形;B. 一组对边平行,另一组对边相等的四边形是等腰梯形;C. 有一组对角互补的梯形是等腰梯形;D. 有两组对角分别相等的四边形是等腰梯形.【答案】C【解析】选项A,有一组邻边相等的梯形是等腰梯形不一定是等腰梯形;选项B,一组对边平行,另一组对边相等的四边形不一定是等腰梯形,可能是平行四边形;选项C正确;选项D、有两组对角分别相等的四边形平行四边形,不是等腰梯形.故选C.点睛:本题主要考查学生对等腰梯形的判定的掌握情况,熟记等腰三角形的判定方法是解题的关键.【题文】计算:=________.【答案】【解析】根据负整数指数幂的性质可得 .【题文】函数的定义域是________________.【答案】【解析】使函数表达式有意义,则x-3≠0解得x≠3.【题文】方程的根是.【答案】x=.【解析】试题分析:∵,∴3x﹣1=4,∴x=,经检验x=是原方程组的解,故答案为:x=.考点:无理方程.【题文】关于x的方程有两个相等的实数根,那么k的值为_________.【答案】【解析】根据题意得△=(-2)2+4k=0,解得k=-1.【题文】在一个袋中,装有除颜色外其它完全相同的2个红球、3个白球和4个黑球,从中随机摸出一个球,摸到的球是红球的概率是_________.【答案】【解析】在一个袋中,装有除颜色外其它完全相同的2个红球、3个白球和4个黑球,所以从中随机摸出一个球,摸到的球是红球的概率是 = .【题文】已知双曲线,当x>0时,y随x的增大而减小,则m的取值范围为_________.【答案】【解析】已知双曲线y,当x>0时,y随x的增大而减小,即可得1-m>0,解得m<1.【题文】不等式组的解集是.【答案】-1≤x<3【解析】试题分析:先分别求出两个不等式各自的解,即可得到结果.由得,由得,则不等式组的解集是.考点:本题考查的是解一元一次不等式组点评:解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).【题文】为了解某校九年级学生体能情况,随机抽查了其中35名学生,测试1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是_______.【答案】【解析】观察可得仰卧起坐的次数在40~45的频数为35-2-4-9=20,所以仰卧起坐的次数在40~45的频率是 .【题文】某山路坡面坡度i=1︰3,沿此山路向上前进了100米,升高了_________米.【答案】【解析】已知山路坡面坡度i=1︰3,设山路坡面的垂直距离为xm,则水平距离为3xm,根据勾股定理可得,解得x= m.即升高了米.【题文】如图,在□ABCD中,E是AD上一点,且,设,,=______________.(结果用、表示)【答案】【解析】已知四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又因,,,所以,即可得 .【题文】已知一个三角形各边的比为2︰3︰4,联结各边中点所得的三角形的周长为18cm,那么原三角形最短的边的长为_______cm.【答案】8【解析】根据三角形的中位线定理可得原三角形的周长为36cm,又因三角形各边的比为2︰3︰4,所以三角形最短的边的长为36× =8cm.【题文】如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE ,则DE的长为______________.【答案】【解析】如图,由折叠的性质可得AB=AE=4,BC=CE=8,根据已知条件易证△AMC是等腰三角形,可得AM=MC ,设AM=MC=x,则EM=8-x,在Rt△AEM中,由勾股定理可得,解得x=5,即AM=MC=5,EM=3,过点E作EN⊥AD于点N,由可求得EN=,在Rt△NEM中,由勾股定理求得MN={{56l 试题解析:原式==当时,原式=【题文】解方程组:【答案】,【解析】试题分析:把第二个方程化为=0,根据ab=0,可得a=0或b=0,把这个方程组转化为几个二元一次方程组,解这些方程组即可求得原方程组的解.试题解析:由②得,,原方程组化为,得∴原方程组的解是【题文】如图,直线与双曲线相交于点A(2,m),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果PA=PC,求点P的坐标.【答案】(1)(2)【解析】试题分析:(1)根据题意求出点坐标,再代入双曲线解析式中即可求解;(2)设点P的坐标为(x,0),由C(-4,0),PA=PC列方程,解得x的值,即可求得点P的坐标.试题解析:(1)把代入直线解得∴点A的坐标为(2,3)设双曲线的函数关系式为把代入解得∴双曲线的解析式为(2)设点P的坐标为∵C(-4,0),PA=PC∴,解得经检验:是原方程的根,∴点P的坐标为【题文】如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=110厘米,∠BAC=37°,垂直支架CD=57厘米,DE是另一根辅助支架,且∠CED=60°.(1)求辅助支架DE长度;(结果保留根号)(2)求水箱半径OD的长度.(结果精确到1厘米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【答案】(1)辅助支架DE长度厘米,(2)水箱半径OD的长度为23厘米.【解析】试题分析:(1)在△CDE中利用三角函数sin60°=,求出DE的长.(2)首先设出水箱半径OD的长度为x厘米,在Rt△AOC中,根据sin∠A=,求得OD的长即可.试题解析:(1)在Rt△DCE中,sin∠E=∴DE==(厘米)答:辅助支架DE长度厘米(2)设圆O的半径为x厘米,在Rt△AOC中sin∠A=,即sin37=∴,解得x=22.5≈23(厘米)答:水箱半径OD的长度为23厘米.点睛:此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,做题的关键是表示出线段的长后,理清线段之间的关系.【题文】如图,点D、E分别是△ABC边BC、AB上的点,AD、CE相交于点G,过点E作EF∥AD交BC于点F ,且,联结FG.(1)求证:GF∥AB;(2)如果∠CAG=∠CFG,求证:四边形AEFG是菱形.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由,可得,再由EF∥AD,根据平行线分线段成比例定理可得,所以,即可得GF∥AB ;(2)联结AF ,证明ΔCAD∽ΔCBA,根据相似三角形的性质可得,即,再因,即可得,可得∠CAF=∠CFA,因∠CAG=∠CFG,可得∠GAF=∠GFA,即可得GA=GF,再由四边形AEFG是平行四边形,即可判断四边形AEFG是菱形.试题解析:(1)证明:∵,∴∵EF∥AD,∴∴∴GF∥AB(2)联结AF ,∵GF∥AB ∴∵,∴∵,∴∽∴,即∵,∴∴∵,∴,∴∵GF∥AB,EF∥AD,∴四边形是平行四边形∴四边形是菱形【题文】已知抛物线与轴交于点A和点B(3,0),与轴交于点C(0,3),P是线段BC 上一点,过点P作PN∥轴交轴于点N,交抛物线于点M.(1)求该抛物线的表达式;(2)如果点P的横坐标为2,点Q是第一象限抛物线上的一点,且△QMC和△PMC的面积相等,求点Q的坐标;(3)如果,求tan∠CMN的值.【答案】(1)抛物线的表达式为;(2)点Q的坐标为(;(3)2.【解析】试题分析:(1)将B(3,0),C(0,3)代入y=-x2+bx+c,求得b、c的值,即可得该抛物线的表达式;(2)设直线BC的解析式为,把点C(0,3),B(3,0)代入,求得直线BC的解析式为,即可得P(2,1),M(2,3)所以,设△QCM的边CM上的高为h,则,可得,即可得Q点的纵坐标为1,所以解得,即可得点Q的坐标为(;(3)过点C作,垂足为H,设M,则P,因为,可得,由此可得,解得,即可得点P 的坐标为(,所以M,求得,所以.试题解析:(1)将,代入,得解得∴抛物线的表达式为(2)设直线BC的解析式为,把点C(0,3),B(3,0)代入得,解得∴直线BC的解析式为∴P(2,1),M(2,3)∴,设△QCM的边CM上的高为h,则∴∴Q点的纵坐标为1,∴解得∴点Q的坐标为((3)过点C作,垂足为H设M,则P∵,∴,∴解得,∴点P 的坐标为(∴M∴,∴点睛:本题是二次函数综合题,涉及的知识点有:待定系数法求抛物线、直线的解析式,三角形面积计算,方程思想,以及分类思想,综合性较强,有一定的难度.【题文】如图,已知在Rt△ABC中,∠ACB=90°,cosB=,BC=3,P是射线AB上的一个动点,以P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC于点E.(1)当PA=1时,求CE的长;(2)如果点P在边AB的上,当⊙P与以点C为圆心,CE为半径的⊙C内切时,求⊙P的半径;(3)设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当PE∥CF时,求AP的长.【答案】(1);(2);(3)或.【解析】试题分析:(1)作PH⊥AC,垂足为H,由垂径定理可得AH=DH,由cosB= BC=3,可得AB=5,AC=4,再由PH∥BC,可得,代入数据求得PH= ,即可求得,由,代入数据求得CE的长即可;(2)当⊙P与⊙C内切时,点C在⊙P内,可得点D在AC的延长线上,过点P作PG⊥AC,垂足为G,设PA=,则,,,,根据,代入数据可得,解得,因⊙P与⊙C内切,即可得,所以,即,解得,(舍去),即当⊙P与⊙C内切时,⊙P的半径为;(3)先证明四边形PDCF是平行四边形,可得PF=CD,再分当点P在边AB的上和当点P在边AB的延长线上两种情况求AP的长.试题解析:(1)作PH⊥AC,垂足为H,∵PH过圆心,∴AH=DH∵∠ACB=90°,∴PH∥BC,∵cosB=,BC=3,∴AB=5,AC=4∵PH∥BC,∴,∴,∴∴∴DC=,又∵,∴,∴(2)当⊙P与⊙C内切时,点C在⊙P内,∴点D在AC的延长线上过点P作PG⊥AC,垂足为G,设PA=,则,,,∵,,…(1分)∵⊙P与⊙C内切,∴∴∴,∴,(舍去)∴当⊙P与⊙C内切时,⊙P的半径为.(3)∵∠ABC+∠A=90゜,∠PEC+∠CDE=90゜,∠A=∠PDA,∴∠ABC=∠PEC∵∠ABC=∠EBP,∴∠PEC=∠EBP,∴PB=PE∵点Q为线段BE的中点,∴PQ⊥BC,∴PQ∥AC∴当PE∥CF时,四边形PDCF是平行四边形,∴PF=CD当点P在边AB的上时,,当点P在边AB的延长线上时,,综上所述,当PE∥CF时,AP的长为或.点睛:本题考查的是圆的综合题,涉及到相似三角形的判定与性质、平行四边形的判定及平行线分线段成比例定理等知识,难度适中.。
2022年上海市松江区中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列代数式中,归类于分式的是()A.B.C.D.【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,结合选项进行判断即可.【解答】解:A、不是分式,故本选项错误;B、是分式,故本选项正确;C、不是分式,故本选项错误;D、分母不是整式,所以不是分式,故本选项错误;故选:B.【点评】本题考查了分式的定义,属于基础题,注意掌握分式的定义是关键,这些需要我们理解记忆.2.(4分)下列方程中,有实数根的是()A.B.C.x3+3=0D.x4+4=0【分析】根据任何数的算术平方根以及偶次方一定是非负数即可作出判断.【解答】解:A、≥0,因而方程一定无解;B、x﹣1≥0,解得:x≥1,则﹣x<0,故原式一定不成立,方程无解;C、x3+3=0,则x=﹣,故选项正确;D、x4+4≥4,故原式一定不成立,故方程无解.故选:C.【点评】本题考查了任何数的算术平方根以及偶次方一定是非负数.3.(4分)函数y=kx﹣k﹣1(常数k>0)的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k的取值范围确定﹣k﹣1的符号,从而确定一次函数不经过的象限.【解答】解:∵k>0∴﹣k<0,∴﹣k﹣1<0∴y=kx﹣k﹣1(常数k>0)的图象经过一、三、四象限,故选:B.【点评】本题考查了一次函数图象与系数的关系,解题的关键是牢记比例系数对函数图象的影响.4.(4分)某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是()A.12元、12元B.12元、11元C.11.6元、12元D.11.6元、11元【分析】根据平均数的计算公式和该校师生某一天购买的这三种价格盒饭数所占的百分比,列式计算即可;根据中位数的定义先按从小到大的顺序排列起来,再找出最中间两个数的平均数即可.【解答】解:这一天该校师生购买盒饭费用的平均数是:10×50%+12×30%+15×20%=11.6(元);中位数是10和12的平均数,则(10+12)÷2=11(元);故选:D.【点评】此题考查了加权平均数和中位数,注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.5.(4分)如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD为菱形的是()A.∠OAB=∠OBA B.∠OAB=∠OBC C.∠OAB=∠OCD D.∠OAB=∠OAD【分析】①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点评】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.(4分)如图,已知Rt△ABC中,∠C=90°,AC=3,BC=4,如果以点C为圆心的圆与斜边AB有公共点,那么⊙C的半径r的取值范围是()A.0≤r≤B.≤r≤3C.≤r≤4D.3≤r≤4【分析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【解答】解:过点C作CD⊥AB于点D,∵AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,∴AB=5,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有交点,∴≤r≤4.故选:C.【点评】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)分解因式:x2﹣xy﹣12y2=(x﹣4y)(x+3y).【分析】因为﹣4y×3y=﹣12y2,﹣4y+3y=﹣y,所以利用十字相乘法分解因式即可.【解答】解:x2﹣xy﹣12y2=(x﹣4y)(x+3y).故答案是:(x﹣4y)(x+3y).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.8.(4分)方程的解是x=1.【分析】先把方程两边平方,把无理方程转化成有理方程,求出方程的解,再进行检验即可求出答案.【解答】解:,两边平方得:x2﹣1=x﹣1,x2﹣x=0,x(x﹣1)=0,解得:x1=0,x2=1,检验:当x1=0时,左边=,方程无意义,当x2=1时,左边=右边=0,则原方程的解是x=1;故答案为:x=1.【点评】此题考查了无理方程,关键是通过把方程两边平方,把无理方程转化成有理方程,要注意检验.9.(4分)函数的定义域是x≥0且x≠2.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥0且x≠2.故答案是:x≥0且x≠2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.(4分)如果反比例函数y=(k>0)的图象经过点A(2,y1)与B(3,y2),那么y1>y2.(填“>”、“<”或“=”).【分析】根据题意可得点A,B在第一象限,根据反比例函数增减性即可进行判断.【解答】解:∵反比例函数y=(k>0)的图象经过点A(2,y1)与B(3,y2),可知点A,B在第一象限,根据k>0时,反比例函数在每个象限内,y随着x增大而减小,可得y1>y2,故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象和性质是解题的关键.11.(4分)在一个袋子中装有除颜色外其他完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个球颜色不同的概率是.【分析】列表是找出所有等可能的结果数,进而得出两次颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能结果数为12种,其中两个球颜色不同的情况数有8种,则概率P==.故答案为:【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如表所示:每天出次品的个数0234天数3241那么在这10天中这个小组每天所出次品数的标准差是.【分析】根据所给出的数据线求出这组数据的平均数,再根据方差公式求出这组数据的方差,最后根据标准差的定义解答即可.【解答】解:这组数据的平均数是:(2×2+3×4+4×1)÷10=2,这组数据的方差是:[3(0﹣2)2+2(2﹣2)2+4(3﹣2)2+(4﹣2)2]=2,则这10天中这个小组每天所出次品数的标准差是;故答案为:.【点评】此题考查了标准差,计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根.13.(4分)李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是250(15﹣x)+80x=2900.【分析】根据关键语句“到学校共用时15分钟,骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程.【解答】解:设他推车步行的时间为x分钟,则骑自行车的时间为:(15﹣x)分钟,根据题意得出:250(15﹣x)+80x=2900.故答案为:250(15﹣x)+80x=2900.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是弄清题意,根据“他家离学校的路程是2900米”列出方程.14.(4分)如图,已知点O是正六边形ABCDEF的中心,记,,那么=(用向量、表示).【分析】由正六边形的性质可得=,求出,再由是的相反向量,可得出答案.【解答】解:连接OE,∵六边形ABCDEF是正六边形,∴FE=OD,∴=,∴=+=+,∴=﹣=﹣﹣.故答案为:﹣﹣.【点评】本题考查了平面向量的知识,解答本题的关键是掌握正六边形的性质,及向量的加减运算法则.15.(4分)如图,已知点D、E分别在△ABC边AB、AC上,DE∥BC,BD=2AD,那么S△DEB:S△EBC=.【分析】根据BD=2AD,求出AD:AB的值,在根据相似三角形的性质求得DE:BC,最后再根据面积之比即可求解.【解答】解:∵BD=2AD,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=,∴DE:BC=1:3.∵△DBE和△EBC的高相同,设这个高为h,∴S△DBE:S△EBC===,故答案为:【点评】本题主要考查了相似三角形的判定和性质,找准对应线段是解题的关键.16.(4分)如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE =5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是掌握垂径定理.17.(4分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称作为这个平面图形的一条面积等分线.已知△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,过点D的面积等分线交△ABC的边于点E,那么线段AE的长等于.【分析】过点A作AG⊥BC于G,过点E作EF⊥BC于F,根据三角形的面积列出方程可得BC•AG=2×DC•EF,就可以求出EF的值,证明△CEF∽△CAG,由相似三角形的性质得出,求出CE 的值从而得出结论.【解答】解:过点A作AG⊥BC于G,过点E作EF⊥BC于F,∴∠AGB=∠AGC=∠EFC=90°,∴EF∥AG.∵AB=AC=10,∴BG=CG=BC=6.在Rt△ABG中,由勾股定理,得AG==8.∵DC=BC﹣BD,∴DC=12﹣4=8.∵S△ABC=2S△EDC,∴BC•AG=2×DC•EF,∴×12×8=2××8•EF,即EF=6.∵EF∥AG,∴△CEF∽△CAG,∴,∴,即EC=,∴AE=10﹣=.故答案为:.【点评】本题考查了等腰三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,相似三角形的判定及性质的运用,解答时正确作出辅助线是解答本题的关键,证明△CEF∽△CAG是解题的关键.18.(4分)如图,已知在△ABC中,AB=AC,,将△ABC翻折,使点C与点A重合,折痕DE 交边BC于点D,交边AC于点E,那么的值为.【分析】过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,设AF=x,在Rt△ABF 中,tan∠B=,可求得BF=CF=2x,再利用勾股定理求出AB=AC=x,在Rt △CDE中,tan∠C=tan∠B=,即可求得DE=,结合勾股定理可得CD==,则BD=BC﹣CD=2BF﹣CD=,进而可得出答案.【解答】解:过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,∵AB=AC,∴∠B=∠C,BF=CF.设AF=x,在Rt△ABF中,tan∠B=,∴BF=CF=2x,∴AB=AC=x,在Rt△CDE中,tan∠C=tan∠B=,∵CE=,∴DE=,∴,则BD=BC﹣CD=2BF﹣CD=,∴.故答案为:.【点评】本题考查翻折变换(折叠问题)、解直角三角形、勾股定理,熟练掌握翻折的性质是解答本题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.【分析】根据负整数指数幂与分母有理化得到原式=2﹣(+2)﹣3×+1﹣2+2,然后去括号和进行乘法运算后合并即可.【解答】解:原式=2﹣(+2)﹣3×+1﹣2+2=2﹣﹣2﹣+3﹣2=﹣2+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.20.(10分)解不等式组:.将其解集在数轴上表示出来,并写出这个不等式组的整数解.【分析】分别解每个不等式,再根据不等式组的解集求出整数解即可.【解答】解:由第一个不等式,得5x≥5,解得x≥1,由第二个不等式,得2(x﹣1)﹣(x+2)>3x﹣12,整理,得2x<8,解得x<4,∴不等式的解集为1≤x<4,数轴图表示解集:所以整数解为1,2,3.【点评】本题考查一元一次不等式组解法,熟练掌握解一元一次不等式组的方法是解题关键.21.(10分)如图,已知反比例函数的图象经过A(1,6)、B两点,直线AB与x轴交于点C.(1)求反比例函数的解析式;(2)若,求点C点坐标.【分析】(1)用待定系数法即可求得;(2)作AD⊥x轴,垂足为点D,作BE⊥AD,垂足为点E,根据平行线分线段成比例定理得出B点的坐标,进一步利用线段成比例得出CD,即可确定C点的坐标.【解答】解:(1)∵反比例函数的图象经过A(1,6);∴,∴k=6,∴反比例函数的解析式为:;(2)作AD⊥x轴,垂足为点D,作BE⊥AD,垂足为点E,∴BE∥CD,∴==,又∵AD=6,∴AE=4,ED=2,将y=2代入,得B点坐标为(3,2),∴BE=2,又∵BE∥CD,∴,∴CD=3∴C点坐标为(4,0).【点评】本题主要考查待定系数法求反比例函数的解析式,平行线分线段成比例定理,求得线段的长度是解题的关键.22.(10分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).【分析】(1)根据坡度的概念得到BE:EA=12:5,根据勾股定理计算列式即可;(2)作FH⊥AD于H,根据正切的概念求出AH,结合图形计算即可.【解答】解:(1)∵斜坡AB的坡比为i=1:,∴BE:EA=12:5,设BE=12x,则EA=5x,由勾股定理得,BE2+EA2=AB2,即(12x)2+(5x)2=262,解得,x=2,则BE=12x=24,AE=5x=10,答:改造前坡顶与地面的距离BE的长为24米;(2)作FH⊥AD于H,则tan∠F AH=,∴AH=≈18,∴BF=18﹣10=8,答:BF至少是8米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.23.(12分)如图,在△ABC中,AB=AC,点D在BC上,以AD、AE为腰做等腰△ADE,且∠ADE=∠ABC,连接CE,过E作EF∥BC交CA延长线于F,连接BF.(1)求证:∠ECA=∠ABC;(2)如果AF=AB,求证:四边形FBDE是矩形.【分析】(1)证明△ABD≌△ACE(SAS),即可得出结论;(2)先证四边形FBDE是平行四边形,再证∠CBF=90°,然后由矩形的判定即可得出结论.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°﹣2∠ABC,同理∠DAE=180°﹣2∠ADE,∵∠ABC=∠ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ECA=∠ABC;(2)∵∠ECA=∠ABC,∠ABC=∠ACB,∴∠ECF=∠ACB,∵EF∥BC,∴∠EFC=∠ACB,∴∠EFC=∠ECF,∴EF=EC,∵△ABD≌△ACE,∴BD=EC,∴BD=EF,∴四边形FBDE是平行四边形,∵AF=AB=AC,∴∠AFB=∠ABF,∠ABC=∠ACB,∵∠AFB+∠ABF+∠ABC+∠ACB=180°,∴∠ABF+∠ABC=90°,即∠CBF=90°,∴平行四边形FBDE是矩形.【点评】本题考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.24.(12分)如图,在平面直角坐标系xOy中,点A、点B分别在x的正半轴和y的正半轴上,tan∠OAB=3,抛物线y=x2+mx+3经过A、B两点,顶点为D.(1)求抛物线的表达式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,求四边形ABCD的面积;(3)将该抛物线沿y轴向上或向下平移,使其经过点C,若点P在平移后的抛物线上,且满足∠ACP=∠ABO,求点P的坐标.【分析】(1)根据tan∠OAB=3,求得点A的坐标,代入y=x2+mx+3即可求得抛物线解析式;(2)由旋转可得出C(4,1),再求出抛物线顶点D(2,﹣1),利用勾股定理及其逆定理可得∠ADC=90°,根据S四边形ABCD=S△ABC+S△ADC,即可求得答案;(3)根据平移规律可得平移后的抛物线解析式为y=x2﹣4x+1,分两种情况:①若点P在x轴上方时,②若点P在x轴下方时,分别求出点P的坐标即可.【解答】解:(1)∵抛物线y=x2+mx+3经过点B,∴B(0,3),∴OB=3,∵=tan∠OAB=3,∴OA=1,∴A(1,0),将A(1,0)代入抛物线y=x2+mx+3,得1+m+3=0,解得:m=﹣4,′∴抛物线的表达式为y=x2﹣4x+3.(2)∵将△OAB绕点A顺时针旋转90°后,得到△O′AC,∴∠AO′C=∠AOB=∠OAO′=∠BOC=90°,O′A=OA=1,O′C=OB=3,∴C(4,1),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴D(2,﹣1),∴AD==,CD==2,,∵AD2+CD2=10,AC2=10,∴AD2+CD2=AC2,∴∠ADC=90°,又∵AB=AC=,且∠BAC=90°,∴,即四边形ABCD的面积为7.(3)当x=4时,y=x2﹣4x+3=42﹣4×4+3=3,可知抛物线y=x2﹣4x+3经过点(4,3),∴将原抛物线沿y轴向下平移2个单位过点C(4,1),∴平移后得抛物线解析式为:y=x2﹣4x+1;①若点P在x轴上方时,作CP∥x轴,交抛物线于P点,易证∠ACP=∠ABO,∴点P与点C关于抛物线y=x2﹣4x+1的对称轴直线x=2对称,∴P(0,1);②若点P在x轴下方时,如图2,作AC的中垂线,与x轴交与E点,联结CE并延长,交抛物线y=x2﹣4x+1于P点,根据线段的垂直平分线的性质可得AE=CE,∴∠CAE=∠ACP,∵O′C∥x轴,∴∠CAE=∠ACO′=∠ABO,∴∠ACP=∠ABO,作CH⊥x轴,垂足为H,则CH=1,AH=OH﹣OA=3,设AE=x,则CE=x,EH=3﹣x,在Rt△CEH中,CH2+EH2=CE2,∴1+(3﹣x)2=x2,解得,∴AE=,∴OE=OA+AE=1+=,∴E(,0),设直线CE的解析式为y=kx+b,则,解得:,∴直线CE的解析式为y=x﹣2,∴x2﹣4x+1=x﹣2,解得:x1=4(舍去),x2=,当x=时,y=x2﹣4x+1=()2﹣4×+1=,∴P(,﹣),综上所述,满足条件得P点坐标为(0,1)或.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移变换,旋转变换的性质,勾股定理及其逆定理,三角函数等,第(3)小题分两种情况讨论是解题关键.25.(14分)如图1,点C是半圆AB上一点(不与A、B重合),OD⊥BC交弧BC于点D,交弦BC于点E,连接AD交BC于点F.(1)如图1,如果AD=BC,求∠ABC的大小;(2)如图2,如果AF:DF=3:2,求∠ABC的正弦值;(3)连接OF,⊙O的直径为4,如果△DFO是等腰三角形,求AD的长.【分析】(1)连接OC,利用圆心角、弧、弦的关系定理和圆周角定理解得即可;(2)连接AC,利用垂径定理和勾股定理解答即可;(3)利用分类讨论的思想方法,分①当DF=OF时,②当DF=OD=2时两种情况解答:利用平行线分线段成比例定理,勾股定理解答即可.【解答】解:(1)连接OC,如图,∵AD=BC,∴,∴∠AOD=∠BOC.∴∠AOC=∠BOD.∵OD⊥BC,∴∠COD=∠BOD,∴∠AOC=∠COD=∠BOD.∵∠COD+∠BOD+∠AOC=180°∴∠AOC=60°.∴∠ABC=∠AOC=30°;(2)连接AC,如图,∵OD⊥BC,∴E是BC中点,∵OA=OB,∴OE∥AC,AC=2OE,∵AF:DF=3:2,∴AC:DE=AF:DF=3:2.设AC=3x,则DE=2x,∴OE=x,∴OD=OB=x.∴sin∠ABC=OE:OB=;(3)①当DF=OF时,如图,∵FE⊥DO,∴DE=OE=OD=1,∴AC=2OE=2,BE==.∴CE=BE=.∴BC=2BE=2.∵OD∥AC,∴CF:EF=AC:DE=AF:DF=2:1.∴EF=CE=.∴DF==,∴AF=2DF=.∴AD=AF+DF=2;②当DF=OD=2时,如图,设OE=x,则DE=2﹣x,AC=2x,∵OD∥AC,∴DF:AF=DE:AC,∴AF=.∴AD=.过点O作OH⊥AD于H,则AD=2DH.在△DHO和△DEF中,,∴△DHO≌△DEF(AAS).∴DH=DE,∴AD=2DE,∴.解得:或(舍去),∴AD=2DE=﹣1.综上所述,AD长或2.【点评】本题主要考查了圆心角、弧、弦的关系定理和圆周角定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,平行线分线段成比例定理,添加适当的辅助线是解题的关键.。
上海市松江区2022届初三一模数学试卷2022.01一. 选择题(本大题共6题,每题4分,共24分) 1.已知sin 2,那么锐角 的度数是( ) A. 30° B. 45° C. 60° D. 75°2. 已知在Rt △ABC 中,90C ,AB c ,AC b ,那么下列结论一定成立的是( ) A. tan b c A B. cot b c A C. b c A sin D. b c A cos3. 已知二次函数y ax bx c 2(a 0)的图像如图所示,那么下列判断正确的是()A. b 0,c 0 B. b 0,c 0 C. b 0,c 0 D. b 0,c4. 已知a b 2,那么下列判断错误的是()A. 20a b B. 12b a C. ||2||a bD. a ∥b5. 如图,已知点G 是△ABC 的重心,那么S S :BCG ABC △△等于( )A. 1:2B. 1:3C. 2:3D. 2:56. 下列四个命题中,真命题的个数是()①底边和腰对应成比例的两个等腰三角形相似;②底边和底边上的高对应成比例的两个等腰二角形相似③底边和一腰上的高对应成比例的两个等腰三角形相似;④腰和腰上的高对应成比例的两个等腰三角形相似.A. 1B. 2C. 3D. 4 二. 填空题(本大题共12题,每题4分,共48分) 7. 已知2x y ,那么22x y x y8. 把抛物线21y x 向右平移1个单位,所得新抛物线的表达式是 9. 已知两个相似三角形面积的比是4:9,那么这两个三角形周长的比是 10. 已知线段AB 8,P 是AB 的黄金分割点,且PA PB ,那么PM 的长是 11. 在平面直角坐标系xOy 中,已知点A 的坐标为(2,3),那么直线OA 与x 轴夹角的正切 值是12. 如果一个二次函数图像的对称轴是直线2x ,且沿着x 轴正方向看,图像在对称轴左 侧部分是上升的,请写出一个符合条件的函数解析式13. 一位运动员推铅球,铅球运行过程中离地面的高度y (米)关于水平距离x (米)的函数解析 式为21251233y x x,那么铅球运行过程中最高点离地面的高度是 14. 如图,码头A 在码头B 的正东方向,它们之间的距离为10海里,一货船由码头A 出发, 沿北偏东45°方向航行到达小岛C 处,此时测得码头B 在南偏西60°方向,那么码头A 与 小岛C 的距离是 海里 (结果保留根号)15. 如图,已知在梯形ABCD 中,AB ∥CD ,AB 2CD ,设AB a ,AD b ,那么AE可以用a 、b 表示为16. 如图,某时刻阳光通过窗口AB 照射到室内,在地面上留下4米宽的“亮区”DE ,光线与地面所成的角(如∠BEC )的正切值是12,那么窗口的高AB 等于 米17. 我们知道:四个角对应相等,四条边对应成比例的两个四边形是相似四边形,如图,已 知梯形ABCD 中,AD ∥BC ,AD 1,BC 2,E 、F 分别是边AB 、CD 上的点,且EF ∥BC ,如果四边形AEFD 与四边形EBCF 相似,那么AEEB的值是 18. 如图,已知矩形ABCD 中,AD 3,AB 5,E 是边DC 上一点,将△ADE 绕点A 顺时针旋转得到△AD E ,使得点D 的对应点D 落在AE 上,如果D E 的延长线恰好经过点B ,那么DE 的长度等于三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 已知一个二次函数图像的顶点为(1,0),与y 轴的交点为(0,1). (1)求这个二次函数的解析式;(2)在所给的平面直角坐标系xOy 中,画出这个二次函数的图像.20. 如图,己知平行四边形ABCD 中,G 是AB 延长线上一点,联结DG ,分别交AC 、BC 于点E 、F ,且:3:2AE EC .(1)如果10AB ,求BG 的长;(2)求EFFG的值.21. 如图,已知△ABC 中,AB AC 12,3cos 4B ,AP ⊥AB ,交BC 于点P . (1)求CP 的长;(2)求∠PAC 的正弦值.22. 某货站沿斜坡AB 将货物传送到平台BC . 一个正方体木箱沿着斜坡移动,当木箱的底部到达点B 时的平面示意图如图所示. 已知斜坡AB 的坡度为1:2.4,点B 到地面的距离1.5米,正方体木箱的棱长BF 0.65米,求点F 到地面的距离BE23. 已知如图,梯形ABCD 中,DC ∥AB ,AC AB ,过点D 作BC 的平行线交AC 于点E . (1)如果∠DEC ∠BEC ,求证:2CE ED CB ;(2)如果2AD AE AC ,求证:AD BC .24. 已知直线223y x 与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c 经过A 、B 两点.(1)求这条抛物线的表达式;(2)直线x t 与该抛物线交于点C ,与线段AB 交于点D (点D 与点A 、B 不重合), 与x 轴交于点E ,联结AC 、BC . ① 当DE AECD OE时,求t 的值;② 当CD 平分∠ACB 时,求△ABC 的面积.25. 如图,已知△ABC中,∠ACB 90°,AB 6,BC 4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.参考答案一. 选择题1. C2. D3. D4. A5. B6. C二. 填空题7. 348. 2(1)1y x 9. 2:3 10. 411.3212. 2(2)y x 13. 3 14.15. 1233a b 16. 2 17. 2 18. 94三. 解答题19.(1)221y x x ;(2)略. 20.(1)5;(2)45. 21.(1)2;(2)1822. 2.1米.23.(1)证明略;(2)证明略. 24.(1)224233y x x;(2)① 2;② 54;25.(1;(2)5或1;(3)113.。
2022年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)已知,那么的值为()A.B.C.D.2.(4分)下列函数中,属于二次函数的是()A.y=﹣3 B.y=2﹣(1)2 C.y=(﹣1)﹣1 D.3.(4分)已知飞机离水平地面的高度为5千米,在飞机上测得该水平地面上某观测目标A的俯角为α,那么这时飞机与目标A的距离为()A.B.5sinαC. D.5cosα4.(4分)已知非零向量,在下列条件中,不能判定的是()A.B.C. D.5.(4分)在△ABC中,边BC=6,高AD=4,正方形EFGH的顶点E、F在边BC上,顶点H、G分别在边AB和AC上,那么这个正方形的边长等于()A.3 B.C.D.26.(4分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A.1:2 B.1:3 C.2:3 D.2:5.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c= .8.(4分)在比例尺是1:的地图上,测得甲乙两地的距离是2厘米,那么甲乙两地的实际距离是千米.9.(4分)如果抛物线y=(a2)2﹣1的开口向下,那么a的取值范围是.10.(4分)已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是度.11.(4分)线段AB=10,点,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= .14.(4分)已知平面直角坐标系Oy中,O为坐标原点,点,则BC=2m,∴DE=m,DG=m﹣m=m,∴DG:GE=m:m=1:3,故选:B.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c= 2 .【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c2=4×1,c=±2,(线段是正数,负值舍去),故c=2;故答案为2.8.(4分)在比例尺是1:的地图上,测得甲乙两地的距离是2厘米,那么甲乙两地的实际距离是300 千米.【解答】解:设这两地的实际距离是cm,根据题意得:=,解得:=,∵cm=300m,∴这两地的实际距离是300m.故答案为:300.9.(4分)如果抛物线y=(a2)2﹣1的开口向下,那么a的取值范围是a<﹣2 .【解答】解:∵抛物线y=(a2)2﹣1的开口向下,∴a2<0,得a<﹣2,故答案为:a<﹣2.10.(4分)已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是30 度.【解答】解:∵tanα=1:=,∴坡角=30°.(4分)线段AB=10,点,11.n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= .【解答】解:∵a∥b∥c,∴=,即=,解得DF=,∴BF=BDDF=3=,故答案为:.14.(4分)已知平面直角坐标系Oy中,O为坐标原点,点,过点A′作A′N⊥AB于点N,如图所示.∵AC=BC=4,∠C=90°,A′为线段BC的中点,∴A′C=A′B=2,AA′==2,AB=4,∴AM=AA′=,A′N=BN=,∴AN=AB﹣BN=3.∵∠EAM=∠A′AC,∠AME=∠C,∴△AEM∽△AA′C,∴=,∴AE=.同理:△ADM∽△AA′N,∴=,∴AD=,∴=.故答案为:.三、解答题:(本大题共7题,满分80分)19.(10分)如图在平面直角坐标系Oy中,O为坐标原点,二次函数y=2bc的图象经过点A(3,0)、点B(0,3),顶点为M.(1)求该二次函数的解析式;(2)求∠OBM的正切值.【解答】解:(1)把A(3,0)、B(0,3)代入y=2bc得,解得,所以y=2﹣43;(2)作MH⊥y轴于H,如图,∵y=2﹣43=(﹣2)2﹣1,∴M(2,﹣1),∵MH⊥y轴,∴H(0,﹣1),在Rt△BMH中,tan∠HBM==,即∠OBM的正切值为.20.(10分)如图,已知△ABC中,D、E、F分别是边AB、BC、CA上的点,且EF∥AB,=2.(1)设=.试用表示;(2)如果△ABC的面积是9,求四边形ADEF的面积.【解答】解:(1)∵EF∥AB,∴=,又∵=2,∴==2, ∴==,∵∠B=∠B ,∴△BDE ∽△BAC ,∴∠BDE=∠A ,∴DE ∥AC ,则四边形ADEF 是平行四边形, ∵=, ∴==,==, 则==;(2)由(1)知=、=, ∵EF ∥AB ,DE ∥AC ,∴△CFE ∽△CAB ,△BDE ∽△BAC , ∴=()2=,=()2=,∵S △ABC =9,∴S △CFE =4、S △BDE =1,则四边形ADEF 的面积=S △ABC ﹣S △CFE ﹣S △BDE =4.21.(10分)如图,已知△ABC 中,AB=AC=,BC=4.线段AB 的垂直平分线DF 分别交边AB 、AC 、BC 所在的直线于点D 、E 、F.(1)求线段BF的长;(2)求AE:EC的值.【解答】解:(1)作AH⊥BC于H,如图,∵AB=AC=,∴BH=CH=BC=2,在Rt△ABH中,AH==4,∵DF垂直平分AB,∴BD=,∠BDF=90°∵∠ABH=∠FBD,∴Rt△FBD∽Rt△ABH,∴==,即==,∴BF=5,DF=2;(2)作CG∥AB交DF于G,如图,∵BF=5,BC=4,∴CF=1,∵CG∥BD,∴==,∵CG∥AD,∴===5.22.(10分)某条道路上通行车辆的限速60千米/时,道路的AB段为监测区,监测点,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.【解答】解:(1)∵AB=4,抛物线y=2bc的对称轴为直线=1,∴点A到对称轴的距离为2,∴A(﹣1,0),B(3,0),∴y=(1)(﹣3)整理得:y=2﹣2﹣3;(2)如下图所示:过点,∴∠ADO=∠AEM.又∵四边形CDEM是等腰梯形,∴∠ADO=∠CME.∴∠ADO=∠CME.∵y=2﹣2﹣3,∴C(0,﹣3),M(1,﹣4)∴tan∠DAO=tan∠CME=1.∴OA=OD=1.∴直线A为边AB的中点,联结CM、⊥AC于M,=A≌Rt△=BN,由(1)知:四边形MCN=CN,设AM=,则=1,CN=2﹣,∴1=2﹣,=,∴CM=,∴C=CM时,如图3,同理作出辅助线,∵∠是等腰直角三角形,∴CN=是AB的中点,∴CM=C的中垂线交CD于,过M作MH⊥CD于H,由①知:CG(就是C H,∴,∴=,CP=,综上所述,CP的长是或或.。
2023-2024学年上海市松江区中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共8小题,共24.0分)1.﹣3的值是()A .﹣3B.3C.-13D.132.下列运算正确的是()A.(2a 2)3=6a 6B.2a 2+4a 2=6a 4C .a 3•a 2=a 5D.(a +2b )2=a 2+4b 23.若代数式21xx -有意义,则实数x 的取值范围是()A.x 1≠ B.x 1= C.x 0≠ D.x 0=4.如图所示的三视图表示的几何体是()A.B. C.D.5.若正多边形的一个内角是120︒,则这个正多边形的边数为()A.6B.5C.4D.36.如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则ABC ∠的正弦值是()A.2B.12C.55D.2557.点(4,3)A 某种图形变化后得到点(3,4)B -,这种图形变化可以是()A.关于x 轴对称B.关于y 轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转908.对于每个正整数n,抛物线11()(1y x x n n =--+)与x 轴交于n n A B 两点,若n n A B 表示这两点间的距离,则11S t 的值为()A.20162017 B.20172018C.20182019D.20192020二、填空题(本大题共10小题,共30.0分)9.南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为平方千米.把数用科学记数法可表示为______.10.9的算术平方根是.11.分解因式:32a ab -=______12.实数a 在数轴上对应点的+a =________.13.若一组数据1,2,x ,4的众数是1,则这组数据的方差为_____.14.已知圆锥的底面半径为3cm ,母线长为4cm ,则该圆锥的侧面展开图的面积为_____cm 2.15.如图,AB ∥CD ,AB =12CD ,S △ABO :S △CDO =_____.16.如图,反比例函数(0)ky x x=<与函数y=x+4的图象交于A、B 两点的横坐标分别为-3,-1,则关于x 的没有等式4(0)kx x x<+<的解集为_______.17.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若6810PA PB PC ===,,,则四边形APBQ 的面积为____.18.如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是______.三、解答题(本大题共10题,共96分)19.计算:(1)0-21(2018)(tan 453π---︒(2)解没有等式组:10313(+1.xx x ⎧-<⎪⎨⎪-≤⎩,)20.先化简,再求值:2121(1)22x x x x -++÷--,其中x 31.21.我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪,并将结果分成四类,A :特别好;B :好;C :一般;D :较差;并将结果绘制成以下两幅没有完整的统计图,请你根据统计图下列问题:(1)本次中,张老师一共了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.23.如图,在四边形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AC与BD互相平分.24.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=12,3tan2β=,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少m取1.41,结果到0.1m)?25.如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出⊙O的半径长.26.某经销商一种产品,这种产品的成本价为10元/千克,已知价没有低于成本价,且物价部门规定这种产品的价没有高于18元/千克,市场发现,该产品每天的量y(千克)与价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的利润W(元)与价x(元/千克)之间的函数关系式.当价为多少时,每天的利润?利润是多少?(3)该经销商想要每天获得150元的利润,价应定为多少?27.如图1,点M放在正方形ABCD的对角线AC(没有与点A重合)上滑动,连结DM,做MN⊥DM,交直线AB于N.(1)求证:DM=MN;(2)若将(1)中的正方形变为矩形,其余条件没有变如图,且DC=2AD,求MD:MN的值;(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MD:MN的比值.2023-2024学年上海市松江区中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共8小题,共24.0分)1.﹣3的值是()A.﹣3B.3C.-13D.13【正确答案】B【分析】根据负数的值是它的相反数,可得出答案.【详解】根据值的性质得:|-3|=3.故选B .本题考查值的性质,需要掌握非负数的值是它本身,负数的值是它的相反数.2.下列运算正确的是()A.(2a 2)3=6a 6B.2a 2+4a 2=6a 4C.a 3•a 2=a 5D.(a +2b )2=a 2+4b 2【正确答案】C【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则和完全平方公式分别化简得出答案.【详解】A 、(2a 2)3=8a 6,故此选项错误;B 、2a 2+4a 2=6a 2,故此选项错误;C 、a 3•a 2=a 5,故此选项正确;D 、(a +2b )2=a 2+4ab +4b 2,故此选项错误;故选C .此题主要考查了积的乘方运算以及同底数幂的乘法运算和完全平方公式,正确掌握相关运算法则是解题关键.3.若代数式21xx -有意义,则实数x 的取值范围是()A.x 1≠ B.x 1= C.x 0≠ D.x 0=【正确答案】A【详解】分析:根据分母没有为零分式有意义,可得答案.详解:由题意,得x-1≠0,解得x≠1,故选A.点睛:本题考查了分式有意义的条件,利用分母没有为零得出没有等式是解题关键.4.如图所示的三视图表示的几何体是()A. B. C. D.【正确答案】B【详解】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.详解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选B.点睛:主视图和左视图的大致轮廓为长方形的几何体为柱体,再根据俯视图为圆,则可判断为圆柱.5.若正多边形的一个内角是120 ,则这个正多边形的边数为()A.6B.5C.4D.3【正确答案】A【分析】多边形的内角和可以表示成(n-2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.【详解】解:设所求正n边形边数为n,则120°n=(n-2)•180°,解得n=6,故选:A.本题考查了根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算是解答此题的关键.6.如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则ABC ∠的正弦值是()A.2B.12C.D.【正确答案】C【分析】过点B 作BD AC ⊥于点D ,过点C 作CE AB ⊥于点E ,则3BD AD ==,1CD =,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用正弦的定义可求出ABC ∠的正弦值.【详解】解:过点B 作BD AC ⊥于点D ,过点C 作CE AB ⊥于点E ,则3BD AD ==,1CD =,如图所示.AB ==BC ==1122AC BD AB CE ⋅=⋅,即112322CE ⨯⨯=⨯,CE ∴=5sin5CE ABC BC ∴∠===.故选:C .本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC 的长度是解题的关键.7.点(4,3)A 某种图形变化后得到点(3,4)B -,这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转90【正确答案】C【分析】根据旋转的定义得到即可.【详解】因为点A(4,3)某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转的距离相等,对应点与旋转的连线段的夹角等于旋转角.8.对于每个正整数n,抛物线11()(1y x xn n=--+)与x轴交于n nA B两点,若n nA B表示这两点间的距离,则11St的值为()A.20162017 B.20172018 C.20182019 D.20192020【正确答案】C【详解】分析:根据抛物线的解析式,抛物线与x轴交点的横坐标,一个是1n,另一个是11n+,,根据x轴上两点间的距离公式,得A n=1n-11n+,再代入计算即可.详解:∵抛物线11(1y x xn n⎛⎫=--⎪+⎝⎭与x轴交于n nA B两点,∴抛物线与x轴交点的横坐标是1n和11n+,∴A n=1n-11n+∴A1B1+A2B2+…+A2018B2019=111111...22320182019-+-++-=12018120192019-=.故选C.点睛:找规律的题目,考查了抛物线与x 轴的交点问题,令y=0,方程的两个实数根正好是抛物线与x 轴交点的横坐标.二、填空题(本大题共10小题,共30.0分)9.南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为平方千米.把数用科学记数法可表示为______.【正确答案】63.610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值10时,n 是正数;当原数的值1<时,n 是负数.【详解】解:63600000 3.610=⨯,故63.610⨯.本题考查了科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.9的算术平方根是.【正确答案】3【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为3.故答案为3.本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.11.分解因式:32a ab -=______【正确答案】()()+a a b a b -.【详解】提取公因式法和应用公式法因式分解.【分析】()()()3222=+a ab a a ba ab a b -=--.12.实数a +a =________.【正确答案】1【详解】由题意得:10,0a a -<<+a =1(1)1a a a a -+=--+=.13.若一组数据1,2,x ,4的众数是1,则这组数据的方差为_____.【正确答案】1.5【详解】试题分析:众数是这组数据出现次数至多的数,由此判断x 为1,这组数据的平均数是(1+2+1+4)÷4=2,所以方差为,=1.5.故这组数据的方差为1.5.考点:方差计算.14.已知圆锥的底面半径为3cm ,母线长为4cm ,则该圆锥的侧面展开图的面积为_____cm 2.【正确答案】12πcm 2【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】底面半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×4=12πcm 2.本题利用圆的周长公式和扇形面积公式求解.15.如图,AB ∥CD ,AB =12CD ,S △ABO :S △CDO =_____.【正确答案】1:4【详解】分析:先根据相似三角形的判定定理得出△AOB ∽△COD ,再根据相似三角形面积的比等于相似比的平方进行解答.详解:∵AB ∥CD ,∴△ABO ∽△CDO ,∴S △ABO :S △CDO=(2AB CD,∵AB =12CD,∴12AB CD =∴S △ABO :S △CDO =1:4.故答案为1:4.点睛:主要考查了相似三角形的判定和性质,比较简单,熟记三角形相似的判定方法和相似三角形的面积之比等于相似比的平方是解题的关键.16.如图,反比例函数(0)k y x x =<与函数y=x+4的图象交于A、B 两点的横坐标分别为-3,-1,则关于x 的没有等式4(0)k x x x<+<的解集为_______.【正确答案】-3<x<-1【详解】分析:求关于x 的没有等式4(0)k x x x<+<的解集可转化为函数的图象在反比例函数图象的上方所对应的自变量x 取值范围,问题得解.详解:观察图象可知,当-3<x <-1时,函数的图象在反比例函数图象的上方,∴关于x 的没有等式4(0)k x x x <+<的解集为:-3<x <-1.故答案是:-3<x <-1.点睛:考查了反比例函数与函数的交点问题,主要考查学生的观察图象的能力,用了数形思想.17.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若6810PA PB PC ===,,,则四边形APBQ 的面积为____.【正确答案】【详解】解:如图,连结PQ,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,即可判定△APQ为等边三角形,所以PQ=AP=6;在△APC和△ABQ中,AB=AC,∠CAP=∠BAQ,AP=PQ,利用SAS判定△APC≌△ABQ,根据全等三角形的性质可得PC=QB=10;在△BPQ中,已知PB2=82=64,PQ2=62,BQ2=102,即PB2+PQ2=BQ2,所以△PBQ为直角三角形,∠BPQ=90°,=S△BPQ+S△APQ=12×6×84+×62所以S四边形APBQ故本题考查旋转的性质;等边三角形的性质;全等三角形的判定及性质.18.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是______..【分析】如图点P运动的路径是以G为圆心的弧 EF,在⊙G上取一点H,连接EH、FH,只要证明∠EGF=90°,求出GE的长即可解决问题.【详解】试题分析:如图点P 运动的路径是以G 为圆心的弧 EF,在⊙G 上取一点H ,连接EH 、FH .∵四边形AOCB 是正方形,∴∠AOC=90°,∴∠AFP=12∠AOC=45°,∵EF 是⊙O 直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF ,∴,∴ EF 的长=90180π⋅π.三、解答题(本大题共10题,共96分)19.计算:(1)0-21(2018)(tan 453π---︒(2)解没有等式组:10313(+1.x x x ⎧-<⎪⎨⎪-≤⎩,)【正确答案】(1)-9;(2)23x -≤<【详解】分析:(1)根据实数的运算法则负整数指数幂、零指数幂、三角函数值计算可得;(2)分别求出每一个没有等式的解集,根据口诀:大小小大中间找,确定没有等式组的解集.详解:(1)()-2012018tan453π⎛⎫---︒ ⎪⎝⎭=1-9-1=9(2)10 313(+1.x x x ,①)②⎧-<⎪⎨⎪-≤⎩解没有等式①得:x<3,解没有等式②得:2x ≥-,所以没有等式组的解为.23x -≤<点睛:主要考查实数的运算能力和解没有等式组的基本技能,熟练掌握实数的运算法则和解没有等式组的基本步骤是关键.20.先化简,再求值:2121(1)22x x x x -++÷--,其中x1.【正确答案】33【详解】分析:先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.详解:2121122x x x x -+⎛⎫+÷ ⎪--⎝⎭=212(1)()222x x x x x --+÷---=2122(1)x x x x --⋅--=11x -当+133=.点睛:考查了分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.21.我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪,并将结果分成四类,A:特别好;B:好;C:一般;D:较差;并将结果绘制成以下两幅没有完整的统计图,请你根据统计图下列问题:(1)本次中,张老师一共了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【正确答案】:(1)20,2,1;(2)见解析.(3)12,表格见解析.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被的A类和D类学生男女生人数列表即可得出答案.【详解】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为20,2,1;(2)如图所示:(3)根据张老师想从被的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为:3162=.22.关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.【正确答案】(1)13m=-;(2)方程有两个没有相等的实根.【详解】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m是方程的一个实数根,∴m2-(2m-3)m+m2+1=0,∴m=−1 3;(2)△=b2-4ac=-12m+5,∵m<0,∴-12m>0.∴△=-12m+5>0.∴此方程有两个没有相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.23.如图,在四边形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AC与BD互相平分.【正确答案】见解析【详解】分析:(1)用ASA判定两三角形全等即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.详解:(1)∵BF=DE,∴BF-EF=DE-EF,即BE=DF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)连接AC,如图:∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AC 与BD 互相平分.点睛:考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用四边形的性质解决问题.24.图中是抛物线拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处观测P 处,仰角分别为α、β,且tan α=12,3tan 2β=,以O 为原点,OA 所在直线为x 轴建立直角坐标系.(1)求点P 的坐标;(2)水面上升1m ,水面宽多少m 取1.41,结果到0.1m )?【正确答案】(1)点P 的坐标为33,2⎛⎫ ⎪⎝⎭.(2)2.8m .【分析】(1)过点P 作PH ⊥OA 于H ,如图,设PH =3x ,运用三角函数可得OH =6x ,AH =2x ,根据条件OA =4可求出x ,即可得到点P 的坐标;(2)若水面上升1m 后到达BC 位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y =1时x 的值,就可解决问题.【详解】(1)如图,过点P 作PB ⊥OA ,垂足为B .设点P 的坐标为(x ,y ).在Rt △POB 中,∵tan α=12PB OB =,∴OB =tan PB α=2y .在Rt △PAB 中,∵tan β=32PB AB =,∴AB =2tan 3PB β=y .∵OA =OB +AB ,即2y +23y =4,∴y =32.∴x =2×32=3.∴点P 的坐标为(3,32).(2)设这条抛物线表示的二次函数的表达式为y =ax 2+bx ,由函数图象(4,0),(3,32)两点,可得16403932a b a b +=⎧⎪⎨+=⎪⎩解得122a b ⎧=-⎪⎨⎪=⎩,∴这条抛物线表示的二次函数的表达式为y =-12x 2+2x .当水面上升1m 时,水面的纵坐标为1,即-12x 2+2x =1,解得x 1=2,x 2=2,∴x 2-x 1=2-(2)=≈2.8.因此,若水面上升1m ,则水面宽约2.8m .本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.25.如图,AB 为⊙O 直径,过⊙O 外的点D 作DE⊥OA 于点E,射线DC 切⊙O 于点C、交AB 的延长线于点P,连接AC 交DE 于点F,作CH⊥AB 于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出⊙O的半径长.【正确答案】(1)见解析;(2)5.【详解】分析:(1)连接OC,根据切线的性质得到∠OCP=90°,根据垂直的定义得到∠DEP=90°,得到∠COB=∠D,根据圆周角定理证明;(2)设⊙O的半径为r,根据余弦的定义计算即可.详解:(1)证明:连接OC,∵射线DC切⊙O于点C,∴∠OCP=90°∵DE⊥AP,∴∠DEP=90°∴∠P+∠D=90°,∠P+∠COB=90°∴∠COB=∠D∵OA=OC,∴∠A=∠OCA∵∠COB=∠A+∠OCA∴∠COB=2∠A∴∠D=2∠A(2)解:由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=3 5,∵CH ⊥OP ,∴∠CHO=90°,设⊙O 的半径为r,则OH=r﹣2.在Rt △CHO 中,cos ∠HOC=OH OC =2r r -=35,∴r=5点睛:考查的是切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.26.某经销商一种产品,这种产品的成本价为10元/千克,已知价没有低于成本价,且物价部门规定这种产品的价没有高于18元/千克,市场发现,该产品每天的量y (千克)与价x (元/千克)之间的函数关系如图所示:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的利润W (元)与价x (元/千克)之间的函数关系式.当价为多少时,每天的利润?利润是多少?(3)该经销商想要每天获得150元的利润,价应定为多少?【正确答案】(1)y=-2x+60(10≤x≤18);(2)价为18元时,每天的利润,利润是192元.(3)15元.【详解】试题分析:(1)设函数关系式y=kx+b ,把(10,40),(18,24)代入求出k 和b 即可,由成本价为10元/千克,价没有高于18元/千克,得出自变量x 的取值范围;(2)根据利润=量×每一件的利润得到w 和x 的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x ,再根据x 的取值范围即可确定x 的值.试题解析:(1)设y 与x 之间的函数关系式y=kx+b ,把(10,40),(18,24)代入得1040{1824k b k b +=+=,解得2{60k b =-=,∴y 与x 之间的函数关系式y=-2x+60(10≤x≤18);(2)W=(x-10)(-2x+60)=-2x2+80x-600,对称轴x=20,在对称轴的左侧y 随着x 的增大而增大,∵10≤x≤18,∴当x=18时,W ,为192.即当价为18元时,每天的利润,利润是192元.(3)由150=-2x2+80x-600,解得x1=15,x2=25(没有合题意,舍去)答:该经销商想要每天获得150元的利润,价应定为15元.考点:二次函数的应用.27.如图1,点M 放在正方形ABCD 的对角线AC(没有与点A 重合)上滑动,连结DM ,做MN⊥DM,交直线AB 于N .(1)求证:DM=MN;(2)若将(1)中的正方形变为矩形,其余条件没有变如图,且DC=2AD,求MD:MN 的值;(3)在(2)中,若CD=nAD,当M 滑动到CA 的延长线上时(如图3),请你直接写出MD :MN 的比值.【正确答案】(1)见解析;(2)MD :2MN =;(3)MD .MN n=【分析】(1)过M 作MQ ⊥AB 于Q ,MP ⊥AD 于P ,则∠PMQ=90°,∠MQN=∠MPD=90°,根据ASA 即可判定△MDP ≌△MNQ ,进而根据全等三角形的性质得出DM=MN ;(2)过M 作MS ⊥AB 于S ,MW ⊥AD 于W ,则∠WMS=90°,根据∠DMW=∠NMS ,∠MSN=∠MWD=90°,判定△MDW ∽MNS ,得出MD :MN=MW :MS=MW :WA ,再根据△AWM ∽△ADC ,DC=2AD ,即可得出MD :MN=MW :WA=CD :DA=2;(3)过M 作MX ⊥AB 于X ,MR ⊥AD 于R ,则易得△NMX ∽△DMR ,得出MD :MN=MR :MX=AX :MX ,再由AD ∥MX ,CD ∥AX ,易得△AMX ∽△CAD ,得出AX :MX=CD :AD ,根据CD=nAD ,即可得出MD :MN=CD :AD=n .【详解】()1证明:过M作MQ AB ⊥于Q MP AD⊥,于P ,则9090PMQ MQN MPD ∠=∠=∠= ,,90DMN ∠= ,DMP NMQ ∴∠=∠,ABCD 是正方形,AC ∴平分DAB ∠,PM MQ ∴=,在MDP 和MNQ △中,MQN MPD PM MQDMP NMQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,MDP ∴ ≌()MNQ ASA ,DM MN ∴=;()2过M 作MS AB ⊥于S MW AD ⊥,于W,则90WMS ∠=,MN DM ⊥ ,DMW NMS ∴∠=∠,又90MSN MWD ∠=∠= ,MDW ∴∽MNS,MD ∴:MN MW =:MS MW =:WA,//MW CD ,AMW ACD AWM ADC ∴∠=∠∠=∠,,AWM ∴ ∽ADC ,又2DC AD = ,MD ∴:MN MW =:WA CD =:2DA =;()3MD :MN n =,理由:过M 作MX AB ⊥于X MR AD ,⊥于R,则易得NMX ∽DMR ,MD ∴:MN MR =:MX AX =:MX,由////AD MX CD AX ,,易得AMX ∽CAD ,AX ∴:MX CD =:AD,又CD nAD = ,MD ∴:MN CD =:AD n =.相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形、矩形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形和全等三角形的性质进行推导即可.2023-2024学年上海市松江区中考数学专项提升仿真模拟试题(4月)一、选一选(本大题共有8小题,每小题3分,共24分)1.3-的倒数是()A.3B.13C.13-D.3-2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.5.464×107吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨3.如图所示几何体的俯视图是()A. B.C. D.4.下列运算中,正确的是().A.325a b ab+= B.325235a a a += C.22330a b ba -= D.22541a a -=5.已知圆的半径是,则该圆的内接正六边形的面积是()A.B. C. D.6.如图,AB ∥CD ,BC 平分∠ABE ,∠C =34°,则∠BED 的度数等于()A.17︒B.34︒C.56︒D.68︒7.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是().A.4B.5C.6D.108.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,且O 点在BC 边上,则图中阴影部分面积S 阴等于()A.12B.π3 C.5-π4 D.15036π4949-二、填空题(本大题共有lO小题,每小题3分,共30分)9.分解因式:2mx-6my=__________.10.已知三角形的两边长为4,8,则第三边的长度可以是_______(写出一个即可).11.用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略没有计),则该圆锥底面圆的半径为_______cm.12.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是2 S甲=0.65,2S乙=0.55,2S丙=0.50,则射箭成绩最稳定的是______________.13.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色没有同外都相同,从中任取一个球,取得白球的概率与没有是白球的概率相同,那么m与n的关系是____________.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________.15.如图,在四边形ABCD中,AB CD≠,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是_________.16.如图,AB为⊙O直径,已知∠BCD=20°,则∠DBA的度数是_______.17.如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、N 两点,若点M 的坐标是(4,2)--,则弦M N 的长为____________.18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大干0的整数)个图形需要黑色棋子的个数是_________.三、解答题(共96分)19.计算:021(2012)18sin 45()2π--︒-20.先化简22()4416x x xx x x -÷---,然后从没有等组23210x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意....的x 的值代入求值.21.如图,E 、F 是平行四边形ABCD 对角线AC 上的两点,BE ∥DF .求证:BE=DF .22.今年“五一”假期.某数学小组组织登山.他们从山脚下A 点出发沿斜坡AB 到达B 点.再从B 点沿斜坡BC 到达山顶C 点,路线如图所示.斜坡AB 的长为1040米,斜坡BC 的长为400米,在C 点测得B 点的俯角为30°.已知A 点海拔121米.C 点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.23.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了抽样(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习没有感兴趣),并将结果绘制成图①和图②的统计图(没有完整).请根据图中提供的信息,解答下列问题:(1)此次抽样了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.25.如图,在平面直角坐标系x0y中,函数y=kx+b(k≠0)的图象与反比例函数myx(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=4 5.(1)求该反比例函数和函数的解析式;(2)求△AOC的面积.26.如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1,0)和点B (0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP 的周长最小.请求出点P 的坐标.27.如图,四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直轴于点P ,连结AC交NP 于Q ,连结MQ .(1)点(填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,S 的值;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若没有存在,说明理由.2023-2024学年上海市松江区中考数学专项提升仿真模拟试题(4月)一、选一选(本大题共有8小题,每小题3分,共24分)1.3-的倒数是()A.3B.13C.13-D.3-【正确答案】C 【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.5.464×107吨B.5.464×108吨C.5.464×109吨D.5.464×1010吨【正确答案】B 【分析】据科学记数法的表示形式求解即可.【详解】解:546400000用科学记数法表示为:5.464×108.故选:B .此题考查了科学记数法的表示形式,解题的关键是熟练掌握科学记数法的表示形式:10n a ⨯,其中110a ≤<,n 为整数.3.如图所示几何体的俯视图是()。
2009年松江区初三数学中考模拟考试数学试卷 2009.4.24考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列运算正确的是(A) 632x x x =; (B) 523x x x =+; (C) 5329)3(x x =; (D) 224)2(x x =.2是同类二次根式的是 (A )3; (B )4;(C )8; (D )12.3.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是(A )68109.⨯元; (B ) 68108.⨯元;(C )68107.⨯元;(D ) 68106.⨯元.4.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是 (A )36°; (B )54°; (C )72°; (D ) 108°. 5.如图, 在长方体ABCD –EFGH 中,与面ABFE 垂直的棱有(A )3条; (B )4条; (C )5条; (D )6条.6.下列命题中的真命题是 (A )关于中心对称的两个图形全等; (B )全等的两个图形是中心对称图形 (C )中心对称图形都是轴对称图形; (D )轴对称图形都是中心对称图形. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:)(b a a --= . 8.因式分解:a a 22-= .9.方程13=-x 的解是 .10.若关于x 的一元二次方程x 2-3x +m =0有实数根,则m 的取值范围是 .11.函数11y x =-的自变量x 的取值范围是______________. 12.已知反比例函数1k y x-=的图象在第二、四象限内,那么k 的取值范围是 .(第5题图)13.解方程xx x x +=++2221时,如果设x x y +=2,那么原方程可化为 . 14.在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是 . 15.在直角三角形ABC 中,∠C =90°,CD 是AB 上的中线,如果CD =2,那么AB = .16.在四边形ABCD 中,E 是AB 边的中点,设=,=,那么用、表示 为 .17.如图,在四边形ABCD 中,AB ≠CD ,E F G H ,,,分别 是AB BD CD AC ,,,的中点,要使四边形EFGH是菱形,四边形ABCD 还应满足的一个条件是 .18.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm和17cm ,则这两圆的圆心距为 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:02312110213)-+(--)+(-.20.(本题满分10分)解方程组:⎩⎨⎧=+=--320222y x y xy x .21.(本题满分10分)为了解本区初三学生体育测试自选项目的情况,从本区初三学生中随机抽取了部分学生的自选项目进行统计,绘制了扇形统计图和频数分布直方图,请根据图中信息,回答下列问题: (1)本次调查共抽取了 名学生;(2)将频数分布直方图补充完整;(3)样本中各自选项目人数的中位数是 ;(4)本区共有初三学生4600名,估计本区有 名学生选报立定跳远.(第17题图)BE项目篮球排球50米 立定跳远其他22.(本题满分10分)如图,在△ABC 中,AB =BC ,BD 是中线,过点D 作DE ∥BC ,过点A 作AE ∥BD ,AE 与DE 交于点E .求证:四边形ADBE 是矩形.23.(本题满分12分)如图,某新城休闲公园有一圆形人工湖,湖中心O 处有一喷泉.小明为测量湖的半径,在湖边选择A 、B 两个观测点,在A 处测得∠OAB =α,在AB 延长线上的C 处测得∠OCB =β,如果53sin =α,32tan =β,BC =50米.求人工湖的半径.24.(本题满分12分)如图,已知二次函数y =ax 2-2ax +3(a <0)的图像与x 轴的负半轴交于点A ,与y 轴的正半轴交于点B ,顶点为P ,且OB =3OA ,一次函数y =kx +b 的图像经过点A 、点B . (1)求一次函数的解析式; (2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M 在平移后的直线上,且tan ∠OAM =23,求点M 的坐标.EADBC(第22题图)CB OA(第23题图)25.(本题满分14分,第(1)小题满分5分,第(2)小题满分9分)已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当BEP DMF S S ∆∆=49时,求BP 的长.EDC BA P(第25题图)EDCBA(备用图)2009年松江区初中毕业生学业模拟考试数学卷参考答案一 、选择题:(本大题共8题,满分24分)1.D ; 2.C ; 3.B ; 4.C ; 5.B ; 6.A ; 二、填空题:(本大题共12题,满分48分) 7.b ; 8.)2(-a a ; 9.4=x ; 10.49≤m ; 11.1≠x ; 12.1<k ; 13.022=-+y y ; 14.143; 15.4; 16.b a -21; 17.AD =BC 或四边形ABCD 是等腰梯形; 18.21或9. 三.(本大题共7题,满分78分)19.解:原式=11427+-+………………………………………………………………(8分)=31 ……………………………………………………………………………… (2分)20.解:由①得02=-y x 或0=+y x …………………………………………………(2分)原方程组可化为:⎩⎨⎧=+=-3202y x y x 和⎩⎨⎧=+=+320y x y x ………………………… (2分)解这两个方程组得原方程组的解为:⎪⎪⎩⎪⎪⎨⎧==53,5611y x ⎩⎨⎧-==3322y x .………………………(6分) 21.解:(1)200名;………………………………………………………………………(2分) (2)画图略;………………………………………………………………………(2分) (3)40;……………………………………………………………………………(3分)(4)690; …………………………………………………………………………(3分) 22.解:证明:D Θ是AC 的中点,∴CD AD =………………………………………(1分)BD AE //Θ,BC DE //,∴DCB ADE BDC EAD ∠=∠∠=∠, ………(2分) ∴DCB ADE ∆≅∆, ∴DB AE =…………………………………………(2分) ∴四边形ADBE 是平行四边形………………………………………………(2分)ΘCB AB =,∴AC BD ⊥即090=∠ADB ………………………………(1分)∴平行四边形ADBE 是矩形…………………………………………………(2分)23. 解:作AB OD ⊥………………………………………………………………………(1分)∴BD AD = ………………………………………………………………………(2分)在Rt △OAD 中,由53sin ==∠OA OD OAD …………………………………… (1分) 设x OD 3=,则x OA 5=,∴x BD AD 4==………………………………… (1分) ∴504+=x CD …………………………………………………………………… (1分) 在Rt △ODC 中,由32tan ==∠CD OD OCD ……………………………………(1分) 325043=+x x ……………………………………………………………………… (2分)100=x ,即500=OA ……………………………………………………………(2分) 答:这个人工湖的半径为500米.…………………………………………………… (1分) 24.解:(1)Q y =ax 2-2ax +3, 当0=x 时,3=y∴)3,0(B ………………………………………………………………………… (1分) ∴3=OB ,又Q OB =3OA , ∴1=AO ∴)0,1(-A ……………………(2分)设直线AB 的解析式b kx y +=⎩⎨⎧==+-3b b k ,解得 3=k ,3=b ∴直线AB 的解析式为33+=x y .………………………………………………… (1分) (2)Q )0,1(-A , ∴320++=a a ,∴1-=a ………………………………(1分)∴322++-=x x y 4)1(2+--=x ……………………………………………(1分)∴抛物线顶点P 的坐标为(1,4).………………………………………………… (1分) (3)设平移后的直线解析式m x y +=3Θ点P 在此直线上,∴m +=34, 1=m∴平移后的直线解析式13+=x y …………………………………………………… (1分) 设点M 的坐标为)13,(+x x ,作ME x ⊥轴- 若点M 在x 轴上方时, 13+=x ME ,1+=x AE 在Rt △AME 中,由11323tan ++===∠x x AE ME OAM ,∴31=x ……………………(1分) ∴)2,31(M ………………………………………………………………………………… (1分) 若点M 在x 轴下方时, 13--=x ME ,x AE +=1在Rt △AME 中,由x x AE ME OAM +--===∠11323tan ,∴95-=x ∴)32,95(--M ………………………………………………………………………… (1分) 所以M 的坐标是)2,31(或)32,95(--…………………………………………………(1分) 25.证明:(1)∵在梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ……………(1分)BE =2,BP =2,CP =4,CD =4,∴CDBPCP EB =,∴△BEP ∽△CPD ………………(2分) (2)①FPC EPF BEP B EPF ∠+∠=∠+∠=∠Θ又∠EPF =∠C=∠B ,∴FPC BEP ∠=∠…………………………………………(1分) ∴△BEP ∽△CPF ,∴CFBPCP EB =…………………………………………………(1分) ∴462+=-y xx ………………………………………………………………………(1分) ∴43212-+-=x x y (42<<x )………………………………………………(2分) ②当点F 在线段CD 的延长线上时Θ∠FDM =∠C=∠B , FMD FPC BEP ∠=∠=∠,∴△BEP ∽△DMF ……(1分) ΘBEP DMF S S ∆∆=49,∴xy BP DF ==23 ………………………………………………(1分) 又43212-+-=x x y ,∴0832=+-x x ,Δ<0,∴此方程无实数根, 故当点F 在线段CD 的延长线上时,不存在点P 使BEP DMF S S ∆∆=49.……………(1分)当点F 在线段CD 上时,同理△BEP ∽△DMFΘBEP DMF S S ∆∆=49,∴xy BP DF ==23,又∴△BEP ∽△CPF ∴CFBPCP EB =,∴y x x -=-462……………………………………………………(1分) ∴43212+-=x x y ,∴0892=+-x x ,解得 11=x ,82=x ………………(1分) 由于82=x 不合题意舍去,∴1=x ,即BP =1………………………………………(1分) 所以当BEP DMF S S ∆∆=49时,BP 的长为1.。