旅行商问题
- 格式:ppt
- 大小:587.50 KB
- 文档页数:11
组合优化中的旅行商问题组合优化问题是指在给定的集合或者结构中,寻找一个最优解或者一个近似最优解的问题。
而旅行商问题是组合优化中的一个经典问题,也是一个NP困难问题。
它的问题描述是:给定一些城市和它们之间的距离,求解一个最短路径,使得每个城市只经过一次,并且最后能够回到起始城市。
旅行商问题在实际生活中有着广泛的应用,比如物流配送、电路板布线、旅游路线规划等。
由于问题的复杂性,寻找解决该问题的最优算法一直是学术界和工业界的研究热点。
为了解决旅行商问题,已经提出了一系列的算法。
下面将介绍其中几种常见的算法。
1. 穷举法穷举法是最简单的解决旅行商问题的方法之一。
它的思想是对所有可能的路径进行穷举,计算路径的总长度,并选择其中最短的路径作为结果。
然而,由于旅行商问题的解空间巨大(复杂度是O(n!)),穷举法在问题规模较大时计算量会非常庞大,因此不适用于大规模问题。
2. 动态规划法动态规划法是另一种解决旅行商问题的常用方法。
它的思想是通过将问题分解成多个子问题,并利用子问题的最优解构造原问题的解。
具体来说,可以定义一个二维数组dp,其中dp[i][j]表示从城市i出发,经过集合j中的城市一次后,回到起始城市的最短路径长度。
通过动态规划的递推公式,可以求解出dp数组中的所有元素,从而得到整个问题的最优解。
3. 遗传算法遗传算法是一种基于生物进化和遗传机制的搜索算法。
它通过模拟生物进化过程中的选择、交叉和变异等操作,逐步优化解的质量。
在解决旅行商问题时,可以将每个可能的路径编码成一个染色体,并用适应度函数评估每个染色体的优劣。
然后通过选择、交叉和变异等操作,使得优秀的染色体得以传递下去,最终得到一个接近最优解的路径。
4. 其他启发式算法除了上述提及的算法,还有一些启发式算法常被用于解决旅行商问题,如蚁群算法、模拟退火算法和遗传算法等。
这些算法多为基于自然现象和启发式规则的搜索算法,可以有效地在大规模数据集上求解旅行商问题。
智能优化实验报告基于遗传算法的TSP问题求解研究一、问题描述1、TSP问题的概述旅行商问题 (Traveling Salesman Problem,简称 TSP) 是一个经典的组合化问题。
它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城出发需要经过所有城市后回到出发地,应如何选择行进路线以使总行程短。
从图论的角度看,该问题实质是在一个带权完全无向图中找一个权值最的小回路。
在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。
旅行商问题也是经典的组合数学的问题,生活中随处可见这类组合数学问题。
例如,计算下列赛制下的总的比赛次数:n个球队比赛,每队只和其他队比赛一次。
在纸上画一个网络,用铅笔沿着网络的线路走,在笔不离开纸面且不重复线路的条件下,一笔画出网络图。
一个邮递员从邮局出发,要走完他所管辖的街道,他应该选择什么样的路径,这就是著名的“中国邮递员问题”。
一个通调网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。
库房和运输的管理也是典型的组合数学问题,怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取。
上述的这些例子中,其中一部分就和旅行商问题有关系。
2、TSP问题研究意义解决旅行商问题有着极其重要的理论和现实意义。
从理论层面来讲,解TSP不仅为其他算法提供了思想方法平台,使这些算法广泛地应用于各种组合优化问题;而且经常被用来测试算法的优劣,如模拟退火算法、禁忌搜索、神经网络、进化算法等,都可用旅行商问题来测试。
从实际应用层面来讲,旅行商问题作为一个理想化的问题,尽管多数的研究成果不是为了直接的应用,但却被广泛地转化为许多组合优化问题,最直接的就是其在交通、物流和大规模生产中的应用。
3、TSP问题的解决TSP问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。
关于旅行商问题的数学模型旅行商问题(TravelingSalesmanProblem,TSP)是著名的组合优化问题,它的目标是找到一条路径,使得一个旅行商可以经过所有给定的城市,路径总长度最短。
这个问题在实际生活中有着广泛的应用,例如物流配送、电路板布线、DNA序列比对等领域。
本文将介绍旅行商问题的数学模型和解法。
1. 问题描述假设有n个城市,它们的位置分别为(xi,yi),i=1,2,...,n。
旅行商要从一个城市出发,经过所有城市恰好一次,最后回到出发城市。
城市之间的距离可以用欧几里得距离表示:d(i,j) = sqrt((xi-xj)^2 + (yi-yj)^2)旅行商问题的目标是找到一条路径,使得路径总长度最短。
2. 数学模型2.1 定义变量我们定义变量xij表示从城市i到城市j的路径是否被选择,如果被选择则xij=1,否则xij=0。
例如,x12表示从城市1到城市2的路径是否被选择。
2.2 目标函数旅行商问题的目标是找到一条路径,使得路径总长度最短。
因此,我们可以定义目标函数为:minimize ∑i∑j d(i,j)xij其中,i,j表示城市的编号,d(i,j)表示城市i和城市j之间的距离,xij表示从城市i到城市j的路径是否被选择。
2.3 约束条件旅行商需要经过所有城市恰好一次,因此我们需要添加以下约束条件:1. 每个城市只能被经过一次:∑j xij = 1, i=1,2,...,n2. 每个城市离开后只能到达一个城市:∑i xij = 1, j=1,2,...,n3. 不能出现子回路:∑i∈S ∑j∈S xij ≤ |S|-1, S{1,2,...,n}, |S|≥2其中,第一个约束条件表示每个城市只能被经过一次,第二个约束条件表示每个城市离开后只能到达一个城市,第三个约束条件表示不能出现子回路。
3. 解法旅行商问题是一个NP难问题,没有多项式时间算法可以求解。
因此,我们需要使用一些启发式算法来求解这个问题。
旅行商问题数学模型
旅行商问题数学模型
旅行商问题(又译旅行推销员问题)是在计算机科学及运筹学中的一个典型问题,其中的任务是“找到一条最短的路线,其中遍及全部的城市且只遍及一次”。
这个问题属于非常实用的经典优化问题,如果仅考虑一个旅行者,则是一个单顶点问题。
在这里,我们把这个问题抽象成数学模型,主要包括变量,目标函数和约束条件,并由此给出解决此问题的数学表达式。
变量:
设有n个城市:C1,C2,…,Cn,设每两个城市之间的距离为Dij,i,j=1,2,…,n,Xij表示从城市i出发到城市j的路径,则Xij=1表示该路径可行,Xij = 0表示该路径不可行。
目标函数:
本题的目标是求出长度最短的路径。
故该问题的目标函数可表示为:
min Z=∑∑DijXij
其中,i,j=1,2,…,n
约束条件:
该问题的约束条件可表示为:
(1)每个城市只访问一次。
∑Xij = 1 i=1,2,…,n;j=1,2,…,n
(2)出发和结束均是同一个城市。
Xij = 1 i=j;j=1,2,…,n
(3)Xij只能取0或1。
Xij = 0或1 i,j=1,2,…,n
总结:
因此,旅行商问题的数学模型可以表示为:
min Z=∑∑DijXij
其中,i,j=1,2,…,n
约束条件:
(1)每个城市只访问一次。
∑Xij = 1 i=1,2,…,n;j=1,2,…,n (2)出发和结束均是同一个城市。
Xij = 1 i=j;j=1,2,…,n
(3)Xij只能取0或1。
Xij = 0或1 i,j=1,2,…。
贪心算法是一种在每一步选择中都采取当前情况下的局部最优选择,并希望导致结果是全局最优解的算法。
下面是一些贪心算法的题目和解答:1. 旅行商问题(Travelling Salesman Problem):问题描述:给定一个城市列表和一个距离列表,要求找出一条路径,使得路径上的所有城市都经过,且总距离最短。
贪心算法解法:首先对城市按照距离进行排序,然后从最近的两个城市开始,每次都选择距离当前位置最近的两个城市,直到遍历完所有城市。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的路径总距离是最短的。
2. 背包问题(Knapsack Problem):问题描述:给定一组物品,每个物品都有自己的重量和价值,要求在不超过背包总重量的情况下,如何选择物品使得背包中物品的总价值最大。
贪心算法解法:按照物品的重量对物品进行排序,然后每次选择重量最小的物品,直到背包已满或无物品可选。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的方案总是可以找到一个大于等于当前最优解的方案。
3. 网格找零问题(Currency Change Problem):问题描述:给定一组面值不同的硬币,要求用最少的组合方式从一定金额中找零。
贪心算法解法:首先对硬币面值进行排序,然后每次使用当前面值最小的硬币进行组合,直到金额为零或无硬币可选。
贪心算法在此问题中的思路是每次选择最小的硬币进行使用,这样可以保证找零的最小数量。
以上题目和解答只是贪心算法的一部分应用,实际上贪心算法在许多其他领域也有广泛的应用,例如网页布局优化、任务调度、网络流等等。
贪心算法的优势在于其简单易懂、易于实现,但也有其局限性,例如无法处理一些存在冲突的情况或最优解不唯一的问题。
因此在实际应用中需要根据具体问题选择合适的算法。
一、 算法分析旅行商问题的各个城市间的距离可以用代价矩阵来表示,就是邻接矩阵表示法。
如果E j i ∉),(,则∞=ij c 。
先说明旅行商问题具有最优解结构。
设s s s s p ,,.....,,21是从s 出发的一条路径长度最短的简单回路,假设从s 到下一个城市1s 已经求出,则问题转化为求1s 到S 的最短路径,显然s s s s p ,,.....,,21一定构成一条从1s 到S 的最短路径,如果不然,设s r r r s q ,,.....,,,211是一条从1s 到S 的最短路径且经过n-1个城市,则s r r r s s q ,,.....,,,,211将是从S 出发的路径长度最短的简单回路且比s s s s s p ,,.....,,,21要短,从而导致矛盾。
所以,旅行商问题一定满足最优性原理。
穷举法:穷举法解决旅行商问题的思路很简单,就是遍历所有可能的情况,然后把符合条件(最短)的路径找到并输出可以了。
动态规划法:假设从顶点i 出发,令)',(V i d 表示从顶点i 出发经过V ’中各个顶点一次且仅一次,最后回到出发点i 的最短路径的长度,开始时,V ’=V-{i},于是,旅行商问题的动态规划函数为:)({}),()'})}({',(min{)',(i k c k d V k k V k d c V i d ki ik ≠=∈-+=)2()1(下面举个实例说明算法的执行过程。
下图是无向带权图的邻接矩阵表示法:⎢⎢⎢⎢⎣⎡∞=763C323∞ 226∞ ⎥⎥⎥⎥⎦⎤∞237在上图所示的带权图中,从城市0出发,经城市1,2,3然后回到城市0的最短路径长度为:})}2,1{,3(}),3,1{,2(}),3,2{,1(m in{})3,2,1{,0(030201d c d c d c d +++=这是最后一个阶段的决策,它必须知道})3,1{,3(}),3,1{,2(}),3,2{,1(d d d 的计算结果,而:})}2{,3(}),3{,2(m in{})3,2{,1(1312d c d c d ++=})}1{,3(}),3{,1(m in{})3,1{,2(2321d c d c d ++= })}1{,2(}),2{,1(m in{})2,1{,3(3231d c d c d ++=这一阶段的决策又依赖于下面的计算结果:{}),2(})2{,3({}),,3(})3{,2({}),,2(})2{,1(322312d c d d c d d c d +=+=+= {}),1(})1{,3({}),,1(})1{,2({}),,3(})3{,1(312113d c d d c d d c d +=+=+= 而下面的就可以直接获得(括号中是该策略引起的路径):)03(7{}),3(),02(6{}),2(),01(3})0{,1(302010>-==>-==>-==c d c d c d向前推导,可以得到:)23(862{}),2(})2{,3()13(633{}),1(})1{,3()12(532{}),1(})1{,2()32(972{}),3(})3{,2()31(1073{}),3(})3{,1()21(862{}),2(})2{,1(323121231312>-=+=+=>-=+=+=>-=+=+=>-=+=+=>-=+=+=>-=+=+=d c d d c d d c d d c d d c d d c d再向前推导有:)23(7}7,11min{})}1{,2(}),2{,1(min{})2,1{,3()32(8}8,12min{})}1{,3(}),3{,1(min{})3,1{,2()21(11}11,11min{})}2{,3(}),3{,2(min{})3,2{,1(323123211312>-==++=>-==++=>-==++=d c d c d d c d c d d c d c d 最后有:})}2,1{,3(}),3,1{,2(}),3,2{,1(m in(})3,2,1{,0(030201d c d c d c d +++=)302010(14}14,14,14min{}77,86,113min{>->->-==+++=or or所以,从顶点0出发的旅行商问题的最短路径长度为14,其中一条路径为01320>->->->-。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SW AP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。