数学建模经典问题——旅行商问题
- 格式:ppt
- 大小:1.59 MB
- 文档页数:104
研究生数学建模答案范文为了培养研究生们的数学建模能力,数学系组织了一场数学建模竞赛。
下面是一份研究生数学建模竞赛的答案范文,展示了参赛团队对于题目的解决方案和相关分析。
Question 1:某城市公交公司需要制定一份新的公交路线规划,以增加乘客出行的满意度。
已知该城市总共有n个重要地点,编号为1至n。
现给定了这些地点之间的距离矩阵D,其中D[i][j]表示地点i到地点j的距离。
请为该城市设计一条公交路线,要求从起点s出发遍历所有重要地点,最终回到起点s,并使得路线总长度最小。
Answer:该问题是一个旅行商问题(Traveling Salesman Problem, TSP)。
我们可以使用分支界定法来求解最佳公交路线。
首先,我们需要定义一个状态空间树,并通过贪心算法初始解得到一个较优解。
1. 初始化阶段:a. 将初始节点s标记为已访问节点;b. 初始化最小路线长度为无穷大。
2. 主循环开始:a. 从起点s出发,并按照贪心算法选择下一个未访问的节点;b. 通过计算当前节点到下一个节点的距离和已访问节点的最小路线长度,得到一个临时最小路线长度;c. 如果临时最小路线长度已经超过当前最小路线长度,则剪枝,不再继续搜索该分支;d. 如果所有重要地点都已经被访问过且回到起点s,更新最小路线长度。
3. 输出最优解。
通过上述算法,可以得到一条相对较优的公交路线规划,满足问题的要求。
Question 2:某公司计划开发一款智能投资系统,用于预测股票市场的涨跌情况。
根据历史数据,该公司已经构建了一套数学模型,希望通过该模型提供实时预测结果。
现在给定一个测试集,包含一系列历史股票指数数据,请根据该数据集预测下一个时间点的股票指数涨跌情况。
Answer:对于这个问题,我们可以使用回归模型对未来的股票指数涨跌进行预测。
首先,我们需要对给定的历史数据进行特征工程,提取相关的指标作为模型的输入。
1. 特征工程:a. 将时间序列数据转化为离散值,并计算相关统计特征,如均值、最大值、最小值等;b. 根据技术指标,如移动平均线、指数平滑移动平均线等,计算相应的特征;c. 提取其他与市场因素相关的特征,如利率、CPI指数等。
《物流软件》实验报告实验编号:实验2学号:序号:姓名:班级:2015年10月一、旅行商问题(1)数学模型设di是两点i与j之间的距离,Xij=0或1(1表示连接,0表示不连接)则有Min∑∈VjXij dij*s.t. ∑∈VjXij=1 ,(每个点只有一条边出去),i∈V∑∈VjXji=1,(每个点只有一条边进入),i∈V(除起点与重点外,个边不构成圈)(2)L INGO程序MODEL:SETS:CENTERS/1..8/:LEVEL;LINK(CENTERS,CENTERS):DISTANCE,X;ENDSETSDATA:DISTANCE = 0 3 2 3 4 3 5 63 0 2 3 2 3 1 42 2 0 1 43 2 53 3 1 0 1 14 3 44 2 4 1 0 2 2 33 3 3 14 2 0 8 45 1 2 3 2 8 0 36 4 5 4 3 4 3 0;ENDDATAN=@SIZE(CENTERS);MIN=@SUM(LINK(I,J)|i #ne# j :distance(i,j)*x(i,j));@for(centers(i):@sum(centers(j)|j #ne# i:x(j,i))=1;@SUM(CENTERS(J)|J #NE# I:X(I,J)) = 1;@FOR(CENTERS(j)|J #GT# 1 #AND# J #NE# I :LEVEL(J)>=LEVEL(I)+X(I,J)-(N-2)*(1-X(i,J))+(N-3)*X(J,I););); @FOR(LINK:@BIN(X));@FOR(CENTERS(I)|I #GT# 1:LEVEL(I)<=N-1-(N-2)*X(1,I);LEVEL(I)>=1+(N-2)*X(I,1););ENDCENTERS/1..8/是基本集合名字,元素为1到8。
LEVEL 为其元素。
一、 问题描述旅行商问题:给定一个完全无向带权图G=(V,E),其每条边(u,v)∈E 有一非负整数权值w(u,v)。
要求找出G 的一条经过每个顶点一次且仅经过一次的回路,使得该回路上所有边的权值之和尽可能地小。
二、 算法分析旅行商问题的各个城市间的距离可以用代价矩阵来表示,就是邻接矩阵表示法。
如果E j i ∉),(,则∞=ij c 。
先说明旅行商问题具有最优解结构。
设s s s s p ,,.....,,21是从s 出发的一条路径长度最短的简单回路,假设从s 到下一个城市1s 已经求出,则问题转化为求1s 到S 的最短路径,显然s s s s p ,,.....,,21一定构成一条从1s 到S 的最短路径,如果不然,设s r r r s q ,,.....,,,211是一条从1s 到S 的最短路径且经过n-1个城市,则s r r r s s q ,,.....,,,,211将是从S 出发的路径长度最短的简单回路且比s s s s s p ,,.....,,,21要短,从而导致矛盾。
所以,旅行商问题一定满足最优性原理。
穷举法:穷举法解决旅行商问题的思路很简单,就是遍历所有可能的情况,然后把符合条件(最短)的路径找到并输出可以了。
动态规划法:假设从顶点i 出发,令)',(V i d 表示从顶点i 出发经过V ’中各个顶点一次且仅一次,最后回到出发点i 的最短路径的长度,开始时,V ’=V-{i},于是,旅行商问题的动态规划函数为:)({}),()'})}({',(min{)',(i k c k d V k k V k d c V i d ki ik ≠=∈-+=)2()1( 下面举个实例说明算法的执行过程。
下图是无向带权图的邻接矩阵表示法:⎢⎢⎢⎢⎣⎡∞=763C323∞ 226∞ ⎥⎥⎥⎥⎦⎤∞237在上图所示的带权图中,从城市0出发,经城市1,2,3然后回到城市0的最短路径长度为:})}2,1{,3(}),3,1{,2(}),3,2{,1(min{})3,2,1{,0(030201d c d c d c d +++=这是最后一个阶段的决策,它必须知道})3,1{,3(}),3,1{,2(}),3,2{,1(d d d 的计算结果,而:})}2{,3(}),3{,2(min{})3,2{,1(1312d c d c d ++=})}1{,3(}),3{,1(min{})3,1{,2(2321d c d c d ++= })}1{,2(}),2{,1(min{})2,1{,3(3231d c d c d ++=这一阶段的决策又依赖于下面的计算结果:{}),2(})2{,3({}),,3(})3{,2({}),,2(})2{,1(322312d c d d c d d c d +=+=+= {}),1(})1{,3({}),,1(})1{,2({}),,3(})3{,1(312113d c d d c d d c d +=+=+= 而下面的就可以直接获得(括号中是该策略引起的路径):)03(7{}),3(),02(6{}),2(),01(3})0{,1(302010>-==>-==>-==c d c d c d向前推导,可以得到:)23(862{}),2(})2{,3()13(633{}),1(})1{,3()12(532{}),1(})1{,2()32(972{}),3(})3{,2()31(1073{}),3(})3{,1()21(862{}),2(})2{,1(323121231312>-=+=+=>-=+=+=>-=+=+=>-=+=+=>-=+=+=>-=+=+=d c d d c d d c d d c d d c d d c d再向前推导有:)23(7}7,11min{})}1{,2(}),2{,1(min{})2,1{,3()32(8}8,12min{})}1{,3(}),3{,1(min{})3,1{,2()21(11}11,11min{})}2{,3(}),3{,2(min{})3,2{,1(323123211312>-==++=>-==++=>-==++=d c d c d d c d c d d c d c d 最后有:})}2,1{,3(}),3,1{,2(}),3,2{,1(min(})3,2,1{,0(030201d c d c d c d +++=)302010(14}14,14,14min{}77,86,113min{>->->-==+++=or or所以,从顶点0出发的旅行商问题的最短路径长度为14,其中一条路径为01320>->->->-。
旅⾏商问题+背包问题--经典问题问题描述:旅⾏商问题(Traveling Salesman Problem,TSP)是旅⾏商要到若⼲个城市旅⾏,各城市之间的费⽤是已知的,为了节省费⽤,旅⾏商决定从所在城市出发,到每个城市旅⾏⼀次后返回初始城市,问他应选择什么样的路线才能使所⾛的总费⽤最短?此问题可描述如下:设G=(V,E)是⼀个具有边成本cij的有向图,cij的定义如下,对于所有的i和j,cij>0,若<i,j>不属于E,则cij=∞。
令|V|=n,并假设n>1。
G的⼀条周游路线是包含V中每个结点的⼀个有向环,周游路线的成本是此路线上所有边的成本和。
旅⾏商问题(Traveling Saleman Problem,TSP)⼜译为旅⾏推销员问题、货郎担问题,简称为TSP问题,是最基本的路线问题,该问题是在寻求单⼀旅⾏者由起点出发,通过所有给定的需求点之后,最后再回到原点的最⼩路径成本。
最早的旅⾏商问题的数学规划是由Dantzig(1959)等⼈提出。
TSP问题在物流中的描述是对应⼀个物流配送公司,欲将n个客户的订货沿最短路线全部送到。
如何确定最短路线。
TSP问题最简单的求解⽅法是枚举法。
它的解是多维的、多局部极值的、趋于⽆穷⼤的复杂解的空间,搜索空间是n个点的所有排列的集合,⼤⼩为(n-1)。
可以形象地把解空间看成是⼀个⽆穷⼤的丘陵地带,各⼭峰或⼭⾕的⾼度即是问题的极值。
求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到⼭顶或⾕底的过程。
问题分析旅⾏商问题要从图G的所有周游路线中求取最⼩成本的周游路线,⽽从初始点出发的周游路线⼀共有(n-1)!条,即等于除初始结点外的n-1个结点的排列数,因此旅⾏商问题是⼀个排列问题。
排列问题⽐⼦集合的选择问题通常要难于求解得多,这是因为n个物体有n!种排列。
通过枚举(n-1)!条周游路线,从中找出⼀条具有最⼩成本的周游路线的算法,其计算时间显然为O(n!)。
组合优化中的旅行商问题求解在组合优化领域中,旅行商问题(Traveling Salesman Problem,TSP)是一类具有重要实际应用价值和理论研究意义的问题。
该问题要求在给定一系列城市和各城市之间的距离情况下,找到一条最短路径,使得旅行商能够恰好访问每个城市一次,并最终回到出发城市。
TSP在计算机科学、运筹学和数学等多个领域都得到了广泛的关注和研究。
1. TSP的数学建模旅行商问题可以用图论中的图来描述和解决。
首先,我们将每个城市表示为图中的一个节点,城市之间的距离表示为节点之间的边。
若每对节点之间的边都有权重,表示相应城市之间的距离,旅行商问题就可以转化为求解图的最短哈密顿回路(Hamiltonian cycle)的问题。
2. 求解TSP的经典算法2.1 蛮力算法蛮力算法是最简单直观的求解TSP的方法,它遍历所有可能的路径,并计算出总的路径长度,然后选择最短路径作为解。
然而,蛮力算法的时间复杂度为O(n!),当城市数量增加时,计算时间将呈指数级增长,因此适用于城市数量较少的情况。
2.2 最邻近插入算法最邻近插入算法从一个起始城市开始,每次选择离当前城市最近的未访问城市作为下一个访问城市,直到访问完所有城市,并回到起始城市。
该算法的时间复杂度为O(n^2),但它可能会得到次优解,因为贪心策略在选择下一个城市时只考虑了当前状态,没有考虑到整体最优解。
2.3 分支限界法分支限界法是一种基于回溯的求解TSP的优化方法,其思想是通过剪枝操作,去掉一些分支,从而减少搜索空间。
该算法首先选择一个起始城市,然后逐步扩展路径,每次选择一个未访问的城市,并通过计算路径长度来更新当前最优路径。
同时,在搜索过程中,根据当前路径长度和已知的最短路径长度,进行剪枝操作,以减少无效的计算。
分支限界法可以得到较优的解,但其时间复杂度仍然较高,因此在处理大规模问题时可能会面临困难。
3. 近似算法及元启发式算法为了求解大规模问题或提高求解效率,研究者们提出了许多近似算法和元启发式算法。
TSP(旅行商)问题
旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。
该问题可以被证明具有NP计算复杂性。
因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。
旅行推销员问题是数图论中最著名的问题之一,即“已给一个n个点的完全图,每条边都有一个长度,求总长度最短的经过每个顶点正好一次的封闭回路”。
Edmonds,Cook和Karp 等人发现,这批难题有一个值得注意的性质,对其中一个问题存在有效算法时,每个问题都会有有效算法。
迄今为止,这类问题中没有一个找到有效算法。
倾向于接受NP完全问题(NP-Complete或NPC)和NP难题(NP-Hard或NPH)不存在有效算法这一猜想,认为这类问题的大型实例不能用精确算法求解,必须寻求这类问题的有效的近似算法。
此类问题中,经典的还有子集和问题;;Hamilton回路问题;最大团问题。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载旅行商问题数学建模地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容黄石理工学院数学建模大型作业2011—2012 学年第1学期目录一.摘要二.旅行问题问题描述符号说明模型设计建模求解模型分析三.建模过程及心得体会四.参考文件一.摘要本文是一个围绕旅行商问题和背包问题这两个经典问题的论文。
问题一,是一个依赖与每个城市去一次且仅去一次的路线确定问题,问题二类似于问题一。
问题三是一个依赖于可背重量限制的背包问题。
关键词:HAMILTON回路 LINGO 最优旅行路线 0-1模型二.旅行问题问题描述某人要在假期内从城市A出发,乘火车或飞机到城市B,C,D,E,F旅游购物。
他计划走遍这些城市各一次且仅一次,最后返回城市A。
已知城市间的路费数据见附表1,请你设计一条旅行路线使得他的总路费最少。
如果临行他因故只能去4个城市,该怎样修订旅行路线?在城市间旅游时他计划购买照相机,衣服,书籍,摄像机,渔具,白酒,食品,而受航空行李重量的限制以及个人体力所限,所买物品的总重量不能超过15kg,各种物品的价格见附表2.请你为他决策买哪些物品,使所买物品价值最大。
附表1:附表2模型设计首先给出一个定义:设v1,v2,......,vn是图G中的n个顶点,若有一条从某一顶点v1出发,经过各节点一次且仅一次,最后返回出发点v1的回路,则称此回路为HAMILTON回路。
问题1.分析:这个优化问题的目标是使旅行的总费用最少,要做的决策是如何设定旅行路线,决策受的约束条件:每个城市都必须去,但仅能去一次。
按题目所给,将决定变量,目标函数和约束条件用数学符号及式子表示出来,就可得一下模型。