拖拉机液压机械无级变速器特性研究
- 格式:pdf
- 大小:123.42 KB
- 文档页数:1
技术改造液压机无级变速转动在拖拉机上的应用分析章 森1 赵建超1 石新旭2(1.洛阳路通农业装备有限公司,河南 洛阳 471132;2.洛阳丰收芬美得农业机械装备有限公司,河南 洛阳 471600)摘 要:目前,国内外的研究主要集中在液压机械无级变速器上,针对适用于中小功率拖拉机的静液压传动系统的研究较少。
本文采取静态拖拉机的液压传动系统为研究对象,研究最优经济匹配和控制策略下的拖拉机稳定的操作速度,具有重要意义,提高拖拉机的经济和操作质量,减少司机的劳动强度。
关键词:拖拉机;无级变速传;液压机1、前言我国农业现代化进程正在加快,推动农业生产装备现代化朝着智能化、规模化的方向发展。
同时,环境污染的问题,能源短缺仍然是严重的,所以现代农业生产低排放,低污染等节能和环境保护的绿色农业机械需求增加2025“中国制造”在中国实施纲要》将智能农业装备研发关键领域的发展;“十三五”发展规划将农业机械现代化、智能化、规模化列入重点研发计划。
液压无级变速传动理论早在20世纪初被有关学者提出,但由于液压元件的制造水平和控制技术发展的限制并不成熟,所以当时没有得到应用推广,直到1960年代液压元件制造技术和电子控制技术的发展,液压无级变速器作为农业生产的核心装备,开始在军用车辆和重型车辆拖拉机上得到应用,需要道路运输和野外作业等任务,往往在复杂环境条件下工作,外负载波动频繁且较大,这对拖拉机的动力性能和燃油经济性提出了更高的要求。
传统的无级变速拖拉机为了满足的需求的多样性,需要设置更多的齿轮,司机操作过程中需要频繁的转变,适应外部环境变化的负载和不同的需求,增加了司机的劳动强度,而且很难保证拖拉机在经济状况的工作,增加燃料消耗。
作为车辆传动系的理想模式,CVT可以不断根据外部经营环境改变传动比和发动机的工作状态,以便拖拉机工作在经济状态,提高拖拉机的燃油经济性,减少转移的影响,减轻司机的劳动强度。
因此,无级变速传动技术的道路拖拉机传动系统开发过程,并实现农业拖拉机发动机的关键技术研究和开发智能,电液化和自动控制,提高自动化水平农业拖拉机、经济、动力性能和减轻司机的劳动强度具有重要的意义。
拖拉机液压机械无级变速器特性研究液压机械无级变速器(Hydro-mechanical Continuously Variable Transmission,简称HMCVT)是一种液压功率流与机械功率流并联的新型传动装置,通过机械传动实现传动高效率,通过液压传动的可控调速与机械传动相结合实现无级变速。
该装置的采用能大幅度地提高车辆的动力性、经济性和操作自动化水平。
对适用于农业拖拉机的液压机械无级变速器传动方案的设计理论和方法、发动机与传动系统的匹配理论、传动系统动态特性和性能试验的研究,具有重要的理论和工程实用价值。
对液压机械无级变速传动理论进行了系统的分析,导出了输入、输出分流两种传动形式的特性关系式,分析了结构参数对其性能的影响规律,指出了输出分流式传动较适合于车辆传动。
结合拖拉机的实际工作要求,确定了拖拉机液压机械无级变速器传动方案,通过优化设计给出了其结构参数,并对其无级调速特性、转矩特性、功率分流特性、功率流特性、效率特性、牵引特性进行了分析,并对装有液压机械无级变速器的拖拉机与原拖拉机的牵引性能进行了分析比较。
利用发动机的试验测试结果,建立了发动机输出转矩模型和燃油消耗率模型,确定了关于发动机的最佳动力性和最佳燃油经济性的转速调节特性。
根据拖拉机不同作业项目对发动机功率不同的要求,提出了三种作业模式。
研究了各作业模式下发动机与拖拉机液压机械无级变速传动系统的匹配机理及匹配实现方案,并提出了相应的匹配评价指标,分析比较了装备液压机械无级变速器的拖拉机与原拖拉机的动力性能和经济性能。
应用功率键合图理论,建立了拖拉机液压机械无级变速传动系统的数学模型,推导了系统的状态方程,设计了实用的模糊自适应PID控制器,对两种典型工况下无级变速传动系统动力性和经济性进行了动态特性仿真,分析比较了不同工况下无级变速传动系统的动态特性。
基于车辆新型动力传动实验台,完成了拖拉机液压机械无级变速器稳态和动态两种工况下的性能试验,验证了液压机械无级变速传动理论的正确性及其特性。
现在车辆上的传动装置多采用机械式变速器,1液力机械式变速器(AT)液力机械式变速器由液力变矩器和多挡机械变速箱组成。
2液压机械无级变速器(HMT)及应用分析3静液压无级变速器(HST)及其应用分析静液压无级变速器(HST)依靠液压变量马达实现纯液压无级变速,效率较AT高,但较齿轮变速器低许多,传递功率不大4 金属带式无级变速器为了充分利用发动机大的功率,节约能源以及获得优良的动力性能,最理想的方法是从传统的有级传动发展为无级传动。
目前普遍采用的液力变矩器及其闭锁装置,自动换挡机构等均是为了弥补有级传动的不足而产生的传动模式,但不能实现真正的无级变速。
另外还出现了全液压传动的无级变速器,其操纵方式也由手动液控向电液控制或微电脑控制技术方面发展,并取得了非常好的效果,大大提高了整机的行使平顺性和作业性能,液压传动可以保证车辆具有稳定的行驶速度。
但是在液压传动的车辆中传动效率低也是一个不容忽视的问题,按当代的技术水平,纯液压传动中最高效率在80-85%左右,而在车辆使用中,一般只能达到50-60%。
此外,适用于重型车辆使用的大功率的液压元件难以加工,也使液压传动的车辆增加了制造成本。
另外,这种高油压高转速的变量泵和定量马达的排量越大,即功率越大时,效率和寿命愈难以保证,生产愈困难,在市场上愈难买到。
液压传动的低效率直接影响了整机的生产率和经济性,决定了它在车辆上很难有较大的发展空间。
机械液压双功率流则兼有机械传动的高效率和液压无级传动的双重优点,可在较宽的范围内实现可控的无级变速和所需的车速。
以小功率的液压元件传递大功率特性,高效率特性,为车辆的经济性和动力性问题的解决找到了理想的道路。
液压机械无级传动是一种双功率流传动系统,分为液压功率和机械功率两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。
其每一个行程和行星齿轮机构的一种工况相配合,最后两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级输出速度。
浅析拖拉机液压机械无级变速器设计发布时间:2022-05-12T02:49:03.383Z 来源:《科学与技术》2022年第3期作者:连觅真王真真[导读] 拖拉机液压机械无级变速器是由液压传动系统和多档有级式变速箱联合组成,其中液压传动系统由行星机构、变量泵以及定量马达共同构成连觅真王真真第一拖拉机股份有限公司大拖公司河南洛阳,471000摘要:拖拉机液压机械无级变速器是由液压传动系统和多档有级式变速箱联合组成,其中液压传动系统由行星机构、变量泵以及定量马达共同构成。
液压机械无级变速器高于传统的液压变速器,他能够实现拖拉机的连续无级状态变化,使拖拉机在没有任何物质牵引的情况下进行运动。
本研究将集中分析液压元件以及机械设备的相关参数,通过对变速器无级调速的特点来分析该变速器设计和应用的场景。
关键词:拖拉机;液压机械;无级变速器;牵引前言拖拉机野外作业环境较为复杂,多数情况下甚至需要应对恶劣的作业环境。
外界负荷的变化会影响到拖拉机发动机的使用,因此为了进一步的保障拖拉机使用过程中的安全性和稳定性,维护人民的经济利益,在此将传统的拖拉机多档变速箱脱离出来,希望能够通过提升拖拉机的使用速率来努力实现换挡变速。
但是考虑到拖拉机的档位有限,即便是换挡变速也无法实现无级连续变速,因而想要实现连续,就要增加拖拉机的档位,但与此同时变速箱的机械结构也会被彻底的改变,复杂程度加深并不一定有利于该拖拉机设计方案的长远发展[1]。
综合以上各类情况,最终本研究选取了液压机械无级变速传动装置,这是通过液压功率流和机械功率流并联发动的新式传动装置,具备高效率和高传输率的优势。
不仅在实际操作过程中表现出了良好的实用性,其经济效益和可推广能力呈现也十分的优秀。
一、确定拖拉机液压机械无级变速器设计方案(一)、设计对象及基本参数设定本研究选定的设计样本为东方红1302R型橡胶履带拖拉机,该机型的变速箱为(6+2)档,是较为传统的拖拉机机型。
拖拉机液压机械无级变速器特性研究的开题报告一、选题背景:拖拉机作为农业生产机械的主要代表,其性能优良、使用广泛,可以在农耕、开垦、收割等多个方面完成任务。
其中液压机械作为拖拉机操纵控制和制动传动的主要方式,对拖拉机的性能和效率起着至关重要的作用。
而液压变速器又是拖拉机液压机械的核心部件之一,其性能直接关系到拖拉机的工作效率和稳定性。
因此,对拖拉机液压变速器的特性研究有着重要的现实意义。
二、研究目的:本研究旨在探究拖拉机液压机械无级变速器的特性,明确无级变速器在拖拉机中的作用和意义,分析其工作机理、结构特点,深入研究影响无级变速器性能的各种因素,以期提高拖拉机的工作效率和稳定性。
三、研究内容:1.拖拉机液压机械无级变速器的工作机理和结构特点深入分析,明确其作用和意义。
2.分析液压机械无级变速器各个瞬态特性的变化规律,如输入转速和负载变化对液压变速器特性的影响等,并归纳总结其控制原理。
3.探索液压机械无级变速器运转过程中的各种损耗,并寻求有效的抑制和缓解方法。
4.运用数学模型和分析方法,分析无级变速器的传动特性,并通过仿真实验验证该模型的正确性。
四、研究意义:通过对拖拉机液压机械无级变速器的深入研究,我们可以掌握其工作原理、结构特点以及各种变化规律;深入研究和探索无级变速器的传动特性和损耗的缓解方法,可以提高拖拉机的工作效率和稳定性,有利于农业机械的进一步发展。
五、研究方法:本研究将会采用文献资料法、理论研究法和实验研究法相结合的方式进行研究。
通过收集文献资料了解目前无级变速器的研究情况,并以此作为理论基础。
进一步运用理论分析方法,深入研究无级变速器的传动特性、变速规律,最后通过仿真实验来验证所得到的模型和结论的正确性。
六、研究展望:在未来的研究中,我们将进一步完善和深入研究该领域的相关问题,提高拖拉机液压机械无级变速器的性能和效率,在为农业生产的发展提供技术支持的同时,为机械工程领域的发展贡献自己的力量。
液压机械无级变速器的设计及特性研究液压机械无级变速器的设计及特性研究导言液压机械无级变速器是一种能够实现连续无级变速的设备,其设计和研究对于机械工程领域具有重要的意义。
本文将对液压机械无级变速器的设计原理及特性进行深入研究,以期为相关领域的研究者和工程师提供参考和指导。
一、液压机械无级变速器的原理液压机械无级变速器的核心组成部分是液压缸和连杆机构。
通过控制液压缸内的液体压力和流量,实现连杆机构的运动,从而改变输出轴的转速和扭矩。
其工作原理主要基于液压传动的特点,利用流体的不可压缩性和容积不变性实现传动效果。
在设计过程中,可以根据需求确定液压缸的数量、液压泵的流量和压力范围等参数。
通过合理选择这些参数,并根据实际工作环境的特点进行优化,可以获得更好的变速效果。
此外,还需要考虑液压缸和连杆机构的结构设计,确保其能够承受高压力和大负载的工作条件。
二、液压机械无级变速器的特性1. 无级变速性能优异:液压机械无级变速器可以实现连续的无级变速,相比传统的齿轮传动等机械变速器,具有更广泛的变速范围和更精准的调节性能。
2. 反应速度快:由于液压缸内的液体能够很快地传递力和动能,液压机械无级变速器的反应速度非常快,能够迅速适应实际工作情况的需求。
3. 输出轴扭矩大:通过合理设计液压缸和连杆机构,液压机械无级变速器可以实现较大的输出轴扭矩,适用于各种高负载工作情况。
4. 维护成本低:液压机械无级变速器的结构相对简单,在运行过程中很少需要维护和保养,能够降低维护成本和维修时间。
5. 能量损耗小:液压机械无级变速器因其工作原理的特点,在传动过程中能量损耗相对较小,能够提高传动效率。
三、液压机械无级变速器的应用液压机械无级变速器在许多领域都有广泛的应用。
其中,工程机械、汽车工业和航空航天等领域是其主要应用领域。
在工程机械领域,液压机械无级变速器被广泛应用于各类挖掘机、推土机、压路机等设备中,能够提供强大的动力输出和灵活的操作性能。
液压机械无级变速箱在大功率拖拉机中的应用研究阐述了液压机械无级传动的原理,并根据分、汇流形式进行了分类;指出了液压机械无级传动的特点及发展优势;详细分析了液压机械无级传动的国内外研究现状以及应用情况,为液压机械无级传动的深入研究提供了借鉴资料。
标签:液压机械;无级变速;应用1 液压机械无级传动原理及分类液压机械无级变速器(HMCVT)是基于17世紀中叶帕斯卡提出静压传递原理,与机械传动相结合的新型传动装置。
变速箱系统可分为两部分,液压系统和机械系统。
液压系统主要由泵和马达组成,机械系统主要由机械传动部分组成。
功率流由发动机输出后经分流机构分成两路,一路经液压系统传递,另一路经机械系统传递,最终通过汇流机构实现功率汇流,并向后传动部分输出。
HMCVT 结合了液压传动功率大、可实现无级变速和机械传动效率高的优点实现了发动机功率的有效利用。
由于液压机械传动采用分流和汇流机构,因此可根据功率分流与汇流的形式入手,将液压机械传动方式进行分类。
分、汇流形式有定轴齿轮副和行星齿轮机构两种[1]。
从加工工艺及成本来讲,分流机构以定轴式居多,汇流式以行星式居多。
根据液压传动系统的变量元件的不同可分为变量泵与定量马达、定量泵与变量马达、变量泵与变量马达三种调速回路系统。
2 液压机械无级传动的特点2.1 传动功率大、效率高液压机械无级传动系统采用了机械传动部分传动效率高的优点和液压传动部分传动功率大的特点,结合了机械传动和液压传动的优点,同时规避了两者的缺点,使得液压机械无级传动传动功率大,传动效率高,相比于传统的机械传动方式传动功率增大了2倍,效率提高30%左右。
2.2 可实现自动无级变速液压装置与机械装置的结合实现了机械有级变速基础上的无级变速,使车辆运行更加平稳。
液压机械无级传动系统可采用改变变量泵排量的方式实现车辆的自动变速,提高了工作效率,降低了驾驶员的驾驶强度。
3 应用现状分析3.1 国内应用现状国内对于液压机械无级传动的研究起于上世纪70年代,北京理工大学的研究最为深入,主要集中在坦克和履带装甲车辆等重型车辆的传动方向。
分析拖拉机液压机械无级变速器设计摘要:拖拉机液压机械无极变速器可以根据拖拉机不同的作业模式实现不同的发动机转速、转矩的匹配。
基于液压机械换段等比传动的连续性,对各区段齿轮的参数和传动比进行了设计,并对变量泵和定量马达的匹配进行了选型。
根据拖拉机液压机械无级变速器试验要求,分析了变速器的结构和工作原理,并提出了变速器的试验台设计方案。
结果显示,所设计的试验台自动化程度高、运转平稳,满足设计要求。
关键词:拖拉机;液压机械;无级变速器;试验台拖拉机液压机械无级变速器是一种并联机械功率流与液压功率流的新型传动装置,利用机械传统联合和液压传动达到无极变速,并利用机械传动达到传动高效率。
该变速器具有无级调速的良好特性,不仅可以极大地提升车辆的燃油动力性和经济性,还可以实现大功率的传递,因此在大功率车辆中有着非常广阔的应用前景。
自1970年后,液压机械无级变速器开始进入商品化应用阶段。
1990年后,液压机械无级变速器开始被应用于拖拉机中。
而我国对液压机械无级变速器的研发起步较晚,因此在1970年后才开发出样机。
1、无级变速器的结构和工作原理该液压机械化无级的变速箱,其所面临着的运行环境通常会有不明工况的情况存在,复杂性地负荷情况相对较多。
为便于对其实际运行原理开展分析与研究工作,本次实践研究充分考虑到在水田与旱地作业条件下运行的拖拉机之上开展实践应用操作。
依据旱田与水田不同的作业条件,对其不同速度段实际情况开展分析工作,并对该液压机械化无级的变速箱开展方案设计工作,在该液压机械化无级的变速箱实际传动设计方案当中,发动机的发出功率实际分流功能主要是由i3予以实现操作,分流之后借助液压路及机械路系统实现各自传递操作,并通过K1、K2进行回流操作,再借助机械实现传动输出操作。
拖拉机液压机械无级变速器是由定量马达和变量泵构成,具体由多挡有级变速箱、液压传动系统、单行星排机构等构成。
发动机的输出功率通过分流机构可以分为机械功率流和液压功率流,机械功率流通过换挡离合器传递到行星排的行星架或齿圈,液压功率流通过变量泵定量马达组成的传动系统传递到太阳轮。
液压机械无级变速器传动特性分析液压机械无级变速器简称液压变速器,是一种利用液力作为变速传动介质的力量变速传动装置。
该装置由液力变矩器、离合器、调速系统和机械无级变速器四部分组成,可以实现近似无级的变速调整功率,适用于需要连续调节功率、变速范围大的设备。
液压变速器的结构液压变速器的结构通常包括液力变矩器、离合器、调速阀、液压控制系统及机械齿轮组。
•液力变矩器:用于传递动力以及起到缓冲作用,有助于起步和刹车。
•离合器:用于实现变速器的换挡和断开动力传递。
•调速阀:主要是通过控制液压油的压力来控制传动比,实现无级变速调整。
•机械齿轮组:提供单一传动比和反转功能。
液压变速器的工作原理液压变速器通过利用流体静压和动压的原理,将动力传递到输出轴。
当输入轴转动时,流体通过液力变矩器的涡轮和泵轮,形成液力耦合,输送动力到输出轴。
当输入轴转速变化时,通过调节液压油的压力和流量,实现输出轴速度的调整,从而实现无级变速。
在液压变速器工作时,离合器控制系统会根据车速或者发动机转速的变化,选择相应的离合器构型,实现换挡、启动、停车等操作。
液压变速器的特点由于液压变速器采用了液力传递动力,具有以下特点:•可以实现近似无级的变速调整,变速范围宽。
•变速平稳,没有断电感。
液力变矩器起到缓冲作用,不易破坏机械结构。
•油液传递功率大,在吸收冲击和减少振动方面更优。
•油液传递功率能有效避免过载和烧毁、防止机械阻塞。
液压变速器的传动特性分析在液压变速器的传动过程中,其特性主要受到以下因素的影响:1. 液力变矩器的作用液力变矩器是液压变速器内的重要组成部分,其主要作用是将动力传输到输出轴上,同时起到缓冲作用。
当动力传递过程中输入和输出轴转速有所差异时,利用液力变矩器可以有效缓冲、减小机械结构的振动,提高传动效率。
因此,液力变矩器的状态对于液压变速器的传动特性具有重要影响。
2. 调节系统的控制特性液压变速器中通过调节油压和流量控制输出转速,从而实现变速转矩传递。
拖拉机液压机械无级变速传动系统控制策略研究拖拉机是量大面广的农业机械,可以与悬挂的、牵引的或附装的农机具组成作业机组,完成各种田间作业和道路运输作业。
液压机械无级变速器(Hydro-Mechanical Continuously Variable Transmission,简称HMCVT)综合了液压传动和机械传动的优点,能够容易地实现传动比大范围连续无级变化,提高整个传动系效率,减轻传动系的动载,在大功率拖拉机上表现出了良好的应用前景。
在HMCVT的应用研究中,自动变速控制和换段品质控制是实现其优良性能的关键。
本文以东方红1302R拖拉机装配的HMCVT为研究对象,对其做了较深入的研究。
系统分析了HMCVT传动原理,研究了功率传递,分析了速度特性。
基于无级变速器基本匹配原则,在发动机试验数据的基础上,求解了发动机最佳经济性和最佳动力性工作曲线,并根据HMCVT传动比变化特点,对发动机和变速器进行了匹配,求解了变速控制的经济性和动力性目标段位和泵—马达目标排量比。
为了改善拖拉机作业过程中人—机—环境的协调关系,提高拖拉机的综合性能,建立了以拖拉机动态时的动力性和稳态时的经济性作为目标,包含瞬态动力性变速规律和瞬态动力性到稳态经济性的过渡变速规律的智能变速策略。
采用键合图理论建立了拖拉机数学模型,并应用MATLAB/Simulink和MATLAB/Stateflow软件建立了拖拉机整车仿真模型,对系统进行仿真,验证了智能变速控制策略的有效性。
根据拖拉机作业及HMCVT的换段特点,建立了HMCVT换段品质评价体系,分析了HMCVT换段过程,对换段过程进行了状态划分,建立了基于键合图理论的连续系统和基于有限状态机的离散系统的多组离合器参与的HMCVT换段过程混合模型。
应用MATLAB/Simulink和MATLAB/Stateflow软件建立HMCVT换段过程仿真模型,分析了换段过程中HMCVT输入轴、中间轴和输出轴的转速和转矩特性,研究油压、阻力和离合器搭接定时对换段品质的影响。