3 导数的应用
- 格式:doc
- 大小:207.50 KB
- 文档页数:3
导数的二阶及三阶的几何意义摘要:1.导数的概念回顾2.二阶导数的几何意义3.三阶导数的几何意义4.导数在实际问题中的应用正文:导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在数学和物理等领域,导数被广泛应用。
本文将讨论导数的二阶和三阶几何意义,并探讨其在实际问题中的应用。
首先,我们来回顾一下导数的概念。
导数表示函数f(x)在x处的变化率,可以用以下公式表示:f"(x) = lim(h→0) [(f(x + h) - f(x)) / h]其中,h表示自变量x的变化量。
当h趋近于0时,f"(x)的极限值就是函数f(x)在x处的导数。
接下来,我们来探讨导数的二阶和三阶几何意义。
1.二阶导数的几何意义二阶导数表示函数在某一点处的曲率。
设函数f(x)的二阶导数为f""(x),那么f""(x)表示函数f(x)在x处的曲率半径。
在二维平面上,曲率半径描述了曲线的弯曲程度。
如果f""(x)大于0,说明曲线在x处向上凸;如果f""(x)小于0,说明曲线在x处向下凸。
2.三阶导数的几何意义三阶导数表示函数在某一点处的拐点。
设函数f(x)的三阶导数为f"""(x),那么f"""(x)表示函数f(x)在x处的拐点方向。
在三维空间中,拐点描述了曲面的转折点。
如果f"""(x)大于0,说明曲面在x处向上凸;如果f"""(x)小于0,说明曲面在x处向下凸。
最后,我们来看一下导数在实际问题中的应用。
导数在实际问题中的应用非常广泛,例如:1.优化问题:在经济学、工程等领域,我们常常需要优化某个目标函数。
利用导数,我们可以求解最优解,从而达到预期的目标。
2.变化率问题:在物理、化学等领域,导数被用来描述变化率。
二次函数与三次函数的导数与应用函数是数学中一个重要的概念,它描述了自变量和因变量之间的关系。
在函数的研究中,导数是极其重要的概念之一。
对于二次函数和三次函数,它们的导数具有一些特点和应用。
本文将从理论和实际应用两个方面探讨二次函数和三次函数的导数。
一、二次函数的导数1.1 二次函数的定义与性质二次函数是指函数表达式中的最高次项为2的函数,一般可以用y=ax²+bx+c来表示。
其中,a、b和c为实数,且a≠0。
二次函数的图像通常是一个抛物线,它的开口方向由二次系数a的正负决定。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
1.2 二次函数的导数计算对于二次函数y=ax²+bx+c,它的导数可以通过求解函数的导数公式得到。
根据导数的定义,可知二次函数的导数为dy/dx=2ax+b。
其中,dy/dx表示函数y对变量x的导数。
1.3 二次函数导数的应用二次函数导数的应用非常广泛,以下列举两个具体的例子。
首先,二次函数导数可以用来求解函数的极值。
当导数为0时,函数达到极值点。
通过求解dy/dx=2ax+b=0,可以求得函数的极值点。
其次,二次函数的导数还可以用来分析函数的变化趋势。
由于二次函数的导数是一条直线,通过观察导数的正负可以得出函数的增减性。
当导数大于0时,函数递增;当导数小于0时,函数递减。
二、三次函数的导数2.1 三次函数的定义与性质三次函数是指函数表达式中的最高次项为3的函数,一般可以用y=ax³+bx²+cx+d来表示。
其中,a、b、c和d为实数,且a≠0。
三次函数的图像通常是一个形状复杂的曲线,它的变化趋势由各个系数的正负决定。
2.2 三次函数的导数计算对于三次函数y=ax³+bx²+cx+d,它的导数可以通过求解函数的导数公式得到。
根据导数的定义,可知三次函数的导数为dy/dx=3ax²+2bx+c。
专题5. 3导数在研究函数中的应用(2)(A 卷基础篇)(新教材人教A 版,浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·全国高二课时练习)设()f x 是区间[,]a b 上的连续函数,且在(,)a b 内可导,则下列结论中正确的是( )A .()f x 的极值点一定是最值点B .()f x 的最值点一定是极值点C .()f x 在区间[,]a b 上可能没有极值点D .()f x 在区间[,]a b 上可能没有最值点【答案】C【解析】根据函数的极值与最值的概念知,()f x 的极值点不一定是最值点,()f x 的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A ,B ,D 都不正确,若函数()f x 在区间[,]a b 上单调,则函数()f x 在区间[,]a b 上没有极值点,所以C 正确.故选:C.2.(2020·全国高二单元测试)如图是函数y =f (x )的导数y =f '(x )的图象,则下面判断正确的是( )A .在(﹣3,1)内f (x )是增函数B .在x =1时,f (x )取得极大值C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取得极小值【答案】C【解析】根据题意,依次分析选项:对于A ,在(﹣3,32-)上,f ′(x )<0,f (x )为减函数,A 错误; 对于B ,在(32-,2)上,f ′(x )>0,f (x )为增函数,x =1不是f (x )的极大值点,B 错误; 对于C ,在(4,5)上,f ′(x )>0,f (x )为增函数,C 正确; 对于D ,在(32-,2)上,f ′(x )>0,f (x )为增函数,在(2,4)上,f ′(x )<0,f (x )为减函数,则在x =2时f (x )取得极大值,D 错误;故选:C .3.(2020·横峰中学高三月考(文))已知函数()ln f x x ax =-在2x =处取得极值,则a =( ) A .1B .2C .12D .-2【答案】C【解析】 ()'1f x a x=-,依题意()'20f =,即110,22a a -==. 此时()()'112022x f x x x x -=-=>,所以()f x 在区间()0,2上递增,在区间()2,+∞上递减,所以()f x 在2x =处取得极大值,符合题意. 所以12a =. 故选:C4.(2020·霍邱县第二中学高二月考(文))已知函数()31f x ax bx =++的图象在点()1,1a b ++处的切线斜率为6,且函数()f x 在2x =处取得极值,则a b +=( )A .263-B .7C .223D .263【答案】C【解析】由题可知:()'23f x ax b =+,则36,120,a b a b +=⎧⎨+=⎩解得23a =-,8b =. 经检验,当23a =-,8b =时,()f x 在2x =处取得极大值,所以223a b +=. 故选:C 5.(2020·北京高二期末)已知函数31()43f x x x =-,则()f x )的极大值点为( ) A .4x =-B .4x =C .2x =-D .2x = 【答案】C【解析】 由31()43f x x x =-, 得:()24f x x '=-.由()240f x x '=->,得:2x <-,或2x >. 由()240f x x '=-<,得:22x -<<. 所以函数()f x 的增区间为()(),2,2,-∞-+∞.函数()f x 的减区间为()2,2-.所以,2x =-是函数的极大值点,2x =是函数的极小值点.故选:C.6.(2020·河南信阳市·高二期末(文))设()21cos 2=+f x x x ,则函数()f x ( ) A .有且仅有一个极小值B .有且仅有一个极大值C .有无数个极值D .没有极值【答案】A【解析】 ()sin f x x x '=-,()1cos 0f x x ''=-≥,∴()f x '单调递增且()00f '=,∴当0x <时,()0f x '<,函数()f x 单调递减,当0x >时,()0f x '>,函数()f x 单调递增,故()f x 有唯一的极小值点.故选:A.7.(2020·绵阳市·四川省绵阳江油中学高二月考(理))函数()33f x x ax a =--在()0,1内有最小值,则a 的取值范围为( )A .01a ≤<B .01a <<C .11a -<<D .102a << 【答案】B【解析】 ∵函数f (x )=x 3﹣3ax ﹣a 在(0,1)内有最小值,∴f′(x )=3x 2﹣3a=3(x 2﹣a ),①若a ≤0,可得f′(x )≥0,f (x )在(0,1)上单调递增,f (x )在x=0处取得最小值,显然不可能,②若a >0,f′(x )=0解得x=当x f (x )为增函数,0<x f (x )在 所以极小值点应该在(0,1)内,符合要求.综上所述,a 的取值范围为(0,1)故答案为B8.(2020·佳木斯市第二中学高二期末(文))若函数()321233f x x x =+-在区间(),3a a +内既存在最大值也存在最小值,则a 的取值范围是( )A .()3,2--B .()3,1--C .()2,1--D .()2,0-【答案】A【解析】由()22(2)0f x x x x x '=+=+=得2x =-或0x =, 可以判断()f x 在0x =处取得极小值()203f =-,在2x =-处取得极大值()223f -=. 令()23f x =-,得3x =-或0x =,令()23f x =,得2x =-或1x =, 由题意知函数()f x 在开区间(),3a a +内的最大、最小值只能在2x =-和0x =处取得,结合函数()f x 的图象可得:03132a a <+≤⎧⎨-≤<-⎩,解得32a -<<-, 故a 的取值范围是()3,2--.故选:A 9.(2020·全国高三专题练习(文))函数()sin xf x ae x =-在0x =处有极值,则a 的值为( ) A .1-B .0C .1D .e【答案】C【解析】 由题意得:()cos x f x ae x '=-()f x 在0x =处有极值 ()0cos010f a a '∴=-=-=,解得:1a =经检验满足题意,本题正确选项:C10.(2020·湖北宜昌市·高二期末)若1x =是函数3221()(1)(33)3f x x a x a a x =++-+-的极值点,则a 的值为( )A .-3B .2C .-2或3D .–3或2【答案】D【解析】由题意,知:22()2(1)(33)f x x a x a a '=++-+-且()01f '=,∴260+-=a a ,解得:3a =-或2a =.当3a =-时,2()43(1)(3)f x x x x x '=-+=--,即在1x =的左侧(0)30f '=>,右侧(2)10f '=-<,所以1x =是极值点,而非拐点;当2a =时,2()67(1)(7)f x x x x x '=+-=-+,即在1x =的左侧(0)70f '=-<,右侧(2)90f '=>,所以1x =是极值点,而非拐点;故选:D第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·四川成都市·高三开学考试(文))已知函数()sin 2f x x x =-,则()f x 在[,]22ππ-上的最小值是_______________.【答案】1-π【解析】在[,]22ππ-上,有()cos 20f x x '=-<,知:()f x 单调递减, ∴min ()()sin 21222f x f ππππ==-⨯=-,故答案为:1-π.12.(2020·昆明呈贡新区中学(云南大学附属中学呈贡校区)高三月考(理))若x =2是f (x )=ax 3-3x 的一个极值点,则a =________. 【答案】14 【解析】因为3()3f x ax x =-,所以2()33f x ax '=-,因为x =2是f (x )=ax 3-3x 的一个极值点,所以(2)1230f a '=-=,故14a =, 经验证当14a =时,2x =是()f x 的一个极值点. 所以14a =. 故答案为:1413.(2019·浙江高三专题练习)若函数321()3f x x x =-在[1,1]-,则函数的最小值是 _______ ;最大值是_________. 【答案】43-0 【解析】由题得2()=2f x x x '-,令2()=2=0f x x x '-得x=2(舍去)或0, 因为42(1),(0)0,f(1)33f f -=-==-, 所以函数的最小值是43-,最大值为0. 故答案为4;0.3- 14.(2020·东台创新高级中学高二月考)已知函数()ln f x x x =,则()y f x =的极小值为______. 【答案】1e -【解析】因为()ln f x x x =,所以()ln 1f x x '=+,由()0f x '>得1x e >;由()0f x '<得10x e<<; 所以函数()ln f x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()y f x =的极小值为1111ln f e e e e ⎛⎫==- ⎪⎝⎭. 故答案为:1e-. 15.(2019·西藏拉萨市·拉萨那曲第二高级中学高二月考(文))函数()327f x x x =-的极值是:________和________.【答案】-54 54【解析】由函数()327f x x x =-有()()()2327=333f x x x x '=--+ 令()0f x '>解得3x >或3x <-.令()0f x '<解得33x -<<所以函数()f x 在(),3-∞-上单调递增,在()3,3-上单调递减,在()3+∞,上单调递增. 所以当3x =-时,函数()f x 有极大值()()()33327354f -=--⨯-=, 当3x =时,函数()f x 有极小值()33327354f =-⨯=-. 故答案为:54-, 54.16.(2019·浙江绍兴市·高二期末)函数()2()1xf x x x e =--(其中2.718e =…是自然对数的底数)的极值点是________;极大值=________.【答案】1或-225e【解析】由已知得 ()()'22()1212( 2) (1)x x x f x x x x e x x e x x e =--+-=+-=+-,e 0x >,令'()0f x =,可得2x =-或1x =,当2x <-时'()0f x >,即函数()f x 在(,1)-∞-上单调递增; 当21x -<<时,()0f x '<,即函数()f x 在区间(1,0)-上单调递减;当1x >时,'()0f x >,即函数()f x 在区间(0,)+∞上单调递增.故()f x 的极值点为2-或1,且极大值为25(2)f e -=. 故答案为(1). 1或-2 (2). 25e . 17.(2020·全国高三专题练习)设()f x '是奇函数()f x 的导函数,()23f -=-,且对任意x ∈R 都有()2f x '<,则()2f =_________,使得()e 2e 1x x f <-成立的x 的取值范围是_________.【答案】3 ()ln 2,+∞【解析】∵()f x 是奇函数,∴()()223f f =--=,设()()2g x f x x =-,则()()22g f =-41=-,()()20g x f x ''=-<,∴()g x 在R 上单调递减,由()e 2e 1x x f <-得()e e 21x x f -<-,即()()2e x g g <,∴e 2x >,得ln 2x >,故答案为:3;()ln 2,+∞.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2020·全国高三(文))已知函数3()31f x x x =-+.(1)求()f x 的单调区间;(2)求函数的极值;(要列表).【答案】(1)增区间为()(),1,1,-∞-+∞,减区间为()1,1-;(2)极大值为3,极小值为1-.【解析】(1)3()31f x x x =-+,/2()333(1)(1)f x x x x ∴=-=-+,设'()0f x =可得1x =或1x =-.①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-.(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:当1x =-时,()f x 有极大值,并且极大值为(1)3f -=当1x =时,()f x 有极小值,并且极小值为(1)1f =-.19.(2020·海南省直辖县级行政单位·临高二中高二月考)若()32133f x x x x =+-,R x ∈,求: (1)()f x 的单调增区间;(2)()f x 在[]0,2上的最小值和最大值.【答案】(1) 增区间为()()3,1-∞-+∞,,;(2) ()max 2,3f x = ()min 53f x =-. 【解析】(1)()/223f x x x =+-,由 ()0f x '>解得31x x -或,()f x 的增区间为()()3,1-∞-+∞,,;(2)()2230f x x x =+-=', 3x =-(舍)或1x =, ()15113-33f =+-=, ()00f =, ()32122223233f =⨯+-⨯=, ()max 2,3f x = ()min 53f x =- 20.(2020·北京通州区·高二期末)已知函数3()31f x x x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在[1,2]上的最大值和最小值.【答案】(1)310x y +-= ;(2)最大值f (2)3=,最小值f (1)1=- .【解析】(1)由3()31f x x x =-+得,'2()33f x x =-,所以(0)1f =,'(0)3f =-, 所以曲线()y f x =在点(0,(0))f 处的切线方程13(0)y x -=--即310x y +-=;(2)令'()0f x >可得1x >或1x <-,此时函数单调递增,令'()0f x <可得11x -<<,此时函数单调递减,故函数()f x 在[1,2]上单调递增,所以()f x 的最大值f (2)3=,最小值f (1)1=-.21.(2020·江苏宿迁市·宿豫中学高二月考)已知函数1()(cos sin )(0)22x f x e x x x π=+≤≤, (1)计算函数()f x 的导数()f x '的表达式; (2)求函数()f x 的值域.【答案】(1)()cos xf x e x '=;(2)211,22e π⎡⎤⎢⎥⎣⎦. 【解析】(1)因为1()(cos sin )(0)22x f x e x x x π=+≤≤, 所以11()(cos sin )(sin cos )cos 22x x x f x e x x e x x e x '=++-+=. 故函数()f x 的导数()cos x f x e x '=;(2)02x π≤≤, ()cos 0x f x e x '∴=≥,函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数, 所以m n 0i ()(0)11(cos0sin 0)22e f x f +===, 所以22max 11(cos sin ()()222)22f x e f e πππππ+===; 故函数()f x 的值域为211,22e π⎡⎤⎢⎥⎣⎦. 22.(2020·哈尔滨市第十二中学校高二期末(文))已知函数321()23f x x bx x a =-++,2x =是()f x 的一个极值点.(1)求()f x 的单调递增区间; (2)若当[1,?3]x ∈时,22()3f x a ->恒成立,求实数a 的取值范围. 【答案】(1) ()y f x =的单调递增区间为(,?1)-∞,(2,?+)∞ (2) 01a <<【解析】(Ⅰ)2()22f x x bx '=-+. ∵2x =是的一个极值点,∴2x =是方程2220x bx -+=的一个根,解得32b =. 令()0f x '>,则,解得1x <或2x >.∴函数()y f x =的单调递增区间为(,?1)-∞,(2,?+)∞. (Ⅱ)∵当(1,2)x ∈时()0f x '<,(2,3)x ∈时()0f x '>, ∴在(1,2)上单调递减,在(2,3)上单调递增. ∴(2)f 是在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1,?3]x ∈时,要使22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<.。
y的三阶导数导数是微积分学中的重要概念,它描述了函数在某一点处的变化率。
我们可以通过求导数来求函数的最大值、最小值、拐点等信息。
而对于某些函数,我们需要求其更高阶的导数,以了解其更加深入的性质。
本文将围绕着y的三阶导数展开讨论。
一、导数的定义在了解y的三阶导数之前,我们需要先了解导数的定义。
对于函数y=f(x),其在x点处的一阶导数为:f'(x) = lim(x->0) [f(x+h)-f(x)]/h其中,h是一个趋近于0的数。
这个定义可以理解为,当x增加一个非常小的量h时,f(x)的增量与x的增量之比就是f'(x)。
因此,f'(x)描述了函数在x点处的变化率。
同理,我们可以定义二阶导数和三阶导数:f''(x) = lim(x->0) [f'(x+h)-f'(x)]/hf'''(x) = lim(x->0) [f''(x+h)-f''(x)]/h其中,f''(x)描述了f'(x)在x点处的变化率,f'''(x)描述了f''(x)在x点处的变化率。
可以看出,高阶导数描述了函数变化率的变化率,因此,它们可以更加深入地了解函数的性质。
二、y的三阶导数的计算现在,我们来具体计算y的三阶导数。
假设y=f(x),则我们可以得到:y' = f'(x)y'' = f''(x)y''' = f'''(x)简单来说,如果我们已知函数f(x)的表达式,那么我们只需要按照导数的定义逐级求导,就可以得到y的三阶导数。
例如,对于函数y=x^3,我们可以依次求出:y' = 3x^2y'' = 6xy''' = 6这里需要注意的是,当我们求高阶导数时,我们需要考虑函数的定义域。
列举三个导数在实际生活中应用的例子1、求导数在投资理财中的应用:随着经济的发展,投资理财变得越来越重要。
求导数在投资理财中的应用非常多,主要有以下几个方面:①帮助投资者分析投资绩效:根据投资者所做投资内容变化,求出投资绩效及相关函数分析,帮助投资者了解投资表现和赚钱效果;②分析投资产品价格:利用导数主要是为了分析投资者入手价格和卖出价格的大小,反映投资者是获利还是亏损;③分析投资组合:在交易中,投资组合的收益可以通过求出投资组合的收益函数的导数的方式被分析,作出有利的投资决策。
2、求导数在量子力学中的应用:求导数也可以用来计算原子模型中的因子和数值,因此它在量子力学中有非常强大的应用。
其主要应用有:①对原子电子结构的求解:根据量子力学,可以将原子电子结构分解成原子能级,求导数能够帮助我们计算原子各能级结构;②对原子分子运动的研究:原子在不同的电势面上处在不同的电子态中,通过求导数可以计算原子的位置和运动轨迹,从而了解原子分子的动态变化及碰撞机制;③应用于定性分析:使用求导数的方法,可以从宏观层面分析原子的性质,确定原子的稳定性或者电性质。
3、求导数在计算机图形学中的应用:计算机图形学涉及到复杂的数学计算,其中也广泛应用求导数进行求解。
其中主要有:①对物体表面曲率的求解:由于计算机图形学需要表示物体的三维表面,所以需要对三维数据进行分析,求其曲率。
求这些曲率需要计算多个参数的梯度,因此就需要求出这些参数函数的导数;②对投影映射的求解:将物体映射到二维表面时,同样需要计算投影映射参数的变化,而这也需要计算函数的导数;③色彩空间和色调映射:计算机图形学中,颜色也涉及到求导数,当需要进行色调映射时,要求变换参数的梯度,因此也需要用求导数的方法进行求解。
1.加速度:在物理学中,速度的导数是加速度。
在现实生活中,当我们在汽车或自行车上加速或减速时,我们可以感受到加速度的变化。
2.利率变化:在经济学中,利率是一个关键变量,它可以表示为借款利率或存款利率的导数。
当利率上升时,我们可以看到贷款成本增加,投资可能会减少,而存款收益可能会增加。
3.生长速度:在生物学和生态学中,物种数量的变化可以表示为种群增长率的导数。
这个概念被用来研究生物多样性、生态系统的稳定性以及种群的变化。
例如,研究一种鸟类或鱼类的种群增长率,可以了解它们是否正常繁殖或受到威胁。
微分中值定理与导数及偏导数的应用
一、基本题
1、下列函数中,在[]1,1-上满足罗尔定理条件的是
(a) x y e = (b )ln y x = (c) 21y x =- (d )2
11y x =- 2、下列函数中,在[]1,e 上满足拉格朗日定理条件的是
(a) ()ln ln y x = (b )ln y x = (c) 1ln y x
= (d )()ln 2y x =- 3、函数lnsin y x =在5,66ππ⎡⎤⎢⎥⎣⎦
上满足罗尔定理的点ξ= 4、函数22y x x =+在[]0,1上满足拉格朗日定理的点ξ=
5、函数x y e -=在定义域内是
(a) 单调增加且凹 (b )单调增加且凸 (c) 单调增少且凹(d )单调增少且凸
6、已知函数22y x bx c =++在1x =-处有极小值2,则b = ,c =
7、若点()1,3是曲线32y ax bx =+的拐点,则a = ,b =
8、函数()3215432
f x x x x =-+在[]1,2-上的最大值为 ;最小值为 9、设()()()2lim 2x a f x f a x a →-=--,则在x a =处()f x ( );
()a 可导且()2f a '=- ()b 不可导 ()c 取得极小值 ()d 取得极大值
二、计算题
1、求函数3212313
y x x x =-++的单调区间、极值、凹凸区间、拐点。
2、求函数13
y x = 3、求函数()()3322,3f x y x y x y =+-+的极值。
4、利用单调性证明不等式:1)1x >时,1
x e e x
> 2)01x <<时,211x x e x -->
+
三、应用题:
1、要做一个容积为372m 的带盖的长方形盒子,其底边成1:2,问此盒子的边长各位多少时,所用材料最省?
2、已知半径为R 的球,问内接直圆柱的底半径与高各为多少时,才能使直圆柱的体积最大?
3、求表面积为2a 而体积最大的长方体的体积。
4、将正数a 分成三个正数,,x y z ,使得222x y z 最大,求,,x y z
导数在经济中的应用
1、某产品生产x 个单位的固定成本01100c =,可变成本为()211200
c x x =
,求 1)生产900个单位时的总成本与平均成本
2)生产900个单位时的边际成本,并说明其经济意义。
2、某商品的价格P 与需求量Q 的关系为:105
Q P =-,求 1)需求量20时的总收益、平均利润、边际收益。
2)Q 为多少时总收益最大。
3、某服装公司确立的服装总价P 与卖出量x 的关系为:1500.5P x =-,生产x 套服装的总成本为()240000.25c x x =+
1)总收入()R x 。
2)总利润()L x 。
3)生产多少套服装时利润最大?并求最大利润。
4)获得最大利润时的单价应为多少?
4、设某商品的需求函数为275Q P =-求
1)4P =时的边际需求。
并说明其经济意义。
2)4P =时的需求弹性。
并说明其经济意义。
3)在4P =时,若价格上涨1%,总收益增加还是减少?它将变化百分之几? 多元函数极值在经济中的应用
1、设商品A 需求量为1Q ,商品B 的需求量为2Q ,其需求函数分别为:
1121624Q p p =-+,21220410Q p p =+- (1p 、2p 为商品A 、B 的价格),总成本函数为1222C Q Q =+,试问当1p 、2p 取何值时利润最大?
2、设销售收入R 与花费在两种广告宣传上的费用x 、y 之间的关系为: 200100510x y R x y
-=+++,利润相当于五分之一的销售收入、并要扣除广告费用,已知广告费用总预算25万元,试问如何分配两种广告费用才能使利润最大?。