初中一年级数学绝对值练习题
- 格式:doc
- 大小:161.50 KB
- 文档页数:3
绝对值综合练习题一姓名___________1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a|一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b|,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415、( )A 、a>|b|B 、a<bC 、|a|>|b|D 、|a|<|b| 6、判断。
(1)若|a|=|b|,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )(4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x -3|=0,则x=______;若|x -3|=1,则x=_______。
11、实数的大小关系是_______。
12、比较下列各组有理数的大小。
(1)-0.6○-60 (2)-3.8○-3.9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b 的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c ,求a 、b 、c 的值。
绝对值综合练习题二姓名:一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………()A.负数 B.正数C.负数或零D.正数或零3、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………()A.0个B.1个C.2个D.3个4、如果,则的取值范围是………………………() A.>O B.≥O C.≤O D.<O5、绝对值不大于11.1的整数有………………………………()A.11个B.12个C.22个D.23个6、绝对值最小的有理数的倒数是()A、1B、-1C、0D、不存在7、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个8、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和329、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 10、│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 11、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
第一单元:探索绝对值在七年级数学的第一单元中,我们将要学习关于绝对值的概念和应用。
绝对值在数学中是一个非常重要的概念,它不仅在代数中有着广泛的应用,也在实际生活中有着重要的意义。
在本文中,我们将从简单的概念入手,逐步深入探讨绝对值,并将其应用于各种不同类型的题目和问题中。
1. 什么是绝对值?让我们来回顾一下绝对值的定义。
绝对值是一个数的大小,在不考虑它的正负号的情况下。
通常用两个竖线来表示,比如|3|表示3的绝对值,也就是3。
而| -3 |也表示3的绝对值,因为绝对值忽略了数的正负号。
这个概念可能在刚开始学习的时候会有些抽象,但是它在解决问题时非常实用。
2. 绝对值的性质接下来,让我们来看一下绝对值的性质。
绝对值有着几个重要的性质,其中最常用的就是 |a| = |-a|。
这意味着一个数和它的相反数的绝对值是相等的。
这个性质在解决绝对值的运算和方程时经常会用到。
3. 绝对值的应用现在我们已经了解了绝对值的概念和性质,接下来让我们来看一些具体的应用。
在七年级的数学课程中,绝对值通常会应用在求解不等式和解决实际问题中。
我们可以利用绝对值来表示距离的概念,或者解决一些涉及正负号的问题。
4. 绝对值的题目实例为了更好地理解绝对值的应用,让我们来看一些具体的题目实例。
假设有一个绝对值不等式 |2x - 5| < 7,我们要找到满足这个不等式的x的取值范围。
我们可以将 |2x - 5| < 7 转化为 -7 < 2x - 5 < 7,然后解出x的范围。
这种类型的题目需要我们灵活运用绝对值的性质和概念,才能够解决。
5. 总结与展望通过本文的学习,我们深入了解了绝对值的概念、性质和应用。
绝对值在数学中有着广泛的应用,它不仅帮助我们解决代数中的问题,也在解决实际生活中的问题时发挥着重要作用。
绝对值的应用也要求我们对数学知识有着扎实的掌握,并具备一定的逻辑推理能力。
希望通过这篇文章的学习,大家能够更加灵活和深入地理解绝对值的概念,以便在以后的学习和生活中能够更好地运用它。
七年级上册数学绝对值题
一、绝对值的基本概念
1. 定义
绝对值的几何定义:一个数公式的绝对值就是数轴上表示数公式的点与原点的距离,记作公式。
例如,公式表示数轴上表示公式的点到原点的距离,所以公式;公式表示数轴上表示公式的点到原点的距离,所以公式。
绝对值的代数定义:当公式时,公式;当公式时,公式。
例如,当公式时,公式;当公式时,公式。
2. 性质
任何数的绝对值都是非负数,即公式。
若公式,则公式或公式。
例如,若公式,则公式或公式。
公式,例如公式。
二、典型例题
1. 求一个数的绝对值
例1:求公式的值。
解析:根据绝对值的定义,公式,当公式时,公式
,所以公式。
2. 已知绝对值求原数
例2:若公式,求公式的值。
解析:根据绝对值的性质,若公式,则公式或公式。
因为公式,所以公式或公式。
3. 绝对值的化简
例3:化简公式。
解析:因为公式,即公式。
当公式时,公式,所以公式。
4. 绝对值的运算
例4:计算公式。
解析:先分别求出绝对值,公式,公式,然后进行加法运算,公式。
例5:计算公式。
解析:先求绝对值,公式,公式,然后进行减法运算,公式。
初中一年级数学上册计算题专项训练题(456)好的,以下是针对初中一年级数学上册计算题专项训练题(456)的一些练习题:1. 计算下列有理数的加减法:(1) \( 3 + (-2) \)(2) \( -5 - 7 \)(3) \( 8 + (-6) \)(4) \( -3 - (-4) \)2. 计算下列有理数的乘除法:(1) \( 4 \times (-3) \)(2) \( -2 \div (-1) \)(3) \( 6 \times (-7) \)(4) \( -8 \div 4 \)3. 计算下列有理数的混合运算:(1) \( 2 + 3 \times (-4) \)(2) \( -5 \div (-2) + 6 \)(3) \( 3 \times (-2) - 7 \)(4) \( -4 + 8 \div (-2) \)4. 计算下列含有括号的有理数混合运算:(1) \( (3 + 2) \times (-5) \)(2) \( -3 \times (4 - 1) \)(3) \( (-2) \div (-1) - 6 \)(4) \( 4 + (-3) \times 2 \)5. 计算下列绝对值的有理数运算:(1) \( |-7| + |-3| \)(2) \( |-4| - |2| \)(3) \( |-5| \times |-2| \)(4) \( |-6| \div |-3| \)6. 计算下列含有指数的有理数运算:(1) \( 2^3 + 3^2 \)(2) \( 4^2 - 2^3 \)(3) \( (-2)^2 \times (-3)^2 \)(4) \( (-5)^3 \div (-5) \)7. 计算下列含有分数的有理数运算:(1) \( \frac{1}{2} + \frac{3}{4} \)(2) \( \frac{5}{6} - \frac{1}{3} \)(3) \( \frac{2}{3} \times \frac{4}{5} \)(4) \( \frac{3}{7} \div \frac{9}{14} \)8. 计算下列含有分数和整数的混合运算:(1) \( 3 + \frac{1}{2} \times 4 \)(2) \( \frac{5}{6} + 2 \div 3 \)(3) \( 7 - \frac{3}{4} \times 8 \)(4) \( \frac{2}{5} \div (-1) + 6 \)请同学们认真完成以上练习题,注意运算顺序和符号的正确性。
七年级绝对值题目一、绝对值基础概念类题目。
1. 绝对值的定义是什么?- 解析:绝对值是指一个数在数轴上所对应点到原点的距离,用“”来表示。
例如,数a的绝对值记作a,5表示5这个数在数轴上到原点0的距离是5,3表示-3在数轴上到原点的距离是3。
2. 求| - 7|的值。
- 解析:根据绝对值的定义,-7到原点的距离是7,所以| - 7|=7。
3. 求| 0|的值。
- 解析:0到原点的距离就是0本身,所以| 0| = 0。
4. 若| x|=5,求x的值。
- 解析:因为绝对值是5,根据绝对值的定义,到原点距离为5的数有两个,即x = 5或者x=-5。
5. 已知| a| = 3,| b|=4,且a < b,求a、b的值。
- 解析:由| a| = 3可得a=±3,由| b|=4可得b = ±4。
因为a < b,当a = 3时,b = 4满足条件;当a=-3时,b = 4也满足条件。
所以a = 3,b = 4或者a=-3,b = 4。
二、绝对值的运算类题目。
6. 计算| - 2|+|3|。
- 解析:先分别求出绝对值,| - 2|=2,|3| = 3,然后进行加法运算2 + 3=5。
7. 计算| - 5|-| - 2|。
- 解析:先求绝对值,| - 5| = 5,| - 2|=2,再进行减法运算5-2 = 3。
8. 计算|2 - 5|。
- 解析:先计算括号内的值2-5=-3,然后求| - 3|,根据绝对值定义,| - 3|=3。
9. 计算| - 3|×|4|。
- 解析:分别求出绝对值,| - 3| = 3,|4| = 4,然后进行乘法运算3×4 = 12。
10. 计算(| - 8|)/(2)。
- 解析:先求| - 8| = 8,再进行除法运算(8)/(2)=4。
三、绝对值与有理数大小比较类题目。
11. 比较-3和| - 2|的大小。
- 解析:先求| - 2| = 2,因为-3<2,所以-3<| - 2|。
七年级数学绝对值专项练习题集绝对值综合练习题一姓名___________1、有理数的绝对值一定是( )A、正数B、整数C、正数或零D、自然数 2、绝对值等于它本身的数有( )A、0个B、1个C、2个D、无数个 3、下列说法正确的是( )A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数1114、比较、、的大小,结果正确的是( ) 342111111A、,, B、,, 334422111111C、,, D、,, 3344225、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是( )b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b| 6、判断。
(1)若|a|=|b|,则a=b。
(2)若a为任意有理数,则|a|=a。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )11(4)和互为相反数。
( ) |_|_337、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于?的整数有________。
10、若|-x|=2,则x=____;若|x,3|=0,则x=______;若|x,3|=1,则x=_______。
11、实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是_______。
a b12、比较下列各组有理数的大小。
(1)-0.6?-60 (2)-3.8?-3.934(3)0?|-2| (4)? ,,4513、已知|a|+|b|=9,且|a|=2,求b的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
绝对值综合练习题二姓名: 一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………( )A(负数 B(正数 C(负数或零 D(正数或零 3、给出下列说法:互为相反数的两个数绝对值相等;绝对值等于本身的数只有正数;不相等的两个数绝对值不相等;绝对值相等的两数一定相等(其中正确的有…………………………………………( )A(0个 B(1个 C(2个 D(3个4、如果,则的取值范围是………………………( )A(,O B(?O C(?O D(,O 5、绝对值不大于11.1的整数有………………………………( )A(11个 B(12个 C(22个 D(23个6、绝对值最小的有理数的倒数是( )A、1B、,1C、0D、不存在 7、在有理数中,绝对值等于它本身的数有( )A、1个B、2个C、3个D、无数多个8、下列各数中,互为相反数的是( )2232A、?,?和, B、?,?和, 33232322C、?,?和 D、?,?和 32339、下列说法错误的是( )A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、?a?= ,a,a一定是( )A、正数B、负数C、非正数D、非负数 11、下列说法正确的是( )A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
七年级绝对值的计算题一、绝对值的基本概念1. 定义绝对值的定义:一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
用符号表示:公式2. 性质非负性:公式,任何数的绝对值都是非负的。
二、绝对值的计算题类型及解析1. 简单的绝对值计算例1:计算公式解析:根据绝对值的定义,负数的绝对值是它的相反数。
因为公式,所以公式。
例2:计算公式解析:因为正数的绝对值是它本身,公式,所以公式。
例3:计算公式解析:根据定义,公式的绝对值是公式,即公式。
2. 含有运算符号的绝对值计算例1:计算公式解析:先分别计算绝对值,公式,公式,然后再进行加法运算,公式。
例2:计算公式解析:先求绝对值,公式,公式,然后做减法,公式。
例3:计算公式解析:先计算括号内的值,公式,然后求公式,因为公式,所以公式。
3. 含有字母的绝对值计算(简单情况)例1:已知公式,计算公式解析:将公式代入公式,因为公式,根据绝对值定义公式。
例2:若公式,化简公式解析:因为公式,根据正数的绝对值是它本身,所以公式。
例3:若公式,化简公式解析:因为公式,根据负数的绝对值是它的相反数,所以公式。
4. 较复杂的绝对值计算(多个绝对值组合或方程形式)例1:计算公式解析:先分别计算各个绝对值内的值,公式。
再求绝对值,公式,公式,公式。
最后进行计算:公式。
例2:解方程公式解析:根据绝对值的定义,当公式,即公式时,方程化为公式,解得公式。
当公式,即公式时,方程化为公式,即公式,解得公式。
所以方程的解为公式或公式。
绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。
0a()0==a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a 0,a﹣c 0,b+c 0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|= ;②|a|= ;③|a﹣b|= .(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。
七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│= ,│-32│= 。
2、+│+5│= ,+│-5│= ,-│+5│= ,-│-5│= 。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 。
5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。
6、绝对值小于3.1的所有非负整数为 。
7、绝对值大于23小于83的整数为 。
8、计算2005(2004|20052004|)-+-的结果是 。
9、当x= 时,式子||52x -的值为零。
10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++= 。
11、已知||||2x y +=,且,x y 为整数,则||x y +的值为 。
12、若|8||5|0a b -+-=,则a b -的值是 。
13、若|3|a -与|26|b -互为相反数,则2a b +的值是 。
14、若||3x =,||2y =,且x y >,求x y +的值是 。
15、如图,化简:2|2||2|a b +-+-= 。
16、已知|(2)||3|||0x y z +-+++=,则x y z ++= 。
17、如图, 则||||||||a b a b b a --++-= 。
18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为 。
19、若||5a =,2b =-,且0ab >,则a b += 。
20、若0ab <,求||||||a b ab a b ab ++的值为 。
21、绝对值不大于2005的所有整数的和是 ,积是 。
22、若2|3|(2)0m n -++=,则2m n +的值为 。
23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是 。
24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= .25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+ 36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =±40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|= 42.(1)若|a+2|+|b-1|=0,则a= b= ;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个 C .22个 D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
绝对值综合提高练习题一、选择题1、绝对值等于它本身的数有()A、0个B、1个C、2个D、无数个2、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|4、如果,则的取值范围是5()A.>O B.≥OC .≤OD .<O5、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和326、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 7、│a│= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 8、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
9、-│a│= -3.2,则a 是( )A 、3.2B 、-3.2C 、±3.2D 、以上都不对 10、如果a a 22-=-,则a 的取值范围是 ( )A .a >OB .a ≥OC .a ≤OD .a <O 11、若│a│=8,│b│=5,且a+b>0,那么a-b 的值是( )A.3或13B.13或-13C.3或-3D.-3或-13 12、a<0时,化简||3a a a+结果为( ) A.23B.0C.-1D.-2a 13、如果a a 22-=-,则a 的取值范围是 ( )A .a >OB .a ≥OC .a ≤OD .a <O如图,有理数b a 、在数轴上的位置如图所示,则在b a +,a b 2-,a b -,b a -,2+a ,4--b 中,负数共有( )A . 1个B .2个C .3个D .4个已知有理数c b a 、、在数轴上的对应位置如图所示: 则b a c a c -+-+-1化简后的结果是 .若b a 、为有理数,那么,下列判断中:(1)若b a =,则一定有b a =; (2)若b a >,则一定有b a >; (3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是 (填序号) .已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 (江苏省竞赛题)-232ba1-1已知a 是任意有理数,则a a --的值是( ).A .必大于零B .必小于零C 必不大于零D .必不小于零 若1++b a 与2)1(+-b a 互为相反数,则a 与b 的大小关系是( ).A .b a >B .b a =C .b a <D .b a ≥二、判断题1、-|a|=|a|; ( )2、|-a|=|a|; ( )3、-|a|=|-a|; ( )4、若|a|=|b|,则a =b ; ( )5、若a =b ,则|a|=|b|; ( )6、若|a|>|b|,则a >b ;( )7、若a >b ,则|a|>|b|;( )8、若a >b ,则|b-a|=a-b .( )9、如果一个数的相反数是它本身,那么这个数是0. ( ) 10、如果一个数的倒数是它本身,那么这个数是1和0. ( ) 11、如果一个数的绝对值是它本身,那么这个数是0或1. ( ) 12、如果说“一个数的绝对值是负数”,那么这句话是错的. ( ) 13、如果一个数的绝对值是它的相反数,那么这个数是负数. ( ) 14、若|a|=|b|,则a=b 。
《绝对值》课堂同步练习
【基础平台】
1.______7.3=-;______0=;______3.3=--;______75.0=+-. 2.______31=+;______45=--;______3
2=-+. 3.______510=-+-;______36=-÷-;______5.55.6=---.
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是3
2,那么这个数为______. 6.当a a -=时,0______a ;当0>a 时,______=a .
7.绝对值等于4的数是______.
8.绝对值等于其相反数的数一定是…………………………………………………〖 〗
A .负数
B .正数
C .负数或零
D .正数或零
【自主检测】
1.______5=-;______3
12=-;______31.2=-;______=+π. 2.523-的绝对值是______;绝对值等于5
23的数是______,它们互为________. 3.在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.
4.如果3-=a ,则______=-a ,______=a .
5.下列说法中正确的是………………………………………………………………〖 〗
A .a -一定是负数
B .只有两个数相等时它们的绝对值才
相等
C .若b a =则a 与b 互为相反数
D .若一个数小于它的绝对值,则这个数是负数
6.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等. 其中正确的有………………………………………………………………………〖 〗
A .0个
B .1个
C .2个
D .3个
7.如果a a 22-=-,则a 的取值范围是 …………………………………………〖 〗
A .a >O
B .a ≥O
C .a ≤O
D .a <O
8.在数轴上表示下列各数:
(1)212
-; (2)0; (3)绝对值是2.5的负数; (4)绝对值是3的正
数.
9. 某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,
(1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?
【拓展平台】
1.7=x ,则______=x ; 7=-x ,则______=x .
2.如果3>a ,则______3=-a ,______3=-a .
3.绝对值不大于11.1的整数有( )。
A .11个
B .12个
C .22个
D .23个 4.计算:
(1) 7.27.27.2---+ (2) 13616--++-
(3) 5327-⨯-÷- (4) ⎪⎪⎭
⎫ ⎝⎛-+÷+-32922121 (5)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
(6)-0.5-(-341)+2.75-(+72
1) (7)()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (8) ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。