留数
- 格式:ppt
- 大小:1.01 MB
- 文档页数:18
计算留数的方法一、留数的概念。
1.1 留数啊,就像是函数在孤立奇点周围的一个小秘密。
它反映了函数在这个奇点附近的一种特殊性质。
想象一下,函数就像一个复杂的迷宫,而孤立奇点就是迷宫里的特殊点,留数就是这个特殊点周围隐藏的小线索。
1.2 从数学定义来讲,对于一个以孤立奇点为中心的洛朗级数展开式,留数就是这个展开式中负一次幂项的系数。
这就好比在一堆数字和式子组成的宝藏里,我们专门挑出那一个特别的系数当作留数。
二、计算留数的常见方法。
2.1 可去奇点处的留数。
对于可去奇点,这是一种比较温和的奇点类型。
就像一个小坎坷,很容易就跨过去了。
在可去奇点处的留数是0。
这就好像这个小坎坷周围没有什么特别的东西留下,干干净净的,留数为0很符合它的特性。
2.2 极点处的留数。
一阶极点。
如果函数f(z)在z = a处有一阶极点,那么计算留数就有一个简单的公式,留数等于lim(z→a) (z a)f(z)。
这就像是我们有一把专门的钥匙来打开一阶极点处留数的大门。
比如说,有个函数f(z)=(1/(z 1)),在z = 1处是一阶极点,那我们用这个公式一算,留数就是1。
简单直接,就像我们走直路一样顺畅。
高阶极点。
当z = a是函数f(z)的m阶极点时,计算留数就稍微复杂一点。
留数等于lim(z→a) [(1/(m 1)!)]×(d^(m 1)/dz^(m 1))[(z a)^m f(z)]。
这就像在走一条有点绕的小路,不过只要按照这个公式一步一步来,也能算出留数。
比如说有个函数f(z)=1/(z 2)^3,在z = 2处是三阶极点,按照这个公式算下来,留数是1/2。
虽然过程有点繁琐,但就像解一道有点难度的谜题,解开的时候还是很有成就感的。
2.3 本性奇点处的留数。
本性奇点可就比较调皮了。
它没有像极点那样有比较规矩的计算留数的公式。
我们通常得通过函数的洛朗级数展开式来求留数。
这就像在一个没有明显标记的森林里找东西,只能靠自己慢慢探索。