第二章 线性离散系统的Z变换分析法
- 格式:pdf
- 大小:2.46 MB
- 文档页数:90
基于Matlab语言的线性离散系统的Z变换分析法实验一基于Matlab语言的线性离散系统的Z变换分析法班级: 姓名: 学号: 日期:一、实验目的:1、学习并掌握Matlab语言离散时间系统模型建立方法;2.学习离散传递函数的留数分析与编程实现的方法;3.学习并掌握脉冲与阶跃的编程方法;4.理解与分析离散传递函数不同极点的时间响应特点。
二、实验工具:1MATLAB软件(6、5以上版本);2每人计算机一台。
三、实验内容:1在Matlab语言平台上,通过给定的离散时间系统差分方程,理解课程中Z变换定义,掌握信号与线性系统模型之间Z传递函数的几种形式表示方法;2学习语言编程中的Z变换传递函数如何计算与显示相应的离散点序列的操作与实现的方法,深刻理解课程中Z变换的逆变换;3通过编程,掌握传递函数的极点与留数的计算方法,加深理解G(z)/z的分式方法实现过程;4通过系统的脉冲响应编程实现,理解输出响应的离散点序列的本质,即逆变换的实现过程;5通过编程分析,理解系统单位阶跃响应的Z变换就是系统的传递函数与单位阶跃函数Z变换,并完成响应的脉冲离散序列点的计算;6通过程序设计,理解课程中的不同的传递函数极点对系统动态行为的影响,如单独极点、复极点对响应的影响。
四、实验步骤:(一)传递函数的零极点程序: 结果:numg=[0、1 0、03 -0、07];deng=[1 -2、7 2、42 -0、72];g=tf(numg,deng,-1)get(g);[nn dd]=tfdata(g,'v')[zz,pp,kk]=zpkdata(g,'v')hold onpzmap(g), hold offaxis equal(二)留数法程序:numg=[2 -2、2 0、65];deng=[1 -0、6728 0、0463 0、4860];[rGoz, pGoz,other]=residue(numg,[deng 0])G=tf(numg,deng,-1)impulse(G)[y,k]=impulse(G);stem(k,y,'filled');impulse(G)结果:rGoz = 0、4905 + 0、0122i0、4905 - 0、0122i-2、31851、3374pGoz = 0、6364 + 0、6364i0、6364 - 0、6364i-0、6000other = []Transfer function:2 z^2 - 2、2 z + 0、65-----------------------------------z^3 - 0、6728 z^2 + 0、0463 z + 0、486Sampling time: unspecified(三)不同位置的根对系统的影响1)2个共轭极点(左圆内)+1实极点(圆内)P1 =0、6364 + 0、6364iP2=0、6364 - 0、6364iP3=-0、6000程序: 结果:zz3=[-0、2 0、4];pp3=[-0、6 0、6364+0、6364i 0、6364-0、6364i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,50);stem(k,y,'filled'),grid2)2个共轭极点(右圆内)+1实极点(圆内)P1= -0、8592 P2= -0、0932 + 0、4558i P3= -0、0932 - 0、4558i 程序: 结果:zz3=[-0、2 0、4];pp3=[-0、8592 -0、0932+0、4558i -0、0932-0、4558i]; kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,50);stem(k,y,'filled'),grid3)2个共轭极点(圆上)+1实极点(圆内)p1=0、6+0、8i p2=0、6-0、8i p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[-0、8592 -0、6+0、8i -0、6-0、8i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid4、2个共轭极点(虚轴上)+1实极点(圆内)p1=i p2= -i p3= -0、6程序: 结果:zz3=[-0、2 0、4];pp3=[-0、6 i -i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid5、2个实极点(圆内)+1个实极点(圆外)p1=2 p2=0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[2 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid6、2个实极点(圆内)+1个实极点(圆上)p1=1 p2=0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[1 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),gridp1=1 p2=-0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[1 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid五、实验报告要求1、根据实验结果,分析离散传递函数不同极点的时间响应特点2、通过程序设计,分析不同的传递函数极点如:单极点、复极点、重根极点对系统动态行为的影响3、分析留数法的意义,根据系统的阶跃响应判别系统的稳定性4、对Z变换的进一步思考六、实验结果:1、根据实验结果,分析离散传递函数不同极点的时间响应特点。
z 变换与离散时间Fourier 1、z 变换2、离散时间3、序列的z Fourier 变换的关系4、离散系统的系统函数,系统的频率响应信号与系统的分析方法:时域分析方法 变换域分析方法连续时间信号与系统: Fourier Laplace离散时间信号与系统: z 变换离散时间信号与系统的分析方法2.1.1 z 变换的定义2.1 z 变换:z X )(其中成一个复平面,称为ωj e r z ⋅=(x z 反变换:其中,积分路径是在逆时针旋转的闭合围线。
在数字信号处理中,不需要用围线积分来求2.1.2 z 变换的收敛域对任意给定序列的所有z 值的集合称为z 变换公式的级数收敛的充要条件是满足绝对可和,对某一具体的使该不等式成立,这个域,收敛域内不能有极点。
n ∞=−∞∑2.1.3 4 种典型序列的除0 和∞两点是否收敛与n 1和n 2取值情况有关外,整个z 平面均收敛。
1. 有限长序列x (n ) 只在n 1≤n ()()z X z x n 其变换:即要求: ROC 至少为:1()()X z x n z −=0(0)x z +如果n 2 ≤0 n 1<0,n 2≤如果n 1≥0 n 1≥0,n 2> 0如果n 1< 0 <n 1<0,n 2 > 0 1100n n Roc ∴≥<当时, 当时, 因果序列的处收敛在∞处收敛的变换,其序列必为因果序列在工程中,人们感兴趣的主要是因果序列。
1()()n n X z x n ∞==∑2. 右边序列x (n ) 在n ≥n 1时有值,在2200n n Roc ∴≤>当时, 当时,2()()()n n n X z x n x n =−∞=−∞==∑∑3. 左边序列x (n ) 在n ≤n 2 时有值,在x x x x x R R R R z R −+−++∴≥<<<当时, 当时,0()()()nn n X z x n x n z ∞−=−∞==∑ Roc: 0≤前式 Roc: x R −后式4. 双边序列n 为任意值时x 例1:x (n )=δ(变换及收敛域。