信号与系统的分析方法有时域_变换域两种
- 格式:ppt
- 大小:1.72 MB
- 文档页数:94
数字信号处理知到章节测试答案智慧树2023年最新西安工程大学绪论单元测试1.请判断下面说法是否正确:为了有效地传播和利用信息,常常需要将信息转换成信号,因此信号是信息的载体,通过信号传递信息。
()参考答案:对2.请判断下面说法是否正确:模拟信号预处理的主要作用是滤除输入模拟信号中的无用频率成分和噪声,避免采样后发生频谱混叠失真。
()参考答案:对3.下列关于信号分类方式的选项正确的是()。
参考答案:按信号幅度的统计特性分类;按信号的维数分类;按信号自变量与参量的连续性分类4.下列不属于数字信号处理软件处理方法特点的选项是()。
参考答案:处理速度快5.下列关于数字系统处理精度描述正确的选项是()。
参考答案:精度由系统字长与算法决定第一章测试1.请判断下面说法是否正确:时域离散信号通过量化编码转换为数字信号,是一种无损变换。
( )参考答案:错2.下列信号是周期信号的有()。
参考答案:;;3.信号的最小周期是()。
参考答案:24.请判断下面说法是否正确:线性时不变时域离散系统具有线性性质和时不变特性。
()参考答案:对5.以下序列是系统的单位脉冲响应h(n),则是稳定系统的有()。
参考答案:;第二章测试1.请判断下面说法是否正确:时域离散信号和系统分析可以通过傅里叶变换和Z变换两种数学工具()。
参考答案:对2.请判断下面说法是否正确:周期序列的傅里叶变换以为周期,而且一个周期内只有N个冲激函数表示的谱线()。
参考答案:错3.实序列的傅里叶变换具有()。
参考答案:共轭对称性质4.已知序列,其Z变换和收敛域为()。
参考答案:;5.序列,其傅里叶变换为()。
参考答案:第三章测试1.在变换区间0≤n≤N-1内,序列的N点DFT在k=0的值为()。
参考答案:N2.在变换区间0≤n≤N-1内,序列的N点DFT的值为()参考答案:13.已知,求=()参考答案:1/N4.已知,求=()参考答案:5.已知,求=()参考答案:第四章测试1.请判断下面说法是否正确:模拟信号数字处理中,模拟信号与数字信号之间的相互转换中要求不能丢失有用信息()。
1主要内容信号分析与信号处理1系统分析与系统综合2两种系统描述方法3两类分析方法4信号与系统一.信号分析与信号处理信号分析是把信号分解成它的各个组成部分或成分的概念、理论和方法,例如,信号空间表示法或其各种线性组合表示法、信号谱分析、信号的时域分析和多尺度分析等。
信号处理:信号处理则指按某种需要或目的,对信号进行特定的加工、操作或修改。
信号与系统二.系统分析与系统综合系统分析就是在给定系统的情况下,研究系统对输入信号所产生的响应,并由此获得对系统功能和特性的认识。
一般来说,系统分析包括以下三个步骤:系统建模,求解系统,结果解释。
系统综合:系统综合又可叫做系统的设计或实现,它指在给定了系统功能或特性的情况下,或者已知系统在什么样的输入时有什么样的输出,设计并实现该系统 。
信号与系统三.两种系统描述方法•着眼于激励与响应的关系,而不考虑系统内部变量情况;•单输入/单输出系统;•列写一元 n 阶微分方程。
状态变量分析法:•不仅可以给出系统的响应,还可以描述内部变量,如电容电压或电感电流的变化情况;•研究多输入/多输出系统;•列写多个一阶微分方程。
信号与系统四. 两类分析方法1.时域分析2.变换域分析•傅里叶变换——FT• 拉普拉斯变换——LT• Z变换——ZT• 离散傅里叶变换——DFT卷积积分(或卷积和)法经典求解法:连续系统:微分方程离散系统:差分方程信号与系统教学重点教学难点两种系统描述方法输入 输出描述法状态变量分析法两类分析方法时域分析变换域分析小 结。
信号与系统分析简述题一、简述《信号与系统》的主要研究内容。
《信号与系统》主要是以线性时不变系统作为研究对象,当信号作用与线性时不变系统时,从输入输出描述法和状态变量法来研究系统响应。
当求得系统响应后,根据系统的激励与响应之间的关系求得系统函数,进而根据系统的固有属性来研究系统的内在属性,例如:因果性、稳定性和滤波特性等。
二、输入输出描述法和状态变量分析法的区别。
输入输出描述法:将系统看作一个黑匣子,根据系统的输入和基本属性来求解系统的输出响应,只描述系统单输入和单输出的关系,而不讨论系统内部的结构。
状态变量分析法:通过列些系统的状态方程和输出方程,进而求解得出系统函数和各响应。
不仅揭示了系统的内部特性,还可以用来描述非线性、时变系统和多输入多输出系统。
三、简述常用的输入输出描述法及其优缺点。
常用的输入输出描述法主要包括时域分析和变换域分析。
时域分析法:主要通过系统的微分方程(差分方程)、激励和起始状态,利用经典法、双零法和卷积法等来求解系统响应。
该方法均在时域中进行计算,物理概念清晰,但是计算量大。
变换域分析法:对于连续系统来说主要包括傅里叶变换和拉普拉斯变换;对于离散系统来说,则采用z变换。
变换域求解的计算量小,但是物理意义不清晰,因此常常会进行逆变换,将结果变换成时域的形式。
四、如何判断系统的因果性、稳定性、滤波特性等。
当用系统作用表示时,可通过定义法即响应不得超前激励,有界输入有界输出来判断因果稳定;当用h(t)表示时,则通过u(t)和绝对可积来判断因果稳定;当用系统函数来表示时,对于连续系统,通过系统函数的极点只能分布在s平面的左半开平面来判断,对于离散系统,通过系统函数的极点只能位于单位圆内来判断。
滤波特性则是通过系统函数的零极点分布粗略画出幅频特性曲线,根据幅频特性曲线的走势来判断。
五、连续时间信号、离散时间信号、模拟信号和数字信号有什么区别。
连续时间信号是指时间自变量在其定义的范围内,除若干不连续点以外均是连续的。
1.《信号与系统》这门课程主要讲述什么内容?《信号与系统》是一门重要的专业基础课程。
它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。
分析系统对信号的响应一个任务连续时间系统两种系统离散事件系统主要时域法内两类方法容变换域法傅里叶变换三大变换拉斯变换Z变换2.这门在我们的知识架构中占有什么地位?是一门承上启下的重要的专业基础课程。
其基本概念和方法对所有的专业都很工科重要。
信号与系统的分析方法的应用范围一直不断的在扩大。
信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。
《信号与系统》是将我们从电路分析的知识领域引入信号处理与传输领域的关键性课程。
《高等数学》《通信原理》《线性代数》《信号与系统》《数字信号处理》《复变函数》《自动控制原理》《电路分析》·学习这门课程有什么用处?3.学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析,连续时间系统的S 域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等相关内容。
通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。
在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个例子,觉得对信号与系统的用处有了一定的了解。
设计的呢?如图这样一个轮子是怎么,就是很神奇的一个轮子,交通工具)(打印有可能打印不出来没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正系统就知道了,所以设计这个轮子其实就是设计一个系统。
信号与线性系统分析(第四版)信号与线性系统分析是电子信息领域的重要课程,对于理解现代通信系统、控制系统以及信号处理技术具有重要意义。
本教材是信号与线性系统分析的第四版,根据最新的学科发展和技术进步进行了全面修订,以适应现代电子信息工程教育的需求。
在第四版中,我们对信号与线性系统分析的基本概念、基本理论、基本方法进行了系统的阐述。
同时,为了提高读者的实践能力,本教材还增加了大量的实例和习题,帮助读者更好地掌握信号与线性系统分析的理论和方法。
1. 信号与系统概述:介绍信号与系统的基本概念,包括连续时间信号、离散时间信号、线性时不变系统、线性时变系统等。
2. 信号分析:讲解信号的时域分析、频域分析、变换域分析等基本方法,包括傅里叶变换、拉普拉斯变换、Z变换等。
3. 系统分析:阐述线性时不变系统的基本性质,包括系统的稳定性、系统的频率响应、系统的零状态响应、系统的零输入响应等。
4. 信号处理:介绍基本的信号处理技术,包括滤波、调制、解调、采样、量化、编码等。
5. 应用实例:通过实际的应用实例,展示信号与线性系统分析在通信系统、控制系统、信号处理等领域的应用。
信号与线性系统分析(第四版)信号与线性系统分析是电子信息领域的重要课程,对于理解现代通信系统、控制系统以及信号处理技术具有重要意义。
本教材是信号与线性系统分析的第四版,根据最新的学科发展和技术进步进行了全面修订,以适应现代电子信息工程教育的需求。
在第四版中,我们对信号与线性系统分析的基本概念、基本理论、基本方法进行了系统的阐述。
同时,为了提高读者的实践能力,本教材还增加了大量的实例和习题,帮助读者更好地掌握信号与线性系统分析的理论和方法。
1. 信号与系统概述:介绍信号与系统的基本概念,包括连续时间信号、离散时间信号、线性时不变系统、线性时变系统等。
2. 信号分析:讲解信号的时域分析、频域分析、变换域分析等基本方法,包括傅里叶变换、拉普拉斯变换、Z变换等。
一.选择题1.已知信号f (t )的波形如右图所示,则f (t )的表达式为( A )A .()()()21-+-+t u t u t u ;B .()()21-+-t u t u ; C .()()()21---+t u t u t u ; D .()()()21----t u t u t u ; 2. f (6-3t )是如下运算的结果( C )A .f (-3t )右移2B .f (-3t )左移2C .f (3t )右移2D .f (3t )左移2 3. 系统结构框图如右图示,该系统的单位冲激响应h(t)满足的方程式为( C )A .()()()t x t y dtt dy =+; B. ()()()t y t x t h -= C.()()()t t h dtt dh δ=+; D.、()()()t y t t h -=δ; 4. 信号()t f 1和()t f 2分别如下图(a)、(b)所示,已知()[]()ω11F t f F =,则()ω2F 为(A )A .()01tj e j F ωω--; B.()01t j e j F ωω-;C.()01t j e j F ωω-; D.()01t j e j F ωω;5 . 若系统的起始状态为0,在()t e 的激励下,所得的响应为( D )A .强迫响应; B.稳态响应; C.暂态响应; D.零状态响应。
7. 若()()[]()()()526+++==s s s t f L s F ,则()+0f 和()∞f 分别为(C )A. 0、1;B. 0、0;C. 1、0;D.1、1; 10. 离散信号()n f 是指( B )A. n 的取值是连续的,而()n f 的取值是任意的信号;B. n 的取值是离散的,而()n f 的取值是任意的信号;C. n 的取值是连续的,而()n f 的取值是连续的信号;D. n 的取值是连续的,而()n f 的取值是离散的信号19. 信号)()(2t e t f t ε-=的拉氏变换及收敛域为(B )A.2)Re(,21>+s s B. 2)Re(,21->+s s C. 2)Re(,21>-s s D. 2)Re(,21->-s s20.信号)2()(2(sin )(0--=t t t f εω的拉氏变换为(D )A.s e s s 2202-+ω B. s e s s 2202ω+ C. se s 22020ωω+ D. s e s 2220-+ωω 21. 已知某系统的系统函数为)(s H ,唯一决定该系统单位冲激响应)(t h 函数形式的是(B ) A. )(s H 的零点 B. )(s H 的极点C.系统的输入信号D.系统的输入信号与)(s H 的极点22. 若)()(),()(221t t f t e t f t εε==-则)()(21t f t f *的拉氏变换为(B ) A.⎪⎭⎫ ⎝⎛+-21121s s B. ⎪⎭⎫ ⎝⎛++-21121s s C. ⎪⎭⎫ ⎝⎛++21121s s D. ⎪⎭⎫ ⎝⎛++-21141s s24.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号 25.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。