对称的概念和晶体对称性
- 格式:ppt
- 大小:2.53 MB
- 文档页数:30
物体(或图形)中,其相同部分之间的有规律的重复。
例:蝴蝶、花冠、建筑物、面容、服饰等。
二. 晶体对称的特点晶体的对称表现为晶面、晶棱、角顶作有规律的重复——宏观对称。
晶体的对称性是由晶体的格子构造所决定的,研究晶体的对称性对于认识晶体的各项性质和划分晶体具有重要意义。
1.完全性:所有晶体都具有对称性。
(质点在三维空间有规律的重复——格子构造所决定的);2.有限性:晶体的对称要素是有限的。
要受到晶体对称规律的控制:不出现5次或高于6次的对称轴;3.一致性(表里如一):晶体的对称不仅体现在外形上,也体现在物理性质上,即:不仅包含几何意义,还包含物理化学意义。
三。
对称操作(变换)和对称要素的概念对称操作——指能够使对称物体中的各个相同部分作有规律重复的变换动作。
如,旋转、反映、反伸、旋转反伸等。
对称要素——指在进行对称变换时所凭借的几何要素(点、线、面)。
四. 晶体宏观的对称要素1. 对称面(P)对称面为一假想的面,相对应的对称变换是反映,它使图形平分成两个镜像相等的部分。
对称面的寻找:1)垂直并平分晶面;2)垂直并平分晶棱;3)包含晶棱并穿过角顶。
注意:a. 晶体中可以没有对称面,也可以有对称面,但最多只能有9个对称面;b 必须通过晶体中心,其出现的位置多垂直并平分于晶面或晶棱;c 寻找对称面时要尽量避免转动模型,以免造成重复;d 对称面的数目写在前面:如,9P。
2. 对称轴(Ln)对称轴为一假想的直线,相对应的对称操作是围绕此直线的旋转。
旋转一定角度后可使相同(等)部分重复。
轴次(n)——旋转一周重复的次数;基转角(α)——重复时所旋转的最小角度。
二者之间的关系为n = 360°/ α。
晶体的对称定律(晶体对称的有限性所决定):晶体中只能出现轴次为1、2、3、4、6的对称轴,而不能出现5次或高于6次的对称轴(准晶体则可以出现)。
对称轴的寻找:1)通过晶棱中点且垂直该晶棱的直线——L2;2)通过晶面中心且垂直该晶面的直线——L2、L3、L4、L6;3)通过角顶的直线——L3、L4、L6。
第二章晶体的对称[内容介绍]本章叙述晶体对称的概念、对称操作和对称要素,和晶体的分类—晶簇晶系的划分。
[学习目的] 理解和掌握晶体对称、对称要素的概念,学会晶体对称的操作方式,熟练正确地找出晶体的所有对称要素,肯定对称型,掌握晶族、晶系的划分方式。
第一节对称的概念一、对称的概念对称现象在自然界及人类日常生活中常常能够见到。
人的左右手,动物的躯体,植物的花冠、树叶,建筑物、器皿、图案等,常常都是对称的。
它们之所以是对称的,是因为这些物体包括有两个或两个以上的相同部份,而且这些相同的部份可以作有规律地重复。
图2-1 对称的图形如图2-1中,蝴蝶可通过垂直并平分躯体的一个镜面反映,使身体的左右两部份发生重合,花纹图案可通过垂直图形中心的一条直线旋转,在旋转360°里,图案中相同的图形发生四次重合。
但是,图2—2中的两个三角形之间,虽然图形完全相同,但彼其间的位置却没有必然规律,无法通过必然的操作使其重复。
所以,这两个三角形之间,不是对称的图形。
因此,对称的概念是:物体的相同部份作有规律地重复的性质称为对称。
二、晶体对称及特点晶体对称最直观地表此刻晶体的几何多面体外形上,如在不同方向上对称地散布着相同的晶面、晶棱和晶顶等。
同时,晶体对称还表此刻晶体的力学、电学、光学及热学等物理性质上。
晶体对称与动植物和其它物体的对称是有区别的。
动植物的对称是由于生存的需要而长图2-2 不对称图形期演化的结果,建筑物及工艺美术品的对称是为求美观而人为的,它们的对称现象都仅仅表此刻外部形态上,而晶体对称是本质的,是内部构造的反映。
因此晶体对称有如下特点:1.所有的晶体均具对称性,无一例外。
因为,晶体是具有格子构造的固体,而格子构造本身就具有对称性。
2.由于晶体对称受格子构造的严格控制,只有符合格子构造规律的对称才能在晶体上表现出来,这就是晶体对称的有限性。
3.同一晶体上相对称的各部份,不仅在外形上能够有规律地重复,而且在化学性质及物理性质方面,它们也是完全一致的,因此,晶体对称性不仅包括几何意义,同时也包括化学的和物理的意义。
晶体的对称性晶体因为有了对称,所以才有了他的美丽、永恒,下面重点说下他的对称性一. 对称的概念物体(或图形)中,其相同部分之间的有规律的重复。
例:蝴蝶、花冠、建筑物、面容、服饰等。
二. 晶体对称的特点晶体的对称表现为晶面、晶棱、角顶作有规律的重复——宏观对称。
晶体的对称性是由晶体的格子构造所决定的,研究晶体的对称性对于认识晶体的各项性质和划分晶体具有重要意义。
1.完全性:所有晶体都具有对称性。
(质点在三维空间有规律的重复——格子构造所决定的);2.有限性:晶体的对称要素是有限的。
要受到晶体对称规律的控制:不出现5次或高于6次的对称轴;3.一致性(表里如一):晶体的对称不仅体现在外形上,也体现在物理性质上,即:不仅包含几何意义,还包含物理化学意义。
三。
对称操作(变换)和对称要素的概念对称操作——指能够使对称物体中的各个相同部分作有规律重复的变换动作。
如,旋转、反映、反伸、旋转反伸等。
对称要素——指在进行对称变换时所凭借的几何要素(点、线、面)。
四. 晶体宏观的对称要素1. 对称面(P)对称面为一假想的面,相对应的对称变换是反映,它使图形平分成两个镜像相等的部分。
对称面的寻找:1)垂直并平分晶面;2)垂直并平分晶棱;3)包含晶棱并穿过角顶。
注意:a. 晶体中可以没有对称面,也可以有对称面,但最多只能有9个对称面;b 必须通过晶体中心,其出现的位置多垂直并平分于晶面或晶棱;c 寻找对称面时要尽量避免转动模型,以免造成重复;d 对称面的数目写在前面:如,9P。
2. 对称轴(Ln)对称轴为一假想的直线,相对应的对称操作是围绕此直线的旋转。
旋转一定角度后可使相同(等)部分重复。
轴次(n)——旋转一周重复的次数;基转角(α)——重复时所旋转的最小角度。
二者之间的关系为n = 360°/ α 。
晶体的对称定律(晶体对称的有限性所决定):晶体中只能出现轴次为1、2、3、4、6的对称轴,而不能出现5次或高于6次的对称轴(准晶体则可以出现)。
1.2 晶体的对称性一. 对称性的概念二. 晶体中允许的对称操作三. 晶体宏观对称性的表述:点群四. 七个晶系和14种晶体点阵五. 晶体的微观对称性:空间群六. 二维情形七. 点群对称性和晶体的物理性质参考:黄昆书1.5-1.7 节阎守胜书 2.2 节一.对称性的概念:一个物体(或图形)具有对称性,是指该物体(或图形)是由两个或两个以上的部分组成,经过一定的空间操作(线性变换),各部分调换位置之后整个物体(或图形)保持不变的性质。
对称操作:维持整个物体不变而进行的操作称作对称操作。
即:操作前后物体任意两点间的距离保持不变的操作。
点对称操作:在对称操作过程中至少有一点保持不动的操作。
有限大小的物体,只能有点对称操作。
对称元素:对称操作过程中保持不变的几何要素:点,反演中心;线,旋转轴;面,反映面等。
●●如何科学地概括和区别四种图形的对称性?从旋转来看,圆形对绕中心的任何旋转都是不变的;正方形只能旋转才保持不变;后2个图形只有3,,πππ2π以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换:111213212223313233'''x a a a x y a a a y z a a a z ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=∙ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111213212223313233i j a a a A a a a a a a ⎛⎫ ⎪= ⎪⎪⎝⎭ 其中A ij 为正交矩阵从解析几何知道,符合正交变换的是:绕固定轴的转动(Rotation about an axis) 绕z 轴旋转θ角cos sin 0sin cos 0001i j A θθθθ-⎛⎫ ⎪= ⎪ ⎪⎝⎭数学上可以写作:如果,一个物体在某一正交变换下保持不变,我们就称这个变换为物体的一个对称操作。
一个物体可能的对称操作越多,它的对称性就越高。
立方体具有较高的对称性,它有48个对称操作:绕4 条体对角线可以旋转共8个对称操作;绕3 个立方边可以旋转共9个对称操作;绕6 条棱对角线可以转动π,共 6 个对称操作;加上恒等操作共24个。