2014届高考数学一轮复习教学案数学归纳法(理)(含解析)
- 格式:doc
- 大小:556.15 KB
- 文档页数:24
第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。
学案37 数学归纳法导学目标: 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.自主梳理 1.归纳法由一系列有限的特殊事例得出一般结论的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为完全归纳法和不完全归纳法.2.数学归纳法设{P n }是一个与正整数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切正整数成立.3.数学归纳法公理(1)(归纳奠基)证明当n 取第一个值__________时命题成立. (2)(归纳递推)假设______________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.自我检测1.用数学归纳法证明:“1+a +a 2+…+a n +1=1-an +21-a(a ≠1)”在验证n =1时,左端计算所得的项为_______________________________________________________________.2.如果命题P (n )对于n =k (k ∈N *)时成立,则它对n =k +2也成立,又若P (n )对于n =2时成立,则下列结论中正确的序号有________.①P (n )对所有正整数n 成立; ②P (n )对所有正偶数n 成立; ③P (n )对所有正奇数n 成立;④P (n )对所有大于1的正整数n 成立.3.证明n +22<1+12+13+14+…+12n <n +1(n >1),当n =2时,中间式子等于______________.4.用数学归纳法证明“2n >n 2+1对于n >n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.5.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为______________;由此猜想S n =__________.探究点一 用数学归纳法证明等式例1 对于n ∈N *,用数学归纳法证明: 1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1 =16n (n +1)(n +2).变式迁移1 用数学归纳法证明:对任意的n ∈N *,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .探究点二 用数学归纳法证明不等式例2 用数学归纳法证明:对一切大于1的自然数,不等式⎝ ⎛⎭⎪⎫1+13⎝⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立.变式迁移2 已知m 为正整数,用数学归纳法证明:当x >-1时,(1+x )m ≥1+mx .探究点三 用数学归纳法证明整除问题例3 用数学归纳法证明:当n ∈N *时,a n +1+(a +1)2n -1能被a 2+a +1整除.变式迁移3 用数学归纳法证明:当n 为正整数时,f (n )=32n +2-8n -9能被64整除.从特殊到一般的思想例 (14分)已知等差数列{a n }的公差d 大于0,且a 2、a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n }、{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.【答题模板】解 (1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12a 2a 5=27,又∵{a n }的公差大于0,∴a 5>a 2,∴a 2=3,a 5=9.∴d =a 5-a 23=9-33=2,a 1=1,∴a n =1+(n -1)×2=2n -1.[2分]∵T n =1-12b n ,∴b 1=23,当n ≥2时,T n -1=1-12b n -1,∴b n =T n -T n -1=1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,化简,得b n =13b n -1,[4分]∴{b n }是首项为23,公比为13的等比数列,即b n =23·⎝ ⎛⎭⎪⎫13n -1=23n , ∴a n =2n -1,b n =23n .[6分](2)∵S n =1+(2n -1)2n =n 2,∴S n +1=(n +1)2,1b n =3n2. 以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,∴1b 1<S 2,当n =2时,1b 2=92,S 3=9,∴1b 2<S 3,当n =3时,1b 3=272,S 4=16,∴1b 3<S 4,当n =4时,1b 4=812,S 5=25,∴1b 4>S 5.[9分]猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k 2>(k +1)2.[11分]那么,n =k +1时,1b k +1=3k +12=3·3k 2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1,∴n =k +1时,1b n>S n +1也成立.由①②可知n ∈N *,n ≥4时,1b n >S n +1都成立.综上所述,当n =1,2,3时,1b n <S n +1,当n ≥4时,1b n>S n +1.[14分]【突破思维障碍】1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.2.数列是定义在N*上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.【易错点剖析】1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.2.在进行n=k+1命题证明时,一定要用n=k时的命题,没有用到该命题而推理证明的方法不是数学归纳法.1.数学归纳法:先证明当n取第一个值n0时命题成立,然后假设当n=k (k∈N*,k≥n0)时命题成立,并证明当n=k+1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n取第一个值n0时,命题成立,这样假设就有了存在的基础,至少k=n0时命题成立,由假设合理推证出n=k+1时命题也成立,这实质上是证明了一种循环,如验证了n0=1成立,又证明了n=k+1也成立,这就一定有n=2成立,n=2成立,则n=3成立,n=3成立,则n =4也成立,如此反复以至无穷,对所有n≥n0的整数就都成立了.2.(1)第①步验证n=n0使命题成立时n0不一定是1,是使命题成立的最小正整数.(2)第②步证明n=k+1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.(满分:90分)一、填空题(每小题6分,共48分)1.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y 整除”,在第二步时,正确的证法是________(填序号).①假设n=k(k∈N*)时命题成立,证明n=k+1命题成立;②假设n=k(k是正奇数)时命题成立,证明n=k+1命题成立;③假设n=2k+1 (k∈N*)时命题成立,证明n=k+1命题成立;④假设n=k(k是正奇数)时命题成立,证明n=k+2命题成立.2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (n )中共有____________项;当n =2时,f (2)=____________.3.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是________(填序号).①P (n )对n ∈N *成立;②P (n )对n >4且n ∈N *成立; ③P (n )对n <4且n ∈N *成立; ④P (n )对n ≤4且n ∈N *不成立.4.(2010·泰州模拟)用数学归纳法证明1+2+3+…+n 2=n 4+n22,则当n =k +1时左端应在n =k 的基础上加上________________________________________________________________________.5.(2010·淮南调研)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是____________________.6.用数学归纳法证明“1+2+3+…+n +…+3+2+1=n 2 (n ∈N *)”时,从n =k 到n =k +1时,该式左边应添加的代数式是________.7.(2010·南京模拟)用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________________.8.凸n 边形有f (n )条对角线,凸n +1边形有f (n +1)条对角线,则f (n +1)=f (n )+________.二、解答题(共42分)9.(12分)用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).10.(14分)数列{a n }满足a n >0,S n =12(a n +1a n),求S 1,S 2,猜想S n ,并用数学归纳法证明.11.(16分)(高考预测题)已知函数f (x )=1x 2e -1|x |(其中e 为自然对数的底数).(1)判断f (x )的奇偶性;(2)在(-∞,0)上求函数f (x )的极值;(3)用数学归纳法证明:当x >0时,对任意正整数n 都有f (1x )<n !·x 2-n .学案37 数学归纳法答案自主梳理3.(1)n 0 (n 0∈N *) (2)n =k (k ∈N *,且k ≥n 0) n =k +1 自我检测 1.1+a +a 2解析 当n =1时左端有n +2项,∴左端=1+a +a 2. 2.②解析 由n =2成立,根据递推关系“P (n )对于n =k 时成立,则它对n =k +2也成立”,可以推出n =4时成立,再推出n =6时成立,…,依次类推,P (n )对所有正偶数n 成立”.3.1+12+13+14解析 当n =2时,中间的式子1+12+13+122=1+12+13+14. 4.5解析 当n =1时,21=12+1;当n =2时,22<22+1;当n =3时,23<32+1; 当n =4时,24<42+1.而当n =5时,25>52+1, ∴n 0=5.5.32,74,158,2n-12n -1课堂活动区例1 解题导引 用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.证明 设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. (1)当n =1时,左边=1,右边=1,等式成立; (2)假设当n =k (k ≥1且k ∈N *)时等式成立, 即1·k +2·(k -1)+3·(k -2)+…+(k -1)·2+k ·1 =16k (k +1)(k +2), 则当n =k +1时, f (k +1)=1·(k +1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-1]·2+(k +1)·1=f (k )+1+2+3+…+k +(k +1) =16k (k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3).由(1)(2)可知当n ∈N *时等式都成立. 变式迁移1 证明 (1)当n =1时,左边=1-12=12=11+1=右边,∴等式成立.(2)假设当n =k (k ≥1,k ∈N *)时,等式成立,即 1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k . 则当n =k +1时,1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +1+1+1k +1+2+…+12k +12k +1+⎝ ⎛⎭⎪⎫1k +1-12k +2=1k +1+1+1k +1+2+…+12k +12k +1+12(k +1), 即当n =k +1时,等式也成立,所以由(1)(2)知对任意的n ∈N *等式都成立.例2 解题导引 用数学归纳法证明不等式问题时,从n =k 到n =k +1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.证明 (1)当n =2时,左边=1+13=43;右边=52. ∵左边>右边,∴不等式成立.(2)假设当n =k (k ≥2,且k ∈N *)时不等式成立,即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12. 则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12. ∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 变式迁移2 证明 (1)当m =1时,原不等式成立; 当m =2时,左边=1+2x +x 2,右边=1+2x , 因为x 2≥0,所以左边≥右边,原不等式成立; (2)假设当m =k (k ≥2,k ∈N *)时,不等式成立, 即(1+x )k ≥1+kx ,则当m =k +1时, ∵x >-1,∴1+x >0.于是在不等式(1+x )k ≥1+kx 两边同时乘以1+x 得, (1+x )k ·(1+x )≥(1+kx )(1+x )=1+(k +1)x +kx 2 ≥1+(k +1)x .所以(1+x)k+1≥1+(k+1)x,即当m=k+1时,不等式也成立.综合(1)(2)知,对一切正整数m,不等式都成立.例3解题导引用数学归纳法证明整除问题,由k过渡到k+1时常使用“配凑法”.在证明n=k+1成立时,先将n=k+1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,其中每个部分都能被约定的数(或式子)整除,从而由部分的整除性得出整体的整除性,最终证得n=k+1时也成立.证明(1)当n=1时,a2+(a+1)=a2+a+1能被a2+a+1整除.(2)假设当n=k (k≥1且k∈N*)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,a k+2+(a+1)2k+1=a·a k+1+(a+1)2(a+1)2k-1=a·a k+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1=a[a k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,由假设可知a[a k+1+(a+1)2k-1]能被a2+a+1整除,∴a k+2+(a+1)2k+1也能被a2+a+1整除,即n=k+1时命题也成立.综合(1)(2)知,对任意的n∈N*命题都成立.变式迁移3证明(1)当n=1时,f(1)=34-8-9=64,命题显然成立.(2)假设当n=k (k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.则当n=k+1时,32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1)即f(k+1)=9f(k)+64(k+1)∴n=k+1时命题也成立.综合(1)(2)可知,对任意的n∈N*,命题都成立.课后练习区1.④解析①、②、③中,k+1不一定表示奇数,只有④中k为奇数,k+2为奇数.2.n2-n+112+13+143.④解析由题意可知,P(n)对n=3不成立(否则P(n)对n=4也成立).同理可推P(n)对n=2,n=1也不成立.4.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2解析 ∵当n =k 时,左端=1+2+3+…+k 2,当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+…+(k +1)2,∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.5.f (k +1)=f (k )+(2k +1)2+(2k +2)2解析 ∵f (k )=12+22+…+(2k )2∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.6.2k +1解析 ∵当n =k +1时,左边=1+2+…+k +(k +1)+k +…+2+1,∴从n =k 到n =k +1时,应添加的代数式为(k +1)+k =2k +1.7.1(2k +1)(2k +2)解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2). 8.n -1解析 ∵f (4)=f (3)+2,f (5)=f (4)+3,f (6)=f (5)+4,…,∴f (n +1)=f (n )+n -1.9.证明 (1)当n =1时,左边=1+12,右边=12+1,∴32≤1+12≤32,命题成立.(2分)当n =2时,左边=1+22=2;右边=12+2=52,∴2<1+12+13+14<52,命题成立.(4分)(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1+k 2<1+12+13+…+12k <12+k ,(6分)则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12.(8分)又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即n =k +1时,命题也成立.(10分)由(1)(2)可知,命题对所有n ∈N *都成立.(12分)10.解 ∵a n >0,∴S n >0,由S 1=12(a 1+1a 1),变形整理得S 21=1, 取正根得S 1=1.由S 2=12(a 2+1a 2)及a 2=S 2-S 1=S 2-1得 S 2=12(S 2-1+1S 2-1), 变形整理得S 22=2,取正根得S 2= 2.同理可求得S 3= 3.由此猜想S n =n .(6分)用数学归纳法证明如下:(1)当n =1时,上面已求出S 1=1,结论成立.(8分)(2)假设当n =k 时,结论成立,即S k =k .(9分)那么,当n =k +1时,S k +1=12(a k +1+1a k +1)=12(S k +1-S k +1S k +1-S k) =12(S k +1-k +1S k +1-k). 整理得S 2k +1=k +1,取正根得S k +1=k +1.故当n =k +1时,结论成立.(13分)由(1)、(2)可知,对一切n ∈N *,S n =n 都成立.(14分)11.(1)解 ∵函数f (x )定义域为{x ∈R |x ≠0}且f (-x )=1(-x )2e -1|-x |=1x2e -1|x |=f (x ), ∴f (x )是偶函数.(4分)(2)解 当x <0时,f (x )=1x 2e 1x , f ′(x )=-2x 3e 1x +1x 2e 1x (-1x 2)=-1x 4e 1x (2x +1),(6分)令f ′(x )=0有x =-12,当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知:当x =-2时,f (x )取极大值4e -2,无极小值.(10分)(3)证明 当x >0时f (x )=1x 2e -1x ,∴f (1x )=x 2e -x .考虑到:x >0时,不等式f (1x )<n !·x 2-n 等价于x 2e -x <n !·x 2-n ⇔x n <n !·e x (ⅰ)(12分)所以只要用数学归纳法证明不等式(ⅰ)对一切n ∈N *都成立即可.①当n =1时,设g (x )=e x -x (x >0),∵x >0时,g ′(x )=e x -1>0,∴g (x )是增函数,故g (x )>g (0)=1>0,即e x >x (x >0).所以当n =1时,不等式(ⅰ)成立.(13分)②假设n =k (k ≥1,k ∈N *)时,不等式(ⅰ)成立,即x k <k !e x ,当n =k +1时,设h (x )=(k +1)!·e x -x k +1(x >0),h ′(x )=(k +1)!e x -(k +1)x k =(k +1)(k !e x -x k )>0,故h (x )=(k +1)!·e x -x k +1(x >0)为增函数,∴h (x )>h (0)=(k +1)!>0,∴x k +1<(k +1)!·e x ,即n =k +1时,不等式(ⅰ)也成立,(15分)由①②知不等式(ⅰ)对一切n ∈N *都成立,故当x >0时,原不等式对n ∈N *都成立.(16分)。
第七章推理与证明第3课时数学归纳法(对应学生用书(理)97~98页)考情分析考点新知理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1. 若f(n)=1+12+13+…+12n+1(n∈N),则n=1时,f(n)=________.答案:1+12+13解析:当n=1时,f(1)=1+12+13.2. (选修22P88练习题3改编)用数学归纳法证明不等式“2n>n2+1对于n≥n0的自然数n 都成立”时,第一步证明中的起始值n0应取为________.答案:5解析:当n≤4时,2n≤n2+1;当n=5时,25=32>52+1=26,所以n0应取为5.3. 设f(n)=1+12+13+14+…+13n-1(n∈N*),则f(k+1)-f(k)=________.答案:13k+13k+1+13k+2解析:f(k+1)-f(k)=1+12+13+14+…+13(k+1)-1-⎝⎛⎭⎪⎫1+12+13+14+…+13k-1=13k+13k+1+13k+2.4. 用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n=________时,命题成立;第二步归纳假设成立应写成____.答案:2当n=2k(k∈N*)时结论成立,x2k-y2k能被x+y整除解析:因为n为正偶数,故取第一个值n=2,第二步假设n取第k个正偶数成立,即n =2k,故假设当n=2k(k∈N*)时结论成立,x2k-y2k能被x+y整除.5. 已知a1=12,a n+1=3a na n+3,则a2,a3,a4,a5的值分别为________________,由此猜想a n=________.答案:37、38、39、3103n+5解析:a2=3a1a1+3=3×1212+3=37=32+5,同理a3=3a2a2+3=38=33+5,a4=39=34+5,a5=310=35+5,猜想a n =3n +5.1. 由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法.2. 对某些与正整数有关的数学命题常采用下面的方法来证明它们的正确性:先证明当n 取第1个值n 0时,命题成立;然后假设当n =k(k ∈N ,k ≥n 0)时命题成立;证明当n =k +1时,命题也成立,这种证明方法叫做数学归纳法.3. 用数学归纳法证明一个与正整数有关的命题时,其步骤为: (1) 归纳奠基:证明凡取第一个自然数n 0时命题成立;(2) 归纳递推:假设n =k(k ∈N ,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3) 由(1)(2)得出结论. [备课札记]题型1 证明等式例1 用数学归纳法证明: 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N ). 证明:① 当n =1时,等式左边=1-12=12=右边,等式成立.② 假设当n =k(k ∈N )时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,那么,当n =k +1时,有1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2,上式表明当n =k +1时,等式也成立.由①②知,等式对任何n ∈N 均成立. 变式训练当n ≥1,n ∈N *时,(1) 求证:C 1n +2C 2n x +3C 3n x 2+…+(n -1)C n -1n x n -2+nC n nx n -1=n(1+x)n -1; (2) 求和:12C 1n +22C 2n +32C 3n +…+(n -1)2C n -1n +n 2C nn .(1) 证明:设f(x)=(1+x)n =C 0n +C 1n x +C 2n x 2+…+C n -1n x n -1+C n nx n ,① ①式两边求导得n(1+x)n -1=C 1n +2C 2n x +3C 3n x 2+…+(n -1)C n -1n x n -2+nC n nx n -1.② ①式等于②式,故等式成立.(2) 解:②两边同乘x 得nx(1+x)n -1=C 1n x +2C 2n x 2+3C 3n x 3+…+(n -1)C n -1n x n -1+nC n nx n .③ ③式两边求导得n(1+x)n -1+n(n -1)x(1+x)n -2=C 1n +22C 2n x +32C 3n x 2+…+(n -1)2C n -1n x n -2+n 2C n n xn -1.④在④中令x =1,则12C 1n +22C 2n +32C 3n +…+(n -1)2C n -1n +n 2C n n=n·2n -1+n(n -1)2n -2=2n -2(2n +n 2-n)=2n -2·n(n +1). 题型2 证明不等式例2 (选修2-2P 91习题6改编)设n ∈N *,f(n)=1+12+13+…+1n,试比较f(n)与n +1的大小.解:当n =1,2时f(n)<n +1;当n ≥3时f(n)>n +1.下面用数学归纳法证明: ① 当n =3时,显然成立;② 假设当n =k(k ≥3,k ∈N )时,即f(k)>k +1,那么,当n =k +1时,f(k +1)>k +1+1k +1=k +2k +1>k +2k +2=k +2,即n =k +1时,不等式也成立.由①②知,对任何n ≥3,n ∈N 不等式成立.备选变式(教师专享)用数学归纳法证明a n +1+(a +1)2n -1能被a 2+a +1整除(n ∈N *). 证明:① 当n =1时,a 2+(a +1)=a 2+a +1可被a 2+a +1整除.② 假设n =k(k ∈N *)时,a k +1+(a +1)2k -1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a·a k +1+(a +1)2(a +1)2k -1=a·a k +1+a·(a +1)2k -1+(a 2+a +1)(a +1)2k -1=a[a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1,由假设可知a[a k +1+(a +1)2k -1]能被a 2+a +1整除,(a 2+a +1)(a +1)2k -1也能被a 2+a +1整除,∴ a k +2+(a +1)2k +1能被a 2+a +1整除,即n =k +1时命题也成立,∴ 对任意n ∈N *原命题成立.题型3 证明整除例3 用数学归纳法证明:f(n)=(2n +7)·3n +9(n ∈N *)能被36整除. 证明:① 当n =1时,f(1)=(2×1+7)×3+9=36,能被36整除.② 假设n =k 时,f(k)能被36整除,则当n =k +1时,f(k +1)=[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由归纳假设3[(2k +7)·3k +9]能被36整除,而3k -1-1是偶数,所以18(3k -1-1)能被36整除.所以n =k +1时,f(n)能被36整除.由①②知,对任何n ∈N ,f(n)能被36整除. 备选变式(教师专享)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1) 求数列{b n }的通项公式b n ;(2) 设数列{a n }的通项a n =log a ⎝⎛⎭⎫1+1b n (其中a >0且a ≠1).记S n 是数列{a n }的前n 项和,试比较S n 与13log a b n +1的大小,并证明你的结论.解:(1) 设数列{b n }的公差为d ,由题意得⎩⎨⎧b 1=1,10b 1+10(10-1)2d =145Þ⎩⎪⎨⎪⎧b 1=1,d =3,∴ b n =3n -2. (2) 由b n =3n -2,知S n =log a (1+1)+log a ⎝⎛⎭⎫1+14+…+log a ⎝ ⎛⎭⎪⎫1+13n -2 =log a ⎣⎢⎡⎦⎥⎤(1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13n -2而13log a b n +1=log a 33n +1,于是,比较S n 与13log a b n +1的大小比较(1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13n -2与33n +1的大小 . 取n =1,有1+1=38>34=33×1+1, 取n =2,有(1+1)⎝⎛⎭⎫1+14>38>37=33×2+1. 推测 (1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13n -2>33n +1,(*) ① 当n =1时,已验证(*)式成立; ② 假设n =k(k ≥1)时(*)式成立,即(1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2>33k +1, 则当n =k +1时,(1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2⎣⎢⎡⎦⎥⎤1+13(k +1)-2>33k +1⎝ ⎛⎭⎪⎫1+13k +1=3k +23k +133k +1. ∵ ⎝ ⎛⎭⎪⎫3k +23k +133k +13-(33k +4)3=(3k +2)3-(3k +4)(3k +1)2(3k +1)2=9k +4(3k +1)2>0,∴ 33k +13k +1(3k +2)>33k +4=33(k +1)+1,从而(1+1)⎝⎛⎭⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2⎝ ⎛⎭⎪⎫1+13k +1>33(k +1)+1,即当n =k +1时,(*)式成立.由①②知(*)式对任意正整数n 都成立.于是,当a >1时,S n >13log a b n +1,当 0<a <1时,S n <13log a b n +1.题型4 归纳、猜想与证明例4 已知数列{a n }满足a 1=1,且4a n +1-a n a n +1+2a n =9(n ∈N ). (1) 求a 2,a 3,a 4的值;(2) 由(1) 猜想{a n }的通项公式,并给出证明.解:(1) 由4a n +1-a n a n +1+2a n =9,得a n +1=9-2a n 4-a n =2-1a n -4,求得a 2=73,a 3=135,a 4=197.(2) 猜想a n =6n -52n -1.证明:①当n =1时,猜想成立.②设当n =k 时(k ∈N *)时,猜想成立,即a k =6k -52k -1,则当n =k +1时,有a k +1=2-1a k -4=2-16k -52k -1-4=6k +12k +1=6(k +1)-52(k +1)-1,所以当n=k +1时猜想也成立.综合①②,猜想对任何n ∈N *都成立. 备选变式(教师专享)已知f(n)=1+12+13+…+1n(n ∈N ),g(n)=2(n +1-1)(n ∈N ).(1) 当n =1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论); (2) 由(1)猜想f(n)与g(n)的大小关系,并证明你的结论. 解:(1) 当n =1时,f(1)>g(1); 当n =2时,f(2)>g(2); 当n =3时,f(3)>g(3).(2) 猜想:f(n)>g(n)(n ∈N *),即1+12+13+ (1)>2(n +1-1)(n ∈N *).下面用数学归纳法证明:①当n =1时,f(1)=1,g(1)=2(2-1),f(1)>g(1).②假设当n =k 时,猜想成立,即1+12+13+…+1k >2(k +1-1).则当n =k +1时,f(k +1)=1+12+13+…+1k +1k +1>2(k +1-1)+1k +1=2k +1+1k +1-2,而g(k +1)=2(k +2-1)=2k +2-2, 下面转化为证明:2k +1+1k +1>2k +2. 只要证:2(k +1)+1=2k +3>2(k +2)(k +1), 需证:(2k +3)2>4(k +2)(k +1),即证:4k 2+12k +9>4k 2+12k +8,此式显然成立. 所以,当n =k +1时猜想也成立.综上可知:对n ∈N *,猜想都成立,即1+12+13+…+1n>2(n +1-1)(n ∈N *)成立.1. 用数学归纳法证明1+12+13+…+12n -1<n ,其中n>1且n ∈N *,在验证n =2时,式子的左边等于________.答案:1+12+13⎝⎛⎭⎫或116 解析:当n =2时,式子的左边等于1+12+122-1=1+12+13.2. 用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步验证的表达式为________. 答案:21+1≥12+1+2(或22≥4或4≥4也算对)解析:当n =1时,21+1≥12+1+2.3. 用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是____. 答案:假设n =2k -1(k ∈N *)时正确,再推n =2k +1(k ∈N *)正确解析:因为n 为正奇数,根据数学归纳法证题的步骤,第二步应先假设第k 个正奇数也成立,本题先假设n =2k -1(k ∈N *)正确,再推第k +1个正奇数,即n =2k +1(k ∈N *)正确.4. (2013·广东理)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1) 求a 2的值;(2) 求数列{a n }的通项公式;(3) 证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.(1) 解:∵ 2S n n =a n +1-13n 2-n -23,n ∈N *.∴ 当n =1时,2a 1=2S 1=a 2-13-1-23=a 2-2.又a 1=1,∴ a 2=4.(2) 解:∵ 2S n n =a n +1-13n 2-n -23,n ∈N *.∴ 2S n =na n +1-13n 3-n 2-23n=na n +1-n (n +1)(n +2)3, ①∴ 当n ≥2时,2S n -1=(n -1)a n -(n -1)n (n +1)3, ②由①-②,得 2S n -2S n -1=na n +1-(n -1)a n -n(n +1). ∵ 2a n =2S n -2S n -1,∴ 2a n =na n +1-(n -1)a n -n(n +1),∴a n +1n +1-a nn=1. ∴ 数列⎩⎨⎧⎭⎬⎫a n n 是以首项为a 11=1,公差为1的等差数列.∴ a nn =1+1×(n -1)=n ,∴a n =n 2(n ≥2), 当n =1时,上式显然成立. ∴ a n =n 2,n ∈N * .(3) 证明:由(2)知,a n =n 2,n ∈N * ,① 当n =1时,1a 1=1<74,∴ 原不等式成立. ② 当n =2时, 1a 1+1a 2=1+14<74,∴ 原不等式亦成立.③ 当n ≥3时, ∵ n 2>(n -1)·(n +1),∴ 1n 2<1(n -1).(n +1) , ∴ 1a 1+1a 2+...+1a n =112+122+ (1)2 <1+11×3+12×4+…+1(n -2)·n +1(n -1)·(n +1)=1+12⎝⎛⎭⎫11-13+12⎝⎛⎭⎫12-14+12(13-15)+…+ 12⎝ ⎛⎭⎪⎫1n -2-1n +12⎝ ⎛⎭⎪⎫1n -1-1n +1 =1+12(11-13+12-14+13-15+…+1n -2-1n +1n -1-1n +1)=1+12⎝ ⎛⎭⎪⎫11+12-1n -1n +1=74+12·⎝ ⎛⎭⎪⎫-1n -1n +1<74, ∴ 当n ≥3时,原不等式亦成立.综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.1. 用数学归纳法证明“12+22+32+…+n 2=16n(n +1)(2n +1)(n ∈N *)”,当n =k +1时,应在n =k 时的等式左边添加的项是________.答案:(k +1)2解析:[12+22+…+k 2+(k +1)2]-(12+22+…+k 2)=(k +1)2.2. 用数学归纳法证明不等式:1n +1n +1+1n +2+…+1n 2>1(n ∈N *且n >1).证明:①当n =2时,左边=12+13+14=1312>1,∴n =2时不等式成立;②假设当n =k(k ≥2)时不等式成立, 即1k +1k +1+1k +2+…+1k 2>1, 那么当n =k +1时,左边=1k +1+…+1k 2+⎝ ⎛⎭⎪⎫1k 2+1+…+1(k +1)2=1k +1k +1+…+1k 2+⎝ ⎛⎭⎪⎫1k 2+1+…+1(k +1)2-1k>1+(2k +1)·1k 2+1-1k =1+k 2+k -1k (k 2+1)>1.综上,对于任意n ∈N *,n>1不等式均成立,原命题得证.3. 设函数f(x)=x -xlnx ,数列{a n }满足0<a 1<1,a n +1=f(a n ).求证: (1) 函数f(x)在区间(0,1)是增函数; (2) a n <a n +1<1.证明:(1) f(x)=x -xlnx ,f ′(x)=-lnx ,当x ∈(0,1)时,f ′(x)=-lnx >0,故函数f(x)在区间(0,1)上是增函数.(2) (用数学归纳法)①当n =1时,0<a 1<1,a 1ln a 1<0,a 2=f(a 1)=a 1-a 1lna 1>a 1. 由函数f(x)在区间(0,1)是增函数,且f(1)=1,得f(x)在区间(0,1)是增函数,a 2=f(a 1)=a 1-a 1lna 1<f(1)=1,即a 1<a 2<1成立.②假设当n =k(k ∈N *)时,a k <a k +1<1成立, 即0<a 1≤a k ≤a k +1<1,那么当n =k +1时,由f(x)在区间(0,1]上是增函数,得0<a 1≤a k ≤a k +1<1, 得f(a k )<f(a k +1)<f(1),而a n +1=f(a n ),则a k +1=f(a k ),a k +2=f(a k +1),即a k +1<a k +2<1,也就是说当n =k +1时,a n <a n +1<1也成立.由①②可得对任意的正整数n ,a n <a n +1<1恒成立.4. (2013·江苏改编)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k -1k ,…,(-1)k -1k k 个,即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k ,记S n =a 1+a 2+…+a n (n ∈N *),用数学归纳法证明S i(2i +1)=-i(2i +1)(i ∈N *).证明:①当i =1时,S i(2i +1)=S 3=-1·(2+1)=-3, 故原式成立.②假设当i =m 时,等式成立,即S m(2m +1)=-m·(2m +1). 则当i =m +1时,S (m +1)[2(m +1)+1]=S (m +1)(2m +3)=S m(2m +1)+(2m +1)2-(2m +2)2=-m(2m +1)+(2m +1)2-(2m +2)2 =-(2m 2+5m +3)=-(m +1)(2m +3),故原式成立.综合①②得:S i(2i +1)=-i(2i +1).1. 数学归纳法是专门证明与整数有关命题的一种方法,他分两步,第一步是递推的基础,第二步是递推的依据,两步缺一不可.2. 运用数学归纳法时易犯的错误①对项数估算的错误,特别是寻找n =k 与n =k +1的关系时,项数发生什么变化被弄错;②没有利用归纳假设;③关键步骤含糊不清,“假设n =k 时结论成立,利用此假设证明n =k +1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性和规范性.请使用课时训练(A )第3课时(见活页)[备课札记]。
§7.6 数学归纳法数学归纳法证明一个与正整数n 有关的命题,可按以下步骤: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N +)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立. ( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明. ( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ ) 2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A.1B.2C.3D.0答案 C解析 凸n 边形的边最少有三条,故第一个值n 0取3. 3.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)为( )A.1B.15C.1+12+13+14+15D.非以上答案答案 C解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.4.设f (n )=1n +1+1n +2+…+1n +n ,n ∈N *,那么f (n +1)-f (n )=________.答案12n +1-12n +2解析 f (n +1)-f (n )=1n +2+1n +3+…+1n +n +1n +1+n +1n +1+n +1-(1n +1+1n +2+…+1n +n)=12n +1+12n +2-1n +1=12n +1-12n +2. 5.用数学归纳法证明:“1+12+13+…+12n -1<n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推理n =k+1时,左边应增加的项数是________. 答案 2k解析 当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k 项.题型一 用数学归纳法证明等式例1 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N +). 思维启迪 证明时注意等式两边从n =k 到n =k +1时的变化. 证明 ①当n =1时,等式左边=2,右边=2,故等式成立; ②假设当n =k (k ∈N +)时等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k ·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1), 这就是说当n =k +1时等式也成立. 由①②可知,对所有n ∈N +等式成立. 思维升华 用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1.证明 (1)当n =1时,左边=11×3=13, 右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立. 题型二 用数学归纳法证明不等式例2 已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈[14,12]时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.思维启迪 (1)利用题中条件分别确定a 的范围,进而求a ; (2)利用数学归纳法证明.(1)解 由题意,知f (x )=ax -32x 2=-32(x -a 3)2+a 26.又f (x )max ≤16,所以f (a 3)=a 26≤16.所以a 2≤1.又x ∈[14,12]时,f (x )≥18,所以⎩⎨⎧f (12)≥18,f (14)≥18,即⎩⎨⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明: ①当n =1时,0<a 1<12,显然结论成立.因为当x ∈(0,12)时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立.因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈(0,13]时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f (1k +1).于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式a n <1n +1成立. 思维升华 用数学归纳法证明不等式的关键是由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.用数学归纳法证明:对一切大于1的自然数,不等式(1+13)(1+15)·…·(1+12n -1)>2n +12均成立.证明 (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.(2)假设n =k (k ≥2,且k ∈N *)时不等式成立,即 (1+13)(1+15)·…·(1+12k -1)>2k +12.则当n =k +1时,(1+13)(1+15)·…·(1+12k -1)[1+12(k +1)-1]>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12. ∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 题型三 归纳—猜想—证明例3 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.思维启迪 通过计算a 1,a 2,a 3寻求规律猜想{a n }的通项公式,然后用数学归纳法证明. (1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0, 解得:a k +1=2k +3-2k +1(a n >0). 即当n =k +1时,通项公式也成立.由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.思维升华 (1)猜想{a n }的通项公式是一个由特殊到一般的过程,注意两点:①准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);②证明a k +1时,a k +1的求解过程与a 2、a 3的求解过程相似,注意体会特殊性与一般性的辩证关系.(2)“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性,这种思维方式是推动数学研究和发展的重要方式.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解 ∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1,∵函数g (x )=(x +1)2-1在[1,+∞)上单调递增. 于是由a 1≥1得a 2≥(a 1+1)2-1≥22-1, 进而a 3≥(a 2+1)2-1≥24-1>23-1, 由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上单调递增知a k +1≥(a k +1)2-1≥22k -1≥2k +1-1, 即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n -1, 即1+a n ≥2n ,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n≤12+122+123+…+12n =1-(12)n <1.归纳—猜想—证明问题典例:(12分)设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.思维启迪 通过计算a 2,a 3,a 4观察规律猜想a n ,然后用数学归纳法证明. 规范解答 (1)解 ∵a 1=1, ∴a 2=f (a 1)=f (1)=a1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a3+a.[2分]猜想a n=a(n-1)+a(n∈N*). [4分](2)证明①易知,n=1时,猜想正确. [6分]②假设n=k时猜想正确,即a k=a(k-1)+a,[8分]则a k+1=f(a k)=a·a ka+a k=a·a(k-1)+aa+a(k-1)+a=a(k-1)+a+1=a[(k+1)-1]+a.这说明,n=k+1时猜想正确. [11分]由①②知,对于任何n∈N*,都有a n=a(n-1)+a. [12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论;第二步:验证一般结论对第一个值n0(n0∈N*)成立.第三步:假设n=k(k≥n0)时结论成立,证明当n=k+1时结论也成立.第四步:下结论,由上可知结论对任意n≥n0,n∈N*成立.温馨提醒解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,还有以下几点容易造成失分,在备考时要高度关注:(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n=k到n=k+1这一步时,忽略了假设条件去证明,造成使用的不是纯正的数学归纳法.(3)不等式证明过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.方法与技巧1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础. 2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点: (1)归纳假设就是已知条件;(2)在推证n =k +1时,必须用上归纳假设. 3.利用归纳假设的技巧在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n =k 与n =k +1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用. 失误与防范1.数学归纳法证题时初始值n 0不一定是1;2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.A 组 专项基础训练 (时间:40分钟)一、选择题1.用数学归纳法证明2n >2n +1,n 的第一个取值应是( )A.1B.2C.3D.4答案 C解析 ∵n =1时,21=1,2×1+1=3,2n >2n +1不成立; n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立. ∴n 的第一个取值应是3.2.用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( )A.1B.1+aC.1+a +a 2D.1+a +a 2+a 3答案 C3.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·2·…·(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”时,左边应增添的式子是 ( )A.2k +1B.2k +3C.2(2k +1)D.2(2k +3)答案 C解析 左边应增添的式子等于 (k +2)(k +3)·…·[(k +1)+(k +1)](k +1)(k +2)·…·(k +k )=(k +2)(k +3)·…·(2k )(2k +1)(2k +2)(k +1)(k +2)·…·(2k )=2(2k +1).4.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立,则上述证法( )A.过程全部正确B.n =1验得不正确C.归纳假设不正确D.从n =k 到n =k +1的推理不正确 答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5.当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7.故猜想a n =1(2n -1)(2n +1).二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________.答案12n +1+12n +2+12n +3+…+12n +2n解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n ,S n =1+12+13+14+…+12n ,∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n .7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真. 答案 2k +1解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1.8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示). 答案 5 12(n +1)(n -2)解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2). 三、解答题9.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2. 证明 (1)当n =1时,左边=12=1, 右边=(-1)0·1×(1+1)2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2 =(-1)k-1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2 =(-1)k-1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2.∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2. 10.已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n .求证:当n ∈N *时,a n <a n +1.证明 (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2.(2)假设当n =k (k ∈N *,k ≥1)时,0≤a k <a k +1,则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立,根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.B 组 专项能力提升(时间:30分钟)1.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上 ( )A.k 2+1B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.2.下列代数式(其中k ∈N *)能被9整除的是( ) A.6+6·7kB.2+7k -1 C.2(2+7k +1)D.3(2+7k ) 答案 D解析 (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么当k =n +1时有3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.由(1)(2)知,命题对k ∈N *成立.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *),通过计算a 1,a 2,a 3,a 4,可猜想a n =________. 答案 2n -12n -1 解析 ∵a 1=1,∴a 2=12a 1+1=32, a 3=12a 2+1=74,a 4=12a 3+1=158. 猜想a n =2n -12n -1. 4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小;(2)猜想f (n )与g (n )的大小关系,并给出证明.解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-[12k 2-1(k +1)3] =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.5.若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论. 解 当n =1时,11+1+11+2+13+1>a 24, 即2624>a 24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1(k +1)+1+1(k +1)+2+…+13(k +1)+1 =1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-23(k +1)]. 因为13k +2+13k +4-23(k +1)=6(k +1)(3k +2)(3k +4)-23(k +1) =18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)=2(3k +2)(3k +4)(3k +3)>0, 所以当n =k +1时不等式也成立.由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.。
高考数学(理科一轮复习数学归纳法学案带答案)一、数学归纳法的基本思想数学归纳法是数学中常用的一种证明方法,它的基本思想是将要证明的命题划分为若干个步骤,通过先证明第一个步骤成立,然后假设第k步成立,再证明第k+1步成立,最后利用归纳法原理得出整个命题成立。
二、数学归纳法的三个步骤数学归纳法一般包括以下三个步骤:1.基础步骤:证明命题在某个特定情况下成立,通常是当n=1时。
2.归纳假设:假设命题在第k步成立,即假设n=k时命题成立。
3.归纳步骤:通过归纳假设推导出命题在第k+1步成立,即证明n=k+1时命题成立。
三、数学归纳法的应用数学归纳法在高等数学、离散数学等领域具有广泛的应用。
在高考数学中,数学归纳法常常用于证明数列、数论等方面的命题。
下面我们通过一道例题来深入理解数学归纳法的应用。
例题:证明Fibonacci数列的通项公式Fibonacci数列是指这样的一个数列:除了前两项是1和1,从第三项开始,每一项都是前两项的和。
即F(1)=F(2)=1,对于n>2,有F(n)=F(n-1)+F(n-2)。
我们要使用数学归纳法来证明Fibonacci数列的通项公式:F(n) = ((1+√5)/2)^n - ((1-√5)/2)^n证明过程:1.基础步骤:当n=1时,左边是F(1),右边是((1+√5)/2)^1 - ((1-√5)/2)^1,容易验证相等,因此基础步骤成立。
2.归纳假设:假设当n=k时,F(k) = ((1+√5)/2)^k - ((1-√5)/2)^k 成立。
3.归纳步骤:我们要证明当n=k+1时,F(k+1) =((1+√5)/2)^(k+1) - ((1-√5)/2)^(k+1) 成立。
根据Fibonacci数列的定义,F(k+1) = F(k) + F(k-1)。
带入归纳假设的表达式,可以得到:F(k+1) = ((1+√5)/2)^k - ((1-√5)/2)^k + ((1+√5)/2)^(k-1) -((1-√5)/2)^(k-1)。
第三节三角函数图象与性质[知识能否忆起]1.周期函数(1)周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x +T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质[小题能否全取]1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π4,x ∈R C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-3π4,k ∈Z ,x ∈R D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+3π4,k ∈Z ,x ∈R 解析:选D ∵x -π4≠k π+π2,∴x ≠k π+3π4,k ∈Z .2.(教材习题改编)下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2x B .y =sin 2x C .y =tan 2xD .y =sin ⎝⎛⎭⎫2x -π2 解析:选B 选项A 、D 中的函数均为偶函数,C 中函数的最小正周期为π2,故选B.3.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π解析:选C 作出函数y =|sin x |的图象观察可知,函数y =|sin x |在⎝⎛⎭⎫π,3π2上递增. 4.比较大小,sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10. 解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. 答案:>5.(教材习题改编)y =2-3cos ⎝⎛⎭⎫x +π4的最大值为________.此时x =________. 解析:当cos ⎝⎛⎭⎫x +π4=-1时,函数y =2-3cos ⎝⎛⎭⎫x +π4取得最大值5,此时x +π4=π+2k π,从而x =34π+2k π,k ∈Z .答案:5 34π+2k π,k ∈Z1.求三角函数的单调区间时,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式,再根据三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内. 注意区分下列两种形式的函数单调性的不同:(1)y =sin ⎝⎛⎭⎫ωx -π4;(2)y =sin ⎝⎛⎭⎫π4-ωx . 2.周期性是函数的整体性质,要求对于函数整个定义域内的每一个x 值都满足f (x+T )=f (x ),其中T 是不为零的常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期.典题导入[例1] (1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎤-1,54 [自主解答] (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1. [答案] (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎡⎦⎤0,π2,试求其值域. 解:令t =sin x ,则t ∈[0,1]. ∴y =t 2+t -1=⎝⎛⎭⎫t +122-54. ∴y ∈[-1,1].∴函数的值域为[-1,1].由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1.(1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( )A.⎣⎡⎦⎤-32,32B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ). 利用数轴可得 函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 答案:(1)⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4 (2)B典题导入[例2] (2012·华南师大附中模拟)已知函数y =sin ⎝⎛⎭⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.[自主解答] 由y =sin ⎝⎛⎭⎫π3-2x 可化为y =-sin ⎝⎛⎭⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z .从而x ∈[-π,0]时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为 ⎣⎡⎦⎤-π,-7π12,⎣⎡⎦⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝⎛⎫π7,b =f ⎝⎛⎫π6,c =f ⎝⎛⎫π3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z .(2)f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因为函数f (x )在⎣⎡⎦⎤0,π6上单调递增,所以f ⎝⎛⎭⎫π7<f ⎝⎛⎭⎫π6,而c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3=f (0)<f ⎝⎛⎭⎫π7, 所以c <a <b .答案:(1)⎣⎡⎭⎫k π,k π+π2,k ∈Z (2)B典题导入[例3] (2012·广州调研)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),给出下面四个命题: ①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4[自主解答] 函数f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎡⎦⎤0,π2上是增函数,故④正确.综上可知,选C.[答案] C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;(3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2013·青岛模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 (2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0D.⎝⎛⎭⎫18,0解析:(1)选A 对于选项A ,注意到y =sin ⎝⎛⎭⎫2x +π2=cos 2x 的周期为π,且在⎣⎡⎦⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0.1.函数y = cos x -12的定义域为( )A.⎣⎡⎦⎤-π3,π3 B.⎣⎡⎦⎤k π-π3,k π+π3,k ∈Z C.⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z D .R解析:选C ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .2.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数解析:选D ∵y =sin ⎝⎛⎭⎫x -π2=-cos x ,∴T =2π,在⎣⎡⎦⎤0,π2上是增函数,图象关于y 轴对称,为偶函数.3.已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π3(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3解析:选C 由T =π=2π2ω得ω=1,所以f (x )=sin ⎝⎛⎭⎫2x -π3,则f (x )的对称轴为2x -π3=π2+k π(k ∈Z ),解得x =5π12+k π2(k ∈Z ),所以x =5π12为f (x )的一条对称轴.4.(2012·山东高考)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1D .-1- 3解析:选A 当0≤x ≤9时,-π3≤πx 6-π3≤7π6,-32≤sin ⎝⎛⎭⎫πx 6-π3≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π8,3π8 B.⎣⎡⎦⎤π8,9π8 C.⎣⎡⎦⎤-3π8,π8D.⎣⎡⎦⎤π8,5π8解析:选C 由f ⎝⎛⎭⎫π8=-2,得f ⎝⎛⎭⎫π8=-2sin ⎝⎛⎭⎫2×π8+φ=-2sin ⎝⎛⎭⎫π4+φ=-2,所以sin ⎝⎛⎭⎫π4+φ=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z . 6.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23B.32 C .2D .3解析:选B ∵x ∈⎣⎡⎦⎤-π3,π4,则ωx ∈⎣⎡⎦⎤-π3ω,π4ω,要使函数f (x )在⎣⎡⎦⎤-π3,π4上取得最小值-2,则-π3ω≤-π2或π4ω≥3π2,得ω≥32,故ω的最小值为32.7.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.解析:由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得 2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 答案:⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 8.已知函数f (x )=5sin (ωx +2)满足条件f (x +3)+f (x )=0,则正数ω=________. 解析:f (x +3)+f (x )=0⇒f (x +6)=f (x ),故f (x )以6为最小正周期,故2π|ω|=6.又ω>0,∴ω=π3.答案:π39.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________.解析:∵y =cos x 的对称中心为⎝⎛⎭⎫k π+π2,0(k ∈Z ), ∴由2×4π3+φ=k π+π2(k ∈Z ),得φ=k π-13π6(k ∈Z ).∴当k =2时,|φ|min =π6.答案:π610.设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解:(1)由1-2sin x ≥0,根据正弦函数图象知:定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+56π≤x ≤2k π+13π6,k ∈Z . (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3,∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.11.已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值和最小值. 解:(1)∵f (x )=2sin(π-x )cos x =2sin x cos x =sin 2x ,∴函数f (x )的最小正周期为π.(2)∵-π6≤x ≤π2, ∴-π3≤2x ≤π,则-32≤sin 2x ≤1. 所以f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值为1,最小值为-32. 12.(2012·北京高考)已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解:(1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ).1. (2012·新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则 φ=( ) A.π4B.π3C.π2D.3π4解析:选A 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z ), 又0<φ<π,所以φ=π4. 2.函数y =f (cos x )的定义域为⎣⎡⎦⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.解析:由2k π-π6≤x ≤2k π+2π3(k ∈Z ), 得-12≤cos x ≤1. 故所求函数的定义域为⎣⎡⎦⎤-12,1. 答案:⎣⎡⎦⎤-12,1 3. (2012·汕头模拟)已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)求f (x )的单调区间.解:(1)∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤76π, ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1, 又∵a >0,-5≤f (x )≤1,∴⎩⎪⎨⎪⎧ -2a +2a +b =-5,a +2a +b =1,即⎩⎪⎨⎪⎧a =2,b =-5. (2)f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, 由-π2+2k π≤2x +π6≤π2+2k π得 -π3+k π≤x ≤π6+k π,k ∈Z , 由π2+2k π≤2x +π6≤3π2+2k π得 π6+k π≤x ≤23π+k π,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z ).1.(2012·湖南高考)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2]B .[-3, 3 ]C .[-1,1] D.⎣⎡⎦⎤-32,32 解析:选B 因为f (x )=sin x -32cos x +12sin x =3⎝⎛⎭⎫ 32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6,所以函数f (x )的值域为[-3, 3 ].2.(2012·温州模拟)已知函数y =2sin(ωx +φ)(ω>0)为偶函数(0<φ<π),其图象与直线y =2某两个交点的横坐标分别为x 1,x 2,若|x 2-x 1|的最小值为π,则该函数的一个递增区间可以是( )A.⎝⎛⎭⎫-π2,-π4 B.⎝⎛⎭⎫-π4,π4 C.⎝⎛⎭⎫0,π2 D.⎝⎛⎭⎫π4,3π4解析:选A 由函数为偶函数知φ=π2+k π(k ∈Z ),又因为0<φ<π所以φ=π2,从而y =2cos ωx .又由条件知函数的最小正周期为π,故ω=2,因此y =2cos 2x .经验证知A 满足条件.3.设函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形; ③它的图象关于点⎝⎛⎭⎫π3,0成中心对称图形;④在区间⎣⎡⎭⎫-π6,0上是增函数. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).答案:①②⇒③④(或①③⇒②④)4.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值; (2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2. (2)f (x )的图象过点⎝⎛⎭⎫π6,32时,sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z .。
※第十三章 极限●网络体系总览数学归纳法 应用 极限数列的极限 函数的极限四则运算法则无穷等比数列函数的连续性●考点目标定位1.数学归纳法、极限 要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则,会求某些数列与函数的极限.(4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质. ●复习方略指南极限的概念和方法是近代数学的核心内容,微积分学的基本概念、基本方法在现代实践中越来越多的被应用,并在现代数学及相关学科的研究中不断得到进一步的发展.本章的主要内容由两部分组成,一是数学归纳法,二是极限.学习极限时要注意数列极限和函数极限的联系和区别、函数的极限与函数连续性的渐进性.13.1 数学归纳法●知识梳理1.数学归纳法的定义:由归纳法得到的与自然数有关的数学命题常采用下面的证明方法:(1)先证明当n =n 0(n 0是使命题成立的最小自然数)时命题成立;(2)假设当n =k (k ∈N *, k ≥n 0)时命题成立,再证明当n =k +1时命题也成立,那么就证明这个命题成立,这种证明方法叫数学归纳法.2.数学归纳法的应用:①证恒等式;②整除性的证明;③探求平面几何中的问题;④探求数列的通项;⑤不等式的证明.特别提示(1)用数学归纳法证题时,两步缺一不可;(2)证题时要注意两凑:一凑归纳假设;二凑目标. ●点击双基1.设f (n )=11+n +21+n +31+n +…+n 21(n ∈N *),那么f (n +1)-f (n )等于A.121+nB.221+n C.121+n +221+n D.121+n -221+n 解析:f (n +1)-f (n )=21+n +31+n +…+n 21 +121+n +221+n -(11+n +21+n +…+n 21)=121+n +221+n -11+n =121+n -221+n . 答案:D2.(2004年太原模拟题)若把正整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为A .B .D .C .123456789101112…解析:2002=4×500+2,而a n =4n 是每一个下边不封闭的正方形左、上顶点的数. 答案:D3.凸n 边形有f (n )条对角线,则凸n +1边形有对角线条数f (n +1)为A.f (n )+n +1B.f (n )+nC.f (n )+n -1D.f (n )+n -2解析:由n 边形到n +1边形,增加的对角线是增加的一个顶点与原n -2个顶点连成的 n -2条对角线,及原先的一条边成了对角线.答案:C4.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为A.2k +1B.2(2k +1)C.112++k k D.132++k k 解析:当n =1时,显然成立.当n =k 时,左边=(k +1)(k +2)·…·(k +k ), 当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k )(k +1+k +1) =(k +2)(k +3)·…·(k +k )(k +1+k )(k +1+k +1) =(k +1)(k +2)·…·(k+k )1)22)(12(+++k k k =(k +1)(k +2)·…·(k +k )2(2k +1).答案:B5.(2004年春季上海,8)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图形中有_________个点.解析:观察图形点分布的变化规律,发现第一个图形只有一个中心点;第二个图形中除中心外还有两边,每边一个点;第三个图形中除中心点外还有三个边,每边两个点;…;依次类推,第n 个图形中除中心外有n 条边,每边n -1个点,故第n 个图形中点的个数为n (n -1)+1.答案:n 2-n +1 ●典例剖析【例1】 比较2n 与n 2的大小(n ∈N *).剖析:比较两数(或式)大小的常用方法本题不适用,故考虑用归纳法推测大小关系,再用数学归纳法证明.解:当n =1时,21>12,当n =2时,22=22,当n =3时,23<32, 当n =4时,24=42,当n =5时,25>52, 猜想:当n ≥5时,2n >n 2. 下面用数学归纳法证明: (1)当n =5时,25>52成立.(2)假设n =k (k ∈N *,k ≥5)时2k >k 2,那么2k +1=2·2k =2k +2k >k 2+(1+1)k >k 2+C 0k +C 1k +C 1-k k =k 2+2k +1=(k +1) 2.∴当n =k +1时,2n >n 2. 由(1)(2)可知,对n ≥5的一切自然数2n >n 2都成立.综上,得当n =1或n ≥5时,2n >n 2;当n =2,4时,2n =n 2;当n =3时,2n <n 2.评述:用数学归纳法证不等式时,要恰当地凑出目标和凑出归纳假设,凑目标时可适当放缩.深化拓展当n ≥5时,要证2n >n 2,也可直接用二项式定理证:2n =(1+1)n =C 0n +C 1n +C 2n +…+C 2-n n +C 1-n n +C n n >1+n +2)1(-n n +2)1(-n n =1+n +n 2-n >n 2. 【例2】 是否存在常数a 、b 、c 使等式1·(n 2-12)+2(n 2-22)+…+n (n 2-n 2)=an 4+bn 2+c对一切正整数n 成立?证明你的结论.剖析:先取n =1,2,3探求a 、b 、c 的值,然后用数学归纳法证明对一切n ∈N *,a 、b 、c 所确定的等式都成立.解:分别用n =1,2,3代入解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧=++=++=++.0,41,411898134160c b a c b a c b a c b a下面用数学归纳法证明.(1)当n =1时,由上可知等式成立; (2)假设当n =k +1时,等式成立, 则当n =k +1时,左边=1·[(k +1)2-12]+2[(k +1)2-22]+…+k [(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=1·(k 2-12)+2(k 2-22)+…+k (k 2-k 2)+1·(2k +1)+2(2k +1)+…+k (2k +1)=41k 4+(-41)k 2+(2k +1)+2(2k +1)+…+k (2k +1)=41(k +1)4-41(k +1)2. ∴当n =k +1时,等式成立. 由(1)(2)得等式对一切的n ∈N *均成立. 评述:本题是探索性命题,它通过观察——归纳——猜想——证明这一完整的思路过程去探索和发现问题,并证明所得结论的正确性,这是非常重要的一种思维能力.【例3】(2003年全国)设a 0为常数,且a n =3n -1-2a n -1(n ∈N *).证明:n ≥1时,a n =51[3n+(-1)n -1·2n ]+(-1)n ·2n ·a 0.剖析:给出了递推公式,证通项公式,可用数学归纳法证.证明:(1)当n =1时,51[3+2]-2a 0=1-2a 0,而a 1=30-2a 0=1-2a 0. ∴当n =1时,通项公式正确.(2)假设n =k (k ∈N *)时正确,即a k =51[3k +(-1)k -1·2k ]+(-1)k ·2k ·a 0, 那么a k +1=3k -2a k =3k -52×3k +52(-1)k ·2k +(-1)k +1·2k +1a 0 =53·3k +51(-1)k ·2k +1+(-1)k +1·2k +1·a 0 =51[3k +1+(-1)k ·2k +1]+(-1)k +1·2k +1·a 0.∴当n =k +1时,通项公式正确. 由(1)(2)可知,对n ∈N *,a n =51[3n +(-1)n -1·2n ]+(-1)n ·2n ·a 0.评述:由n =k 正确⇒n =k +1时也正确是证明的关键.深化拓展本题也可用构造数列的方法求a n . 解:∵a 0为常数,∴a 1=3-2a 0.由a n =3n -1-2a n -1,得n n a 33=-1132--n n a +1, 即n n a 3=-32·113--n n a +31.∴n n a 3-51=-32(113--n n a -51).∴{nn a 3-51}是公比为-32,首项为513230--a 的等比数列. ∴n n a 3-51=(54-32a 0)·(-32)n -1. ∴a n =(54-32a 0)·(-2)n -1×3+51×3n=51[3n +(-1)n -1·2n ]+(-1)n ·2n ·a 0. 注:本题关键是转化成a n +1=ca n +d 型.●闯关训练 夯实基础1.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是A.P (n )对n ∈N*成立B.P (n )对n >4且n ∈N*成立C.P (n )对n <4且n ∈N*成立D.P (n )对n ≤4且n ∈N*不成立解析:由题意可知,P (n )对n =3不成立(否则n =4也成立).同理可推得P (n )对n =2,n =1也不成立.答案:D2.用数学归纳法证明“1+21+31+…+121-n <n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是A.2k -1 B.2k -1 C.2k D.2k +1解析:左边的特点:分母逐渐增加1,末项为121-n ;由n =k ,末项为121-k 到n =k +1,末项为1211-+k =2121+-,∴应增加的项数为2k. 答案:C3.观察下表: 12 3 43 4 5 6 74 5 6 7 8 9 10 ……设第n 行的各数之和为S n ,则∞→n lim2n S n=__________. 解析:第一行1=12, 第二行2+3+4=9=33,第三行3+4+5+6+7=25=52, 第四行4+5+6+7+8+9+10=49=72.归纳:第n 项的各数之和S n =(2n -1)2,∞→n lim2n S n =∞→n lim (n n 12-)2=4.答案:44.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n -2个图形中共有____________个顶点.解析:观察规律:第一个图形有32+3=(1+2)2+(1+2); 第二个图形有(2+2)2+(2+2)=42+4; 第三个图形有(3+2)2+(3+2)=52+5; …第n -2个图形有(n +2-2)2+(n +2-2)=n 2+n 个顶点. 答案:n 2+n5.已知y =f (x )满足f (n -1)=f (n )-lg a n -1(n ≥2,n ∈N )且f (1)=-lg a ,是否存在实数α、β使f (n )=(αn 2+βn -1)lg a 对任何n ∈N *都成立,证明你的结论.解:∵f (n )=f (n -1)+lg a n -1,令n =2,则f (2)=f (1)+f (a )=-lg a +lg a =0. 又f (1)=-lg a ,∴⎩⎨⎧=+=+.1420αββα∴⎪⎪⎩⎪⎪⎨⎧-==.21,21βα ∴f (n )=(21n 2-21n -1)lg a .证明:(1)当n =1时,显然成立.(2)假设n =k 时成立,即f (k )=(21k 2-21k -1)lg a , 则n =k +1时,f (k +1)=f (k )+lg a k =f (k )+k lg a =(21k 2-21k -1+k )lg a =[21(k +1)2-21(k +1)-1]lg a . ∴当n =k +1时,等式成立.综合(1)(2)可知,存在实数α、β且α=21,β=-21,使f (n )=(αn 2+βn -1)lg a 对任意n ∈N *都成立.培养能力6.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100. (1)求数列{bn }的通项公式bn ;(2)设数列{a n }的通项a n =lg (1+nb 1),记S n 为{a n }的前n 项和,试比较S n 与 21lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1. (2)由bn =2n -1, 知S n =lg (1+1)+1g (1+31)+…+lg (1+121-n )=lg (1+1)(1+31)·…·(1+121-n ). 又211g b n +1=1g 12+n , 因此要比较S n 与211g b n +1的大小,可先比较(1+1)(1+31)·…·(1+121-n )与12+n 的大小.取n =1,2,3可以发现:前者大于后者,由此推测(1+1)(1+31)· …· (1+121-n )>12+n . ①下面用数学归纳法证明上面猜想:当n =1时,不等式①成立.假设n =k 时,不等式①成立,即 (1+1)(1+31)·…·(1+121-k )>12+k .那么n =k +1时,(1+1)(1+31)·…·(1+121-k )(1+121+k )>12+k (1+121+k )=1212)1(2+++k k k .又[1212)1(2+++k k k ]2-(32+k )2=121+k >0,∴1212)1(2+++k k k >32+k =.1)1(2++k∴当n =k +1时①成立.综上所述,n ∈N*时①成立. 由函数单调性可判定S n >211g b n +1. 7.平面内有n 条直线,其中无任何两条平行,也无任何三条共点,求证:这n 条直线把平面分割成21(n 2+n +2)块. 证明:(1)当n =1时,1条直线把平面分成2块,又21(12+1+2)=2,命题成立. (2)假设n =k 时,k ≥1命题成立,即k 条满足题设的直线把平面分成21(k 2+k +2)块,那么当n =k +1时,第k +1条直线被k 条直线分成k +1段,每段把它们所在的平面块又分成了2块,因此,增加了k +1个平面块.所以k +1条直线把平面分成了21(k 2+k +2)+k +1= 21[(k +1) 2+(k +1)+2]块,这说明当n =k +1时,命题也成立.由(1)(2)知,对一切n ∈N *,命题都成立.探究创新8.(2004年重庆,22)设数列{a n }满足a 1=2,a n +1=a n +na 1(n =1,2,…). (1)证明a n >12+n 对一切正整数n 都成立; (2)令b n =na n(n =1,2,…),判定b n 与b n +1的大小,并说明理由. (1)证法一:当n =1时,a 1=2>112+⨯,不等式成立.假设n =k 时,a k >12+k 成立, 当n =k +1时,a k +12=a k 2+21k a +2>2k +3+21ka >2(k +1)+1, ∴当n =k +1时,a k +1>1)1(2++k 成立.综上,由数学归纳法可知,a n >12+n 对一切正整数成立. 证法二:当n =1时,a 1=2>3=112+⨯结论成立. 假设n =k 时结论成立,即a k >12+k , 当n =k +1时,由函数f (x )=x +x1(x >1)的单调递增性和归纳假设有 a k +1=a k +k a 1>12+k +121+k =12112+++k k =1222++k k =124842+++k k k >12)12)(32(+++k k k =32+k .∴当n =k +1时,结论成立.因此,a n >12+n 对一切正整数n 均成立.(2)解:n n b b 1+=n a n a n n 11++=(1+21n a )1+n n <(1+121+n )1+n n =1)12()1(2+++n n n n=12)1(2++n n n =241)21(2+-+n n <1. 故b n +1<b n . ●思悟小结1.用数学归纳法证明问题应注意:(1)第一步验证n =n 0时,n 0并不一定是1.(2)第二步证明的关键是要运用归纳假设,特别要弄清由k 到k +1时命题的变化. (3)由假设n =k 时命题成立,证n =k +1时命题也成立,要充分利用归纳假设,要恰当地“凑”出目标.2.归纳、猜想、论证是培养学生观察能力、归纳能力以及推理论证能力的方式之一. ●教师下载中心 教学点睛1.数学归纳法中的归纳思想是比较常见的数学思想,因此要重视.2.数学归纳法在考试中时隐时现,且较隐蔽,因此在复习中应引起重视.只要与自然数有关,都可考虑数学归纳法,当然主要是恒等式、等式、不等式、整除问题、几何问题、三角问题、数列问题等联系得更多一些.拓展题例【例1】 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立.(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.【例2】 如下图,设P 1,P 2,P 3,…,P n ,…是曲线y =x 上的点列,Q 1,Q 2,Q 3, …,Q n ,…是x 轴正半轴上的点列,且△OQ 1P 1,△Q 1Q 2P 2,…,△Q n -1Q n P n ,…都是正三角形,设它们的边长为a 1,a 2,…,a n ,…,求证:a 1+a 2+…+a n =1n (n +1). 证明:(1)当n =1时,点P 1是直线y =3x 与曲线y =x 的交点,∴可求出P 1(31,33).∴a 1=|OP 1|=32.而31×1×2=32,命题成立.(2)假设n =k (k ∈N *)时命题成立,即a 1+a 2+…+a k =31k (k +1),则点Q k 的坐标为(31k (k +1),0),∴直线Q k P k +1的方程为y =3[x -31k (k +1)].代入y =x ,解得P k +1点的坐标为)).1(33,3)1((2++k k∴a k +1=|Q k P k +1|=33(k +1)·32=32(k +1). ∴a 1+a 2+…+a k +a k +1=31k (k +1)+32(k +1)=31(k +1)(k +2).∴当n=k+1时,命题成立.由(1)(2)可知,命题对所有正整数都成立.评述:本题的关键是求出P k+1的纵坐标,再根据正三角形高与边的关系求出|Q k P k+1|.。
14.3 数学归纳法典例精析题型一 用数学归纳法证明恒等式【例1】是否存在常数a 、b 、c ,使等式12+22+32+…+n2+(n -1)2+…+22+12=an(bn2+c)对于一切n ∈N*都成立?若存在,求出a 、b 、c 并证明;若不存在,试说明理由.【解析】 假设存在a 、b 、c 使12+22+32+…+n2+(n -1)2+…+22+12=an(bn2+c)对于一切n ∈N*都成立.当n =1时,a(b +c)=1;当n =2时,2a(4b +c)=6;当n =3时,3a(9b +c)=19.解方程组⎪⎩⎪⎨⎧=+=+=+,19)9(3,3)4(,1)(c b a c b b c b a 解得⎪⎪⎩⎪⎪⎨⎧===.1,2,31c b a证明如下:当n =1时,显然成立;假设n =k(k ∈N*,k≥1)时等式成立,即12+22+32+…+k2+ (k -1)2+…+22+12=13k(2k2+1); 则当n =k +1时,12+22+32+…+k2+(k +1)2+k2+(k -1)2+…+22+12=13k(2k2+1)+(k +1)2+k2 =13k(2k2+3k +1)+(k +1)2=13k(2k +1)(k +1)+(k +1)2 =13(k +1)(2k2+4k +3)=13(k +1)[2(k +1)2+1]. 因此存在a =13,b =2,c =1,使等式对一切n ∈N*都成立. 【点拨】 用数学归纳法证明与正整数n 有关的恒等式时要弄清等式两边的项的构成规律:由n =k 到n =k +1时等式左右各如何增减,发生了怎样的变化.【变式训练1】用数学归纳法证明:当n ∈N*时,11×3+13×5+…+1(2n -1)(2n +1)=n 2n +1. 【证明】(1)当n =1时,左边=11×3=13,右边=12×1+1=13, 左边=右边,所以等式成立.(2)假设当n =k(k ∈N*)时等式成立,即有11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=k 2k +1+1(2k +1)(2k +3)=k(2k +3)+1(2k +1)(2k +3)=2k2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立.由(1)(2)可知,对一切n ∈N*等式都成立.题型二 用数学归纳法证明整除性问题【例2】 已知f(n)=(2n +7)·3n +9,是否存在自然数m 使得任意的n ∈N*,都有m 整除f(n)?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.【解析】 由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.(1)当n =1时,结论显然成立;(2)假设当n =k(k≥1,k ∈N*)时结论成立,即f(k)=(2k +7)·3k +9能被36整除. 则当n =k +1时,f(k +1)=(2k +9)·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1), 由假设知3[(2k +7)·3k +9]能被36 整除,又3k -1-1是偶数,故18(3k -1-1)也能被36 整除.即n =k +1时结论也成立.故由(1)(2)可知,对任意正整数n 都有f(n)能被36整除.由f(1)=36知36是整除f(n)的最大值.【点拨】 与正整数n 有关的整除性问题也可考虑用数学归纳法证明. 在证明n =k +1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.【变式训练2】求证:当n 为正整数时,f(n)=32n +2-8n -9能被64整除.【证明】方法一:①当n =1时,f(1)=34-8-9=64,命题显然成立.②假设当n =k(k≥1,k ∈N*)时结论成立,即f(k)=32k +2-8k -9能被64整除.由于32(k +1)+2-8(k +1)-9=9(32k +2-8k -9)+9·8k +9·9-8(k +1)-9=9(32k +2-8k -9)+64(k +1),即f(k +1)=9f(k)+64(k +1),所以n =k +1时命题也成立.根据①②可知,对任意的n ∈N*,命题都成立.方法二:①当n =1时,f(1)=34-8-9=64,命题显然成立.②假设当n =k(k≥1,k ∈N*)时,f(k)=32k +2-8k -9能被64整除.由归纳假设,设32k +2-8k -9=64m(m 为大于1的自然数),将32k +2=64m +8k +9代入到f(k +1)中得 f(k +1)=9(64m +8k +9)-8(k +1)-9=64(9m +k +1),所以n =k +1时命题也成立. 根据①②可知,对任意的n ∈N*,命题都成立.题型三 数学归纳法在函数、数列、不等式证明中的运用【例3】(2013山东模拟)等比数列{an}的前n 项和为Sn ,已知对任意的n ∈N*,点(n ,Sn)均在函数y =bx +r(b >0且b≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记bn =2(log2an +1)(n ∈N*),求证:对任意的n ∈N*,不等式b1+1b1· b2+1b2·…·bn +1bn >n +1成立. 【解析】(1)因为点(n ,Sn)均在函数y =bx +r(b >0且b≠1,b ,r 均为常数)的图象上, 所以Sn =bn +r(b >0且b≠1,b ,r 均为常数).当n =1时,a1=S1=b +r ;当n≥2时,an =Sn -Sn -1=bn +r -bn -1-r =(b -1)bn -1. 又数列{an}为等比数列,故r =-1且公比为b.(2)当b =2时,an =2n -1,所以bn =2(log2an +1)=2(log22n -1+1)=2n(n ∈N*),所以bn +1bn =2n +12n, 于是要证明的不等式为32·54·…·2n +12n >n +1对任意的n ∈N*成立. 下面用数学归纳法证明.当n =1时,32>2显然成立. 假设当n =k 时不等式成立,即32·54·…·2k +12k >k +1. 则当n =k +1时,32·54·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +1·(2k +32k +2)2=(2k +3)24(k +1) =[2(k +1)+1]24(k +1)=4(k +1)2+4(k +1)+14(k +1)=(k +1)+1+14(k +1)>(k +1)+1,即当n =k +1时不等式成立,所以原不等式对任意n ∈N*成立.【点拨】 运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.【变式训练3】设函数f(x)=ex -1+a x(a ∈R). (1)若函数f(x)在x =1处有极值,且函数g(x)=f(x)+b 在(0,+∞)上有零点,求b 的最大值;(2)若f(x)在(1,2)上为单调函数,求实数a 的取值范围;(3)在(1)的条件下,数列{an}中a1=1,an +1=f(an)-f′(an),求|an +1-an|的最小值.【解析】(1)f′(x)=ex -1-a x2,又函数f(x)在x =1处有极值, 所以f′(1)=0,即a =1,经检验符合题意.g′(x)=ex -1-1x2,当x ∈(0,1)时,g′(x)<0,g(x)为减函数,当x =1时,g′(x)=0,当x ∈(1,+∞)时g′(x)>0,g(x)为增函数.所以g(x)在x =1时取得极小值g(1)=2+b ,依题意g(1)≤0,所以b≤-2,所以b 的最大值为-2.(2)f′(x)=ex -1-a x2, 当f(x)在(1,2)上单调递增时,ex -1-a x2≥0在[1,2]上恒成立,所以a≤x2ex-1, 令h(x)=x21e x ,则h′(x)=ex -1(x2+2x)>0在[1,2]上恒成立,即h(x)在[1,2]上单调递增,所以h(x)在[1,2]上的最小值为h(1)=1,所以a≤1; 当f(x)在[1,2]上单调递减时,同理a≥x2ex-1,h(x)=x2ex -1在[1,2]上的最大值为h(2)=4e ,所以a≥4e.综上实数a 的取值范围为a≤1或a≥4e.(3)由(1)得a =1,所以f(x)-f′(x)=1x +1x2,因此an +1=1an +1a2n,a1=1,所以a2=2,可得0<a2n +1<1,a2n +2>2.用数学归纳法证明如下:①当n =1时,a3=34,a4=289,结论成立; ②设n =k ,k ∈N*时结论成立,即0<a2k +1<1,a2k +2>2,则n =k +1时,a2k +3=1a2k +2+1a22k +2<12+12=1, 所以0<a2k +3<1,a2k +4=1a2k +3+1a22k +3>1+1=2. 所以n =k +1时结论也成立,根据①②可得0<a2n +1<1,a2n +2>2恒成立,所以|an +1-an|≥a2-a1=2-1=1,即|an +1-an|的最小值为1.总结提高数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):设M 是正整数集合的子集,且具有如下性质:①1∈M ;②若k ∈M ,则k +1∈M ,那么必有M =N*成立.数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一. 从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.。
两直线的位置关系[知识能否忆起]一、两条直线的位置关系 斜截式 一般式方 程 y =k 1x +b 1 y =k 2x +b 2 A 1x +B 1y +C 1=0(A 21+B 21≠0) A 2x +B 2y +C 2=0(A 22+B 22≠0)相 交 k 1≠k 2 A 1B 2-A 2B 1≠0⎝⎛⎭⎫当A 2B 2≠0时,记为A 1A 2≠B 1B 2垂 直k 1=-1k 2或k 1k 2=-1A 1A 2+B 1B 2=0⎝⎛⎭⎫当B 1B 2≠0时,记为A 1B 1·A 2B 2=-1平 行k 1=k 2 且b 1≠b 2{ A 1B 2-A 2B 1=0,B 2C 1-B 1C 2≠0或{ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2≠C 1C 2 重 合 k 1=k 2 且b 1=b 2A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2=C 1C 2二、两条直线的交点设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组{ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离 1.两点间的距离平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=|AB |=(x 1-x 2)2+(y 1-y 2)2.2.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C |A 2+B 2.3.两条平行线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(4)[小题能否全取]1.(教材习题改编)已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ).若l 1⊥l 2,则实数m 为( )A .6 B .-6 C .5D .-5解析:选B 由已知得k 1=1,k 2=m +15.暑期报名海外游学的人数增长达到∵l 1⊥l 2,∴k 1k 2=-1, ∴1×m +15=-1,即m =-6.2.(教材习题改编)点(0,-1)到直线x +2y =3的距离为( )A.55B.5教案目的是用更严格的监管、更严厉的处罚、更严肃的问责化学教案切实保障“舌尖上的安全C .5D.15解析:选B d =|0+2×(-1)-3|5= 5.3.点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析:选B 设对称点为(x ′,y ′),则⎩⎨⎧y ′-b x ′-a×(-1)=-1,x ′+a 2+y ′+b2+1=0,解得x ′=-b -1,y ′=-a -1.4.l 1:x -y =0与l 2:2x -3y +1=0的交点在直线mx +3y +5=0上,则m 的值为( )A .3B .5C .-5D .-8解析:选D 由{x -y =0,2x -3y +1=0,得l 1与l 2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是______________________.|m+5|,得m=10或-20.解析:设所求直线方程为4x+3y+m=0,由3=42+32答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax +By+C=0的形式,否则会出错.两直线的平行与垂直典题导入[例1](2012·浙江高考)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x +(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答]由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-23.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则直线l 1⊥l 2的充要条件是k 1·k 2=-1.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.则l 1⊥l 2⇔A 1A 2+B 1B 2=0.以题试法1.(2012·大同模拟)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行 B .重合C .垂直D .相交但不垂直解析:选C 由已知得a ≠0,sin B ≠0,所以两直线的斜率分别为k 1=-sin A a ,k 2=bsin B ,由正弦定理得k 1·k 2=-sin A a ·bsin B=-1,所以两条直线垂直.两直线的交点与距离问题典题导入[例2] (2012·浙江高考)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.[自主解答] 因曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为0-(-4)2-2=22-2=2,所以曲线C 1与直线l 不能相交,故x 2+a >x ,即x 2+a -x >0.设C 1:y =x 2+a上一点为(x 0,y 0),则点(x 0,y 0)到直线l 的距离d =|x 0-y 0|2=-x 0+x 20+a2=⎝⎛⎭⎫x 0-122+a -142≥4a -142=2,所以a =94.”化学教案结合全文化学教案概述作者这样认为的依据试卷试题[答案] 94由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P (x 0,y 0)到与y 轴垂直的直线y =a 的距离d =|y 0-a |.(2)点P (x 0,y 0)到与x 轴垂直的直线x =b 的距离d =|x 0-b |.以题试法2.(2012·通化模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c的值是________.解析:由题意得63=a -2≠c-1,得a =-4,c ≠-2,则6x +ay +c =0可化为3x -2y +c2=0,则⎪⎪⎪⎪c 2+113=21313,解得c =2或-6.答案:2或-6对 称 问 题典题导入[例3] (2012·成都模拟)在直角坐标系中,A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210 B .6C .3 3D .25②________试卷试题它们使用着同样的文字化学教案③__________________化学[自主解答] 如图,设点P 关于直线AB ,y 轴的对称点分别为D ,C ,易求得D (4,2),C (-2,0),由对称性知,D ,M ,N ,C 共线,则△PMN 的周长=|PM |+|MN |+|PN |=|DM |+|MN |+|NC |=|CD |=40=210即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称 (1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足{ x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎨⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.1.(2012·海淀区期末)已知直线l 1:k 1x +y +1=0与直线l 2:k 2x +y -1=0,那么“k 1=k 2”是“l 1∥l 2”的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由k 1=k 2,1≠-1,得l 1∥l 2;由l 1∥l 2知k 1×1-k 2×1=0,所以k 1=k 2.故“k 1=k 2”是“l 1∥l 2”的充要条件.2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限 B .第二象限C .第三象限D .第四象限解析:选B 解方程组{ kx -y =k -1,ky -x =2k ,得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限.3.(2012·长沙检测)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( )A.85B.32(C .4D .8解析:选B ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即为3x +4y +12=0,∴直线l 1与直线l 2的距离为⎪⎪⎪⎪12+732+42=32.4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).5.已知直线l 1:y =2x +3,若直线l 2与l 1关于直线x +y =0对称,又直线l 3⊥l 2,则l 3的斜率为( )A .-2 B .-12C.12D .2解析:选A 依题意得,直线l 2的方程是-x =2(-y )+3,即y =12x +32,其斜率是12,由l 3⊥l 2,得l 3的斜率等于-2.6.(2012·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )A .3x +y +4=0 B .3x -y +4=0 C .x +3y -8=0D .x -3y -4=0解析:选C 设l 的方程为7x +5y -24+λ(x -y )=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.7.(2012·郑州模拟)若直线l 1:ax +2y =0和直线l 2:2x +(a +1)y +1=0垂直,则实数a 的值为________.解析:由2a +2(a +1)=0得a =-12.答案:-128.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知1a +1b =1(a >0,b >0),求点(0,b )到直线x -2y -a =0的距离的最小值.解:点(0,b )到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b )⎝⎛⎭⎫1a +1b =15⎝⎛⎭⎫3+2b a +a b ≥15(3+22)=35+2105,当且仅当a 2=2b 2,a +b =ab ,即a =1+2,b =2+22时取等号.所以点(0,b )到直线x -2y -a =0的距离的最小值为35+2105.11.(2012·荆州二检)过点P (1,2)的直线l 被两平行线l 1:4x +3y +1=0与l 2:4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.解:设直线l 的方程为y -2=k (x -1),由{y =kx +2-k ,4x +3y +1=0,解得A ⎝ ⎛⎭⎪⎫3k -73k +4,-5k +83k +4;由{y =kx +2-k ,4x +3y +6=0,解得B ⎝⎛⎭⎪⎫3k -123k +4,8-10k 3k +4.∵|AB |=2, ∴⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭⎪⎫5k 3k +42=2,整理,得7k 2-48k -7=0, 解得k 1=7或k 2=-17.因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.12.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③ y ′=3x +4y +35. ④ (1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.1.点P 到点A (1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( )A .1 B .2 C .3D .4解析:选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y 2=4x . 设P (t 2,2t ),则22=|t 2-2t |2,解得t 1=1,t 2=1+2,t 3=1-2,故P 点有三个.2.(2012·福建模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3解析:选C 设原点到点(m ,n )的距离为d ,所以d 2=m 2+n 2,又因为(m ,n )在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42+32=2,所以m 2+n 2的最小值为4.3.在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|P A |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1. 则a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,则3×a 2-b +42-1=0,即3a -b -6=0.②解①②,得a =3,b =3,即B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解{ 3x -y -1=0,2x +y -9=0,得{ x =2,y =5,即l 与AB ′的交点坐标为P (2,5).1.点(1,cos θ)(其中0≤θ≤π)到直线x sin θ+y cos θ-1=0的距离是14,那么θ等于( )A.5π6B.π6或5π6mLC.π6D.π6或7π6图①可判断可逆反应“A2(g)+3B2(g)2AB3(g)”的解析:选B 由已知得|sin θ+cos 2θ-1|sin 2θ+cos 2θ=14,即|sin θ-sin 2θ|=14, ∴4sin 2θ-4sin θ-1=0或4sin 2θ-4sin θ+1=0,∴sin θ=1±22或sin θ=12.∵0≤θ≤π,∴0≤sin θ≤1,∴sin θ=12,即θ=π6或5π6.2.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点(x ,y ),则⎩⎨⎧ x +02-y -22-1=0,y +2x ×1=-1,得{ x =-1,y =-1.即(1,0),(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0.3.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由{ x -2y +5=0,3x -2y +7=0,得{ x =-1,y =2.即反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.充其量只算得小河沟罢了试卷试题然而毕竟有水化学教案便是理直气壮的河了试卷试题有水化而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,即3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧ y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎨⎧ x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,即3×x +x 02-2×y +y 02+7=0,由⎩⎨⎧ y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的坐标为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, 故所求反射光线所在的直线方程为29x -2y +33=0.。
数学归纳法(理)[知识能否忆起]数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.1.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1等于( )A .S k +12(k +1)B .S k +12k +1-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +22.(教材习题改编)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+144.用数学归纳法证明1+2+22+…+2n +1=2n +2-1(n ∈N *)的过程中,在验证n =1时,左端计算所得的项为________.5.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.数学归纳法的应用(1)数学归纳法是一种只适用于与正整数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在n =k +1时一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.(2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.用数学归纳法证明恒等式典题导入[例1] 设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).由题悟法用数学归纳法证明等式的规则(1)数学归纳法证明等式要充分利用定义,其中两个步骤缺一不可,缺第一步,则失去了递推基础,缺第二步,则失去了递推依据.(2)证明等式时要注意等式两边的构成规律,两边各有多少项,并注意初始值n0是多少,同时第二步由n=k到n=k+1时要充分利用假设,不利用n=k时的假设去证明,就不是数学归纳法.以题试法1.用数学归纳法证明:对任意的n∈N*,11×3+13×5+…+1(2n-1)(2n+1)=n2n+1.用数学归纳法证明不等式典题导入[例2]等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立.由题悟法应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法. (2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.以题试法2.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).归纳—猜想—证明典题导入[例3]如图,P1(x1,y1),P2(x2,y2),…,P n(x n,y n)(0<y1<y2<…<y n)是曲线C:y2=3x(y≥0)上的n个点,点A i(a i,0)(i=1,2,3,…,n)在x轴的正半轴上,且△A i-1A i P i是正三角形(A0是坐标原点).(1)写出a1、a2、a3;(2)求出点A n(a n,0)(n∈N*)的横坐标a n关于n的表达式并证明.由题悟法“归纳——猜想——证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用.其关键是归纳、猜想出公式.以题试法3.数列{a n}满足S n=2n-a n(n∈N*)(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)用数学归纳法证明(1)中的猜想.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( )A .7B .8C .9D .103.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k 时等式成立,则当n =k +1时,应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1 B .1+2+22+…+2k +2k +1=2k -1+2k +1 C .1+2+22+…+2k -1+2k +1=2k +1-1 D .1+2+22+…+2k -1+2k =2k +1-14.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1D .f (n )+n -25.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2).6.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1 C .2(2+7k +1)D .3(2+7k )7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.8.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为________.9.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.10.用数学归纳法证明:12+32+52+…+(2n -1)2 =13n (4n 2-1).11.已知点P n(a n,b n)满足a n+1=a n·b n+1,b n+1=b n1-4a2n(n∈N*),且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点P n都在(1)中的直线l上.12.设数列{a n}的前n项和为S n,且方程x2-a n x-a n=0有一根为S n-1,n=1,2,3…….(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出严格的证明.1.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +12.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.3.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.1.用数学归纳法证明a n+1+(a+1)2n-1(n∈N*)能被a2+a+1整除.2.在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1),n∈N*,其中c≠0.求数列{a n}的通项公式.不等式、推理与证明一、选择题(本题共12小题,每小题5分,共60分) 1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2]2.把下面在平面内成立的结论类比推广到空间,结论还正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线没有公共点,则这两条直线平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行 3.已知a >b ,则下列不等式成立的是( ) A .a 2-b 2≥0 B .ac >bc C .ac 2>bc 2D .2a >2b4.若规定⎪⎪⎪⎪a b c d =ad -bc ,则不等式0<⎪⎪⎪⎪x 11 x <1的解集是( ) A .(-1,1)B .(-1,0) ∪(0,1)C .(-2,-1) ∪(1,2)D .(1,2)5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,x -1≤0,则目标函数z =3x -2y 的最小值为( )A .-5B .-4C .-2D .36.设a ∈R ,则“a -1a 2-a +1<0”是“|a |<1” 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件7.设M =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,且a +b +c =1(a ,b ,c 均为正数),由综合法得M 的取值范围是( ) A.⎣⎡⎦⎤0,18 B.⎣⎡⎭⎫18,1 C. [1,8]D .[8,+∞)8.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .cb 2<ab 2D .ac (a -c )<09.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,x 2,x <0,,则f (f (x ))≥1的充要条件是( )A .x ∈(-∞,- 2 ]B .x ∈[42,+∞)C .x ∈(-∞,-1]∪[42,+∞)D .x ∈(-∞,-2]∪[4,+∞)10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为13,则a +b 的最小值为( )A .2B .4C .6D .811.已知M 是△ABC 内的一点,且AB ·AC =23,∠BAC =30°,若△MBC 、△MCA 和△MAB 的面积分别是12、x 、y ,则1x +4y的最小值是( )A .9B .18C .16D .2012.设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③二、填空题(本题共4个小题,每小题5分,共20分)13.(文)若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则pq =________.13.(理)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.14.如图,一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________,第n 行的第2个数为________.。
常考问题18二项式定理及数学归纳法[真题感悟](2013·江苏卷)设数列{a n}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1)k-1k,…,即当k-1k2<n≤k k+12(k∈N*)时,a n=(-1)k-1k,记S n=a1+a2+…+a n(n∈N*).对于l∈N*,定义集合P l={n|S n是a n的整数倍,n∈N*,且1≤n≤l}.(1)求集合P11中元素的个数;(2)求集合P2 000中元素的个数.解(1)由数列{a n}的定义得a1=1,a2=-2,a3=-2,a4=3,a5=3,a6=3,a7=-4,a8=-4,a9=-4,a10=-4,a11=5,所以S1=1,S2=-1,S3=-3,S4=0,S5=3,S6=6,S7=2,S8=-2,S9=-6,S10=-10,S11=-5,从而S1=a1,S4=0×a4,S5=a5,S6=2a6,S11=-a11,所以集合P11中元素的个数为5.(2)先证:S i(2i+1)=-i(2i+1)(i∈N*).事实上,①当i=1时,S i(2i+1)=S3=-3,-i(2i+1)=-3,故原等式成立;②假设i=m时成立,即S m(2m+1)=-m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2-(2m+2)2=-m(2m+1)-4m-3=-(2m2+5m+3)=-(m+1)(2m+3).综合①②可得S i(2i+1)=-i(2i+1).于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=-i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j =S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)·(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=-(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j =S(i+1)(2i+1)-j(2i+2)=(2i+1)(i+1)-j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i-1)=i2,于是,当l =i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j.又2 000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1 008.[考题分析]高考对本内容的考查主要有:(1) 二项式定理的简单应用,B级要求;(2)数学归纳法的简单应用,B级要求对应学生用书P511.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n,上式中右边的多项式叫做(a+b)n的二项展开式,其中C r n(r=1,2,3,…,n)叫做二项式系数,式中第r+1项叫做展开式的通项,用T r+1表示,即T r+1=C r n a n-r b r;(2)(a+b)n展开式中二项式系数C r n(r=1,2,3,…,n)的性质:①与首末两端“等距离”的两项的二项式系数相等,即C r n=C n-rn;②C0n+C1n+C2n+…+C n n=2n;C0n+C2n+…=C1n+C3n+…=2n-1.2.二项式定理的应用(1)求二项式定理中有关系数的和通常用“赋值法”.(2)二项式展开式的通项公式T r+1=C r n a n-r b r是展开式的第r+1项,而不是第r项.3.数学归纳法运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.4.数学归纳法的应用(1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形式,然后利用归纳假设,经过恒等变形,得到结论.(2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法.(3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用.(4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式.(5)解题时经常用到“归纳——猜想——证明”的思维模式.热点一二项式定理的应用【例1】(2013·苏北四市调研)已知a n=(1+2)n(n∈N*)(1)若a n=a+b2(a,b∈Z),求证:a是奇数;(2)求证:对于任意n∈N*都存在正整数k,使得a n=k-1+k.证明(1)由二项式定理,得a n=C0n+C1n2+C2n(2)2+C3n(2)3+…+C n n(2)n,所以a=C0n+C2n(2)2+C4n(2)4+…=1+2C2n+22C4n+…,因为2C2n+22C4n+…为偶数,所以a是奇数.(2)由(1)设a n=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2,所以a 2-2b 2=(a +b 2)(a -b 2)=(1+2)n (1-2)n =(1-2)n,当n 为偶数时,a 2=2b 2+1,存在k =a 2,使得a n =a +b 2=a 2+2b 2=k +k -1, 当n 为奇数时,a 2=2b 2-1,存在k =2b 2,使得a n =a +b 2=a 2+2b 2=k -1+k , 综上,对于任意n ∈N *,都存在正整数k ,使得a n =k -1+k .[规律方法] 二项式系数的最大项与展开式系数的最大项不同,本题的第r +1项的二项式系数是C r 8,而展开式系数却是2r C r8,解题时要分清.【训练1】 (2013·南京模拟)已知数列{a n }的首项为1,p (x )=a 1C 0n (1-x )n +a 2C 1n x (1-x )n -1+a 3C 2n x 2(1-x )n -2+…+a n C n -1n xn -1(1-x )+a n +1C n n x n(1)若数列{a n }是公比为2的等比数列,求p (-1)的值;(2)若数列{a n }是公比为2的等差数列,求证:p (x )是关于x 的一次多项式. (1)解 法一 由题设知,a n =2n -1.p (-1)=1·C 0n (-1)0·2n +2·C 1n (-1)1·2n -1+22·C 2n (-1)2·2n -2+…+2n ·C n n (-1)n ·20=C 0n (-2)0·2n +C 1n (-2)1·2n -1+C 2n (-2)2·2n -2+…+C n n (-2)n ·20=(-2+2)n=0.法二 若数列{a n }是公比为2的等比数列,则a n =2n -1,故p (x )=C 0n (1-x )n +C 1n (2x )(1-x )n-1+C 2n (2x )2(1-x )n -2+…+C n -1n (2x )n -1(1-x )+C n n (2x )n=[(1-x )+2x ]n=(1+x )n.所以p (-1)=0.(2)证明 若数列{a n }是公差为2的等差数列,则a n =2n -1.p (x )=a 1C 0n (1-x )n +a 2C 1n x (1-x )n -1+…+a n C n -1n x n -1·(1-x )+a n +1C n n x n =C 0n (1-x )n +(1+2)C 1n x (1-x )n -1+(1+4)C 2n x 2(1-x )n -2+…+(1+2n )C n n x n=[C 0n (1-x )n +C1n x (1-x )n -1+C 2n x 2(1-x )n -2+…+C n n x n ]+2[C 1n x (1-x )n -1+2C 2n x 2(1-x )n -2+…+C n n x n]. 由二项式定理知, C 0n (1-x )n +C 1n x (1-x )n -1+C 2n x 2(1-x )n -2+…+C n n x n =[(1-x )+x ]n=1.因为k C kn =k ·n !k !n -k !=n ·n -1!k -1!n -k !=n C k -1n -1,所以C 1n x (1-x )n -1+2C 2n x 2(1-x )n -2+…+n C n n x n=n C 0n -1x (1-x )n -1+n C 1n -1x 2(1-x )n -2+…+n C n -1n -1x n=nx [C 0n -1(1-x )n -1+C 1n -1x (1-x )n -2+…+C n -1n -1x n -1]=nx [(1-x )+x ]n -1=nx ,所以p (x )=1+2nx .即p (x )是关于x 的一次多项式. 热点二 数学归纳法的应用【例2】 (2013·苏锡常镇模拟)记⎝ ⎛⎭⎪⎫1+x 2⎝ ⎛⎭⎪⎫1+x 22…⎝ ⎛⎭⎪⎫1+x 2n 的展开式中,x 的系数为a n ,x2的系数为b n ,其中n ∈N *.(1)求a n ;(2)是否存在常数p ,q (p <q ),使b n =13⎝⎛⎭⎪⎫1+p 2n ⎝ ⎛⎭⎪⎫1+q 2n ,对n ∈N *,n ≥2恒成立?证明你的结论.解 (1)根据多项式乘法运算法则,得a n =12+122+…+12n =1-12n .(2)计算得b 2=18,b 3=732.代入b n =13⎝ ⎛⎭⎪⎫1+p 2n ⎝⎛⎭⎪⎫1+q 2n ,解得p =-2,q =-1.下面用数学归纳法证明b n =13⎝ ⎛⎭⎪⎫1-12n -1⎝ ⎛⎭⎪⎫1-12n =13-12n +23×14n (n ≥2且n ∈N *)①当n =2时,b 2=18,结论成立.②设n =k 时成立,即b k =13-12k +23×14k ,则当n =k +1时,b k +1=b k +a k2k +1=13-12k +23×14k +12k +1-122k +1 =13-12k +1+23×14k +1. 由①②可得结论成立.[规律方法] 运用数学归纳法证明命题P (n ),由P (k )成立推证P (k +1)成立,一定要用到条件P (k ),否则不是数学归纳法证题.【训练2】 (2010·江苏卷)已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数.(1)证明 设三边长分别为a ,b ,c ,cos A =b 2+c 2-a 22bc,∵a ,b ,c 是有理数,b 2+c 2-a 2是有理数,分母2bc 为正有理数,又有理数集对于除法具有封闭性, ∴b 2+c 2-a 22bc必为有理数,∴cos A 是有理数.(2)证明 ①当n =1时,显然cos A 是有理数;当n =2时,∵cos 2A =2cos 2A -1,因为cos A 是有理数,∴cos 2A也是有理数;②假设当n ≤k (k ≥2)时,结论成立,即cos kA 、cos(k -1)A 均是有理数. 当n =k +1时,cos(k +1)A =cos kA cos A -sin k Asin A =cos kA cos A -12[cos(kA -A )-cos(kA +A )]=cos kA cos A -12cos(k -1)A +12cos(k +1)A解得:cos(k +1)A =2cos kA cos A -cos(k -1)A ∵cos A ,cos kA ,cos(k -1)A 均是有理数, ∴2cos kA cos A -cos(k -1)A 是有理数, ∴cos(k +1)A 是有理数. 即当n =k +1时,结论成立.综上所述,对于任意正整数n ,cos nA 是有理数.备课札记:希望对大家有所帮助,多谢您的浏览!。
第七节数学归纳法(理)[知识能否忆起]数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[小题能否全取]1.用数学归纳法证明3n ≥n 3(n ∈N ,n ≥3),第一步应验证( ) A .n =1 B .n =2 C .n =3D .n =4答案:C2.(教材习题改编)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析:选B 因为n 为偶数,故假设n =k 成立后,再证n =k +2时等式成立. 3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.4.用数学归纳法证明1+2+22+…+2n +1=2n +2-1(n ∈N *)的过程中,在验证n =1时,左端计算所得的项为________.答案:1+2+225.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.解析:当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为:1+12+13+…+12k -1+12k +12k +1+…+12k +1-1 则增加的项数为2k +1-1-2k +1=2k . 答案:2k数学归纳法的应用(1)数学归纳法是一种只适用于与正整数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在n =k +1时一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.(2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.用数学归纳法证明恒等式典题导入[例1] 设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). [自主解答] (1)当n =2时,左边=f (1)=1,右边=2⎝⎛⎭⎫1+12-1=1, 左边=右边,等式成立.(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k=(k +1)⎣⎢⎡⎦⎥⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).由题悟法用数学归纳法证明等式的规则(1)数学归纳法证明等式要充分利用定义,其中两个步骤缺一不可,缺第一步,则失去了递推基础,缺第二步,则失去了递推依据.(2)证明等式时要注意等式两边的构成规律,两边各有多少项,并注意初始值n 0是多少,同时第二步由n =k 到n =k +1时要充分利用假设,不利用n =k 时的假设去证明,就不是数学归纳法.以题试法1.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1. 证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *且k ≥1)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k2k +1,则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3) =2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1,所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立.用数学归纳法证明不等式典题导入[例2] 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. [自主解答] (1)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r . 所以a n =S n -S n -1=b n -1(b -1). 由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),∴a 2a 1=b ,即b (b -1)b +r =b ,解得r =-1. (2)证明:由(1)知a n =2n -1, 因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立. ②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1,要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2.即证2k +32≥(k +1)(k +2),由基本不等式知2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.由题悟法应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.以题试法2.用数学归纳法证明:1+122+132+…+1n 2<2-1n(n ∈N *,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k.当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1命题成立.由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.归纳—猜想—证明典题导入[例3] (2012·天津模拟)如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(0<y 1<y 2<…<y n )是曲线C :y 2=3x (y ≥0)上的n 个点,点A i (a i,0)(i =1,2,3,…,n )在x 轴的正半轴上,且△A i -1A i P i 是正三角形(A 0是坐标原点).(1)写出a 1、a 2、a 3;(2)求出点A n (a n,0)(n ∈N *)的横坐标a n 关于n 的表达式并证明.[自主解答] (1)a 1=2,a 2=6,a 3=12.(2)依题意,得x n =a n -1+a n 2,y n =3·a n -a n -12,由此及y 2n =3·x n 得⎝ ⎛⎭⎪⎫3·a n -a a -122=32(a n+a n -1),即(a n -a n -1)2=2(a n -1+a n ).由(1)可猜想:a n =n (n +1)(n ∈N *). 下面用数学归纳法予以证明: ①当n =1时,命题显然成立;②假定当n =k 时命题成立,即有a k =k (k +1),则当n =k +1时,由归纳假设及(a k +1-a k )2=2(a k +a k +1),得[a k +1-k (k +1)]2=2[k (k +1)+a k +1],即a 2k +1-2(k 2+k +1)a k +1+[k (k -1)]·[(k +1)(k +2)]=0,解之得,a k +1=(k +1)(k +2)(a k +1=k (k -1)<a k 不合题意,舍去),即当n =k +1时成立.由①②知,命题成立.由题悟法“归纳——猜想——证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用.其关键是归纳、猜想出公式.以题试法3.(2012·北京海淀模拟)数列{a n }满足S n =2n -a n (n ∈N *) (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想. 解:(1)当n =1时,a 1=S 1=2-a 1, ∴a 1=1.当n =2时,a 1+a 2=S 2=2×2-a 2, ∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3, ∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n -1(n ∈N *).(2)证明:①当n =1时,a 1=1,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k ,∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k ,这表明n =k +1时,结论成立, 由①②知猜想a n =2n -12n -1成立.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解析:选B 由题意n =k 成立,则n =k +2也成立,又n =2时成立,则p (n )对所有正偶数都成立.2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( )A .7B .8C .9D .10解析:选B 可逐个验证,n =8成立.3.(2013·海南三亚二模)用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k 时等式成立,则当n =k +1时,应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1 B .1+2+22+…+2k +2k +1=2k -1+2k +1 C .1+2+22+…+2k -1+2k +1=2k +1-1 D .1+2+22+…+2k -1+2k =2k +1-1解析:选D 由条件知,左边是从20,21一直到2n-1都是连续的,因此当n =k +1时,左边应为1+2+22+…+2k -1+2k ,而右边应为2k +1-1.4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1D .f (n )+n -2解析:选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).6.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1 C .2(2+7k +1)D .3(2+7k )解析:选D (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立.7.(2012·徐州模拟)用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析:n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +18.(2012·济南模拟)用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)29.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得:S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3得:S 3=34.猜想S n =nn +1.答案:n n +110.用数学归纳法证明:12+32+52+…+(2n -1)2 =13n (4n 2-1). 证明:(1)当n =1时,左边=12=1,右边= 13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k 2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1) [4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立. 11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1, b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13. ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k ·(2a k +1) =b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.12.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3……. (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出严格的证明.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, 于是(a 1-1)2-a 1(a 1-1)-a 1=0, 解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.(2)由题设(S n -1)2-a n (S n -1)-a n =0, 即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3….下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立, 即S k =k k +1, 当n =k +1时,由①得S k +1=12-S k, 即S k +1=k +1k +2,故n =k +1时结论也成立.综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.1.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).2.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×(1+19)2=100, ∴n =10. 易知 m 3=21m +m (m -1)2×2, 整理得(m -5)(m +4)=0, 又 m ∈N *, 所以 m =5, 所以m +n =15.答案:153.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.解:(1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k ≥3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0,所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.1.用数学归纳法证明a n +1+(a +1)2n -1(n ∈N *)能被a 2+a +1整除. 证明: (1)当n =1时,a 2+(a +1)=a 2+a +1可被a 2+a +1整除.(2)假设n=k(k≥1,k∈N*)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,a k+2+(a+1)2k+1=a·a k+1+(a+1)2(a+1)2k-1=a·a k+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1=a[a k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1由假设可知a[a k+1+(a+1)2k-1]能被a2+a+1整除,(a2+a+1)(a+1)2k-1也能被a2+a +1整除,∴a k+2+(a+1)2k+1也能被a2+a+1整除,即n=k+1时命题也成立,由(1)(2)知,对任意n∈N*原命题成立.2.在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1),n∈N*,其中c≠0.求数列{a n}的通项公式.解:由a1=1,a2=ca1+c2·3=3c2+c=(22-1)c2+c,a3=ca2+c3·5=8c3+c2=(32-1)c3+c2,a4=ca3+c4·7=15c4+c3=(42-1)c4+c3,猜测a n=(n2-1)c n+c n-1,n∈N*.下面用数学归纳法证明.当n=1时,等式成立;假设当n=k时,等式成立,即a k=(k2-1)c k+c k-1,则当n=k+1时,a k+1=ca k+c k+1(2k+1)=c[(k2-1)c k+c k-1]+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2-1]c k+1+c k,综上,a n=(n2-1)c n+c n-1对任何n∈N*都成立.不等式、推理与证明一、选择题(本题共12小题,每小题5分,共60分) 1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2]解析:选B ∵x -2x +1≤0,∴-1<x ≤2.2.把下面在平面内成立的结论类比推广到空间,结论还正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线没有公共点,则这两条直线平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行 解析:选B 由空间立体几何的知识可知B 正确.3.(2012·保定模拟)已知a >b ,则下列不等式成立的是( ) A .a 2-b 2≥0 B .ac >bc C .ac 2>bc 2D .2a >2b解析:选D A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 、C 不成立.由a >b 知2a >2b 成立.4.若规定⎪⎪⎪⎪a b c d =ad -bc ,则不等式0<⎪⎪⎪⎪x 11 x <1的解集是( )A .(-1,1)B .(-1,0) ∪(0,1)C .(-2,-1) ∪(1,2)D .(1,2)解析:选C 由题意可知0<x 2-1<1⇔1<x 2<2⇔1<|x |<2⇔-2<x <-1或1<x < 2.5.(2012·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,x -1≤0,则目标函数z =3x -2y的最小值为( )A .-5B .-4C .-2D .3解析:选B 不等式表示的平面区域是如图所示的阴影部分,作辅助线l 0:3x -2y =0,结合图形可知,当直线3x -2y =z 平移到过点(0,2)时,z =3x -2y 的值最小,最小值为-4.6.设a ∈R ,则“a -1a 2-a +1<0”是“|a |<1” 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件解析:选C 因为a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0,所以由a -1a 2-a +1<0得a <1,不能得知|a |<1;反过来,由|a |<1得-1<a <1,所以a -1a 2-a +1<0,因此,“a -1a 2-a +1<0”是“|a |<1”成立的必要不充分条件.7.设M =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,且a +b +c =1(a ,b ,c 均为正数),由综合法得M 的取值范围是( )A.⎣⎡⎦⎤0,18 B.⎣⎡⎭⎫18,1 C. [1,8]D .[8,+∞)解析:选D 由a +b +c =1,M =⎝⎛⎭⎫b a +c a ⎝⎛⎭⎫a b +c b ⎝⎛⎭⎫a c +bc ≥8(当且仅当a =b =c 时取等号).8.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .cb 2<ab 2D .ac (a -c )<0解析:选C 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确.9.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,x 2,x <0,,则f (f (x ))≥1的充要条件是( )A .x ∈(-∞,- 2 ]B .x ∈[42,+∞)C .x ∈(-∞,-1]∪[42,+∞)D .x ∈(-∞,-2]∪[4,+∞)解析:选D 当x ≥0时,f (f (x ))=x 4≥1,所以x ≥4;当x <0时,f (f (x ))=x 22≥1,所以x 2≥2,解得x ≥2(舍去)或x ≤-2,因此f (f (x ))≥1的充要条件是x ∈(-∞,-2]∪[4,+∞).10.(2012·山西省四校联考)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z=abx +y (a >0,b >0)的最大值为13,则a +b 的最小值为( )A .2B .4C .6D .8解析:选C 在坐标平面内画出题中的不等式组表示的平面区域及直线abx +y =0,平移该直线,当平移到经过该平面区域内的点(1,4)时,相应直线在y 轴上的截距达到最大,此时目标函数z =abx +y (a >0,b >0)取得最大值,依题意有ab ×1+4=13,即ab =9,其中a >0,b >0,a +b ≥2ab =29=6,当且仅当a =b =3时取等号,因此a +b 的最小值为6.11.已知M 是△ABC 内的一点,且AB ·AC =23,∠BAC =30°,若△MBC 、△MCA 和△MAB 的面积分别是12、x 、y ,则1x +4y的最小值是( )A .9B .18C .16D .20解析:选B AB ·AC =|AB ||AC |cos 30°=23, ∴|AB ||AC |=4,∴S △ABC =12×4×sin 30°=1,∴12+x +y =1,即2(x +y )=1, ∴1x +4y =⎝⎛⎭⎫1x +4y ·2(x +y )=2⎝⎛⎭⎫5+y x +4xy ≥2⎝⎛⎭⎫5+2 y x ·4x y =2×(5+4)=18,当且仅当y =2x ,即x =16,y =13时等号成立.12.(2012·湖南高考)设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③解析:选D 由a >b >1,c <0得,1a <1b ,c a >cb ;幂函数y =xc (c <0)是减函数,所以a c <b c ;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.二、填空题(本题共4个小题,每小题5分,共20分)13.(文)若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则pq =________.解析:由-4<2x -3<4 得-12<x <72,由题意得72-12=-p ,⎝⎛⎭⎫-12×72=q , 即p =-3,q =-74,∴p q =127.答案:12713.(理)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案:f (k +1)=f (k )+(2k +1)2+(2k +2)214.(2012·福州模拟)如图,一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________,第n 行的第2个数为________.解析:每行的第一个数可构成数列1,3,5,7,9,…,是以1为首项,以2为公差的等差数列,故第n 行第一个数为1+2(n -1)=2n -1.从第2行起,每行的第2个数可构成数列3,6,11,18,…,可得a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2n -3.(其中n 为行数),以上各式两边分别相加,可得a n =[3+5+7+…+(2n -3)]+a 2=(n -2)[3+(2n -3)]2+3=n 2-2n +3.答案:2n -1 n 2-2n +315.(2012·浙江调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y +1≥0,2x -y +2≥0,若(-1,0)是使ax +y 取得最大值的可行解,则实数a 的取值范围是________.解析:题中不等式组表示的平面区域如图中阴影所示,令z =ax +y ,则y =-ax +z ,因为(-1,0)是使ax +y 取得最大值的可行解,所以结合图形可知-a ≥2,即a ≤-2.答案:(-∞,-2]16.(2012· 北京西城模拟)设λ>0,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0所表示的平面区域是W .给出下列三个结论:①当λ=1时,W 的面积为3; ②∃λ>0,使W 是直角三角形区域; ③设点P (x ,y ),∀P ∈W 有x +yλ≤4.其中,所有正确结论的序号是________. 解析:当λ=1时,不等式组变成⎩⎪⎨⎪⎧x ≤2,x -y ≥0,x +2y ≥0,其表示以点(0,0),(2,2),(2,-1)为顶点的三角形区域,易得W 的面积为3,①正确;∵直线λx -y =0的斜率为λ,直线x +2λy =0的斜率为-12λ,λ×⎝⎛⎭⎫-12λ=-12≠-1,且直线x =2垂直于x 轴,∴W 不可能成为直角三角形区域,②错误; 显然,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0表示的区域是以点(0,0),(2,2λ),⎝⎛⎭⎫2,-1λ为顶点的三角形区域,令z =x +y λ,则其在三个点处的值依次为:0,4,2-1λ2,∴z =x +yλ的最大值z max =4,③正确.答案:①③三、解答题(本题共6小题,共70分)17.(本小题满分10分)已知集合A ={x |x 2<4},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1<4x +3.(1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a 、b 的值. 解:(1)A ={x |-2<x <2},∵4x +3>1⇒4x +3-1>0⇒x -1x +3<0⇒-3<x <1, ∴B ={x |-3<x <1}. ∴A ∩B ={x |-2<x <1}.(2)由(1)及题意知,不等式2x 2+ax +b <0的解集为(-3,1), ∴-3+1=- a 2,-3×1=b 2,∴a =4,b =-6.18.(本小题满分12分)已知x >0,y >0,且2x +8y -xy =0, 求:(1)xy 的最小值; (2)x +y 的最小值.解:x >0,y >0,2x +8y -xy =0, (1)xy =2x +8y ≥216xy , ∴xy ≥8, ∴xy ≥64.故xy 的最小值为64.(2)由2x +8y =xy ,得2y +8x=1, 则x +y =(x +y )·1=(x +y )⎝⎛⎭⎫2y +8x=10+2x y +8y x≥10+8=18. 故x +y 的最小值为18.19.(本小题满分12分)已知函数f (x )=x 2+ax +b ,a ,b ∈R .(1)若对任意的实数x ,都有f (x )≥2x +a ,求b 的取值范围;(2)当x ∈[-1,1]时,f (x )的最大值为M ,求证:M ≥b +1.解:(1)对任意的x ∈R ,都有f (x )≥2x +a ⇔对任意的x ∈R ,x 2+(a -2)x +(b -a )≥0⇔Δ=(a -2)2-4(b -a )≤0⇔b ≥1+a 24⇔b ≥1. ∵a ∈R ,∴b ∈[1,+∞),即b 的取值范围为[1,+∞).(2)证明∵f (1)=1+a +b ≤M ,f (-1)=1-a +b ≤M ,∴2M ≥2b +2,即M ≥b +1.20.(本小题满分12分) 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求1S 2,1S 3,1S 4,…,并求1S n(不需证明); (2)求数列{a n }的通项公式.解:(1)当n ≥2时,由a n =S n -S n -1和S 2n =a n ⎝⎛⎭⎫S n -12, 得S 22=(S 2-S 1)⎝⎛⎭⎫S 2-12, 得1S 2=1+2S 1S 1=2+11=3, 由S 23=(S 3-S 2)⎝⎛⎭⎫S 3-12, 得1S 3=2+1S 2=5, 由S 24=(S 4-S 3)⎝⎛⎭⎫S 4-12,得1S 4=2+1S 3=7, …由S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12得 1S n =2+1S n -1=2n -1. (2)由(1)知,S n =12n -1,当n ≥2时,a n =S n -S n -1 =12n -1-12n -3=-2(2n -1)(2n -3), 显然,a 1=1不符合上述表达式,所以数列{a n }的通项公式为a n =⎩⎨⎧ 1,n =1,-2(2n -1)(2n -3),n ≥2.21.(本小题满分12分)(2012·福州质检)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5万套,此时每套丛书的供货价格为30+105=32元, 书商所获得的总利润为5×(100-32)=340万元.(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0, 得0<x <150, 由题意,单套丛书利润P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x-30.∵0<x <150,∴150-x >0,P =- ⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. ∵(150-x )+100150-x ≥2 (150-x )·100150-x=2×10=20, 当且仅当150-x =100150-x,即x =140时等号成立, ∴此时,P max =-20+120=100.每套丛书售价定为100元时,书商所获得的总利润为340万;每套丛书售价定为140元时,单套丛书的利润取得最大值.22.(本小题满分12分)(2012·江西模拟)设集合W 是满足下列两个条件的无穷数列{a n }的集合:①a n +a n +22≤a n +1;②a n ≤M ,其中n ∈N *,M 是与n 无关的常数. (1)若{a n }是等差数列,S n 是其前n 项的和,a 3=4,S 3=18,试探究{S n }与集合W 之间的关系;(2)设数列{b n }的通项为b n =5n -2n ,且{b n }∈W ,M 的最小值为m ,求m 的值;(3)在(2)的条件下,设C n =15[b n +(m -5)n ]+2, 求证:数列{C n }中任意不同的三项都不能成为等比数列.解:(1)∵a 3=4,S 3=18,∴a 1=8,d =-2,∴S n =-n 2+9n ,S n +S n +22<S n +1满足条件①,∴S n =-⎝⎛⎭⎫n -922+814,当n =4或5时,S n 取最大值20. ∴S n ≤20满足条件②,∴{S n }∈W .(2)b n +1-b n =5-2n 可知{b n }中最大项是b 3=7,∴M ≥7,M 的最小值为7. (3)证明:由(2)知C n =n +2,假设{C n }中存在三项c p 、c q 、c r (p 、q 、r 互不相等)成等比数列,则c 2q =c p ·c r , ∴(q +2)2=(p +2)(r +2),∴(q 2-pr )+(2q -p -r )2=0.∵p 、q 、r ∈N *,∴⎩⎪⎨⎪⎧ q 2=pr ,2q -p -r =0, 消去q 得(p -r )2=0, ∴p =r ,与p ≠r 矛盾. ∴{C n }中任意不同的三项都不能成为等比数列.。