六年级数学正比例和反比例练习总结
- 格式:pdf
- 大小:158.60 KB
- 文档页数:11
【专项复习】六年级《正比例与反比例》1.判断下面的两个量成正比例、反比例还是不成比例.①圆的周长和半径.②圆的面积和半径.③正方形的周长和边长.④圆柱的侧面积一定,圆柱的高和底面的半径.⑤一个自然数和它的倒数.⑥比例尺一定,图上距离和实际距离.2.判断下面各题中的两个量,哪些成正比例?哪些成反比例,哪些不成比例?填入横线内.(1)正方形的周长与边长.(2)小丽步行上学的平均速度与所花时间.(3)一个人的身高和年龄.(4)三角形的面积一定,它的底和高.(5)一捆100米长的电线,用去的长度和剩下的长度..3.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?4.根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.(1)选择正确的答案序号填在( )中.表1中的两种量( ),表2中的两种量( ),表3中的两种量( ).A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用( )张纸,175张纸能装订( ) 本.5.下图中线段OA表示购买饮料应付金额与瓶数的关系,看图回答问题。
(1)购买饮料应付金额与瓶数成正比例吗?为什么?(2)观察图象,买4瓶饮料需要多少钱?45元可以买几瓶饮料?6.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为( ).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?7.文具盒每个售价8元,购买2个,3个,⋯分别需要多少元?(1)填一填.(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花( )元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.8.食堂每天开饭人数与购买蔬菜的数量如表:(1)根据已知的数量关系补充完整上面的表格.(2)根据表中的数在下面图中描出对应的点,再把各个点连接起来.(3)上面的两种量成比例吗?如果成,成什么比例,为什么?9.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)10.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?11.某工程队铺一段路,原计划每天铺9.6千米,15天铺完,实际每天比原计划多铺2.4千米,实际要用多少天铺完?(用比例解答)12.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?13.某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个.照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)14.一台机器上有一对相互啮合的齿轮,其中大齿轮有400个齿,每分钟转30圈,小齿轮有80个齿,每分钟转多少圈?15.A、B两城相距240千米,四种不同的交通工具从A城到B城的速度和所用的时间情况如下表.(1)请把上表填写完整.(2)不同的交通工具在行驶这段路程的过程中,哪个量没有变?(3)速度和所用时间成什么比例关系?为什么?(4)如果轿车要在25小时行完全程,那么每小时应行驶多少千米?16.一种药水是由药粉和水按照1:200的质量比配制而成的.(1)补充表格.(2)根据表格中的数据在下面的方格纸上描点连线.(3)12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?17.要修一条长12千米的公路,前3天修了1.5千米,照这样计算,修完这条公路还要用多少天?(用比例解)18.修路队修一条公路,前4天修了320米,照这样的速度,又用了10天把路全部修完.这条路全长多少米?(用比例求解)19.一个工程队要修一条长4340米公路,前6个月已修了1860米.照这样的进度,还要几个月才能完成任务?20.自行车中的学问.右图是自行车的前后齿轮示意图,在骑自行车的过程中,蹬一圈,前齿轮就转一圈,后齿轮随之转几圈,后齿轮每转一圈,自行车车轮随之转一圈.请你依据生活经验填写下表.(1)由上表可看出,在骑自行车的过程中,蹬的圈数和车前进的距离成( ) 比例.(2)贝贝每分钟蹬80圈,骑着这辆自行车,每分钟前进多少米?(保留到整数)21.如图是两个互相啮(nie)合的齿轮,它们在同一时间内转动时,大齿轮和小齿轮转过的总齿数是相同的。
小学数学总复习— 正比例和反比例知识总结1、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。
对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。
这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。
所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,1120 = 120,2240= 120,3360 = 120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
正比例和反比例的归纳总结正比例和反比例是数学中常见的两种关系。
在实际生活和工作中,我们经常会遇到各种与正比例和反比例相关的情况。
本文将对正比例和反比例进行归纳总结,从定义、特点、图像以及实际应用等方面进行探讨。
一、正比例关系正比例关系是指两个变量之间的关系满足一个固定比例。
即当一个变量增加(或减少)时,另一个变量也相应地以相同的比例增加(或减少)。
正比例关系常用符号表示为y ∝ x(y正比于x),其中符号“∝”代表正比于的意思。
1. 定义正比例关系是指两个变量之间的关系满足一个固定的比例。
数学表达式为y = kx,其中k为比例常数,表示两个变量之间的比例关系。
2. 特点(1)随着自变量x的增加,因变量y也以相同比例增加。
(2)比例常数k是正比例关系的重要特征,它表示了两个变量之间的固定比例关系。
3. 图像正比例关系的图像通常是经过原点(0,0)的一条直线。
其斜率为k,表示了两个变量之间的比例关系。
当k为正数时,直线向上倾斜;当k为负数时,直线向下倾斜。
4. 实际应用正比例关系在实际生活和工作中有广泛的应用。
例如,当我们购买物品时,价格和数量之间存在正比例关系;当我们开车行驶时,行驶的时间和距离之间也存在正比例关系。
二、反比例关系反比例关系是指两个变量之间的关系满足一个固定的反比例。
即当一个变量增加(或减少)时,另一个变量以相同的比例减少(或增加)。
反比例关系常用符号表示为y ∝ 1/x(y正比于1/x),也可以表示为y = k/x。
1. 定义反比例关系是指两个变量之间的关系满足一个固定的反比例。
数学表达式为y = k/x,其中k为比例常数,表示两个变量之间的反比例关系。
2. 特点(1)随着自变量x的增加,因变量y以相同比例减少。
(2)比例常数k是反比例关系的重要特征,它表示了两个变量之间的固定比例关系。
3. 图像反比例关系的图像通常是一个经过原点(0,0)的非线性曲线。
曲线在第一象限和第三象限均存在,以y轴和x轴为渐进线。
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
数学正比例和反比例试题答案及解析1.(2013•中宁县模拟)盐是每包1.2元,小明的妈妈买盐的包数和用的钱数成比例.【答案】正.【解析】判断买盐的包数和用的钱数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为买盐用的钱数÷买盐的包数=每包盐的价钱=1.2元(一定),所以小明的妈妈买盐的包数和用的钱数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.已知6x=4y,x和y成比例,已知=,x和y成比例.【答案】正,反.【解析】判断x和y成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.据此再利用比例的性质,先将等式改写然后再判断x和y成什么比例.解:因为6x=4y,所以x:y=4:6=(一定),是比值一定,所以x和y成正比例;因为=,所以xy=18,是乘积一定,所以x和y成反比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.3. 3A÷5=20%B,A和B成什么比例?为什么?【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:3A÷5=20%B,则3A=20%B×5,3A=B,则A:B=1:3=(一定),所以A和B成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.4.判断变化的量是否成正比例,说明理由.平行四边行的高一定,它的底和面积.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为平行四边形的面积÷底=高(一定),所以平行四边形的底和面积成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.长方体的体积一定,底面积和高.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为底面积×高=长方体的体积(一定),所以底面积和高成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,6.判断题中的两种量是不是成比例,成什么比例,并说明理由.长方形周长一定,长和宽.【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长+宽=周长÷2(一定),是和一定,不是比值或积一定,所以长与宽不成比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.判断两个量是否成正比例或反比例,说明理由:房间的面积一定,铺地砖的块数与每块地砖的面积.【答案】成反比例.【解析】判断铺地砖的块数与每块地砖的面积是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例.点评:两种相关联的量,一种量变化,另一种量随着变化,如果这两种量相对应的积一定,这两种量叫做成反比例的量,它们的关系叫成反比例的关系,用字母表示为yx=k(一定).8.判断变化的量是否成正比例,说明理由.比值一定,比的前项和比的后项.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为比的前项÷比的后项=比值(一定),符合正比例的意义,所以比的前项和后项成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.9.判断题中两种量是否成比例:长方形的周长与宽.理由:.【答案】不成比例,长方形的周长与宽不是比值一定、也不是乘积一定.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长方形的周长÷2﹣宽=长,不符合成正比例和反比例的条件,所以长方形的周长与宽不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.10.判断变化的量是否成正比例,说明理由.若A=,则 A和B.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为A=,则AB=20(一定),所以A和B成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,11.下面各题中的两种量是不是成比例,如果成比例,成什么比例,并说明理由.(1)正方形的面积和边长.(2)三角形的底一定,它的面积和高(3)三角形的高一定,面积与底.(4)圆的面积与半径.(5)房屋地面的面积一定,铺地砖的块数与每块地砖的面积.(6)每块地砖的面积一定,铺地面积与所需地砖的块数.(7)分子一定,分母和分数值.(8)梯形的上底和下底一定,面积和高.(9)车轮的直径一定,所行驶的路程和转数.(10)练习本总价和练习本本数的比值是.当一定时,和成比例.【答案】练习本总价,练习本本数,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)正方形的面积÷边长=边长,边长随面积的变化而变化,但比值不一定,所以正方形的面积和边长不成比例;(2)因为:三角形的÷高=底÷2(一定),所以三角形的底一定,它的面积和高成正比例;(3)因为:三角形的÷底=高÷2(一定),三角形的高一定,面积与底成正比例;(4)因为圆的周长÷半径=2π(一定),所以圆的周长与圆的半径成正比例;因为圆的面积÷r=πr,所以圆的面积与半径不成比例;(5)因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例;(6)用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;(7)分母×分数值=分子(一定),所以分母和分数值成反比例;(8)梯形的面积÷高=(上底+下底的和)÷2,因为上底与下底一定,所以(上底+下底的和)÷2就一定,是比值一定,梯形的上底和下底一定,面积和高成正比例;(9)因为车轮所行驶的路程=车轮的周长×车轮的转数,即车轮所行驶的路程÷车轮的转数=车轮的周长,又因为车轮的直径一定,所以车轮的周长一定,所以车轮所行驶的路程÷车轮的转数=车轮的周长(一定),所以车轮所行驶的路程与车轮的转数成正比例;(10)因为练习本总价÷练习本本数=每本练习本的单价,即:练习本总价和练习本本数的比值是单价.当单价一定时,练习本总价和练习本本数成正比例;不成比例,成正比例,成正比例,不成比例,成反比例,成正比例,成反比例,成正比例,成正比例,单价,单价,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.判断题中的两种量是不是成比例,成什么比例,并说明理由.如果8÷a=b,那么a 和 b.【答案】反比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为8÷a=b,所以ab=8(一定),是乘积一定,符合反比例的意义;所以a和b成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.功效一定,工作总量和时间.【答案】成正比例.【解析】判断工作总量和工作时间之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为工作总量÷工作时间=工作效率(一定),是比值一定,符合正比例的意义,所以工作效率一定,工作总量和时间成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.14.买相同的电脑,购买的电脑台数与总价.【答案】正比例.【解析】判断购买的电脑台数与总价是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解:因为总价÷购买的电脑台数=电脑的单价(一定),是比值一定,所以买相同的电脑,购买的电脑台数与总价成点评:此题属于辨识成正比例的量,就看这两种量是否是对应的比值一定,再做出判断.15.判断两种量成什么比例,并说明理由:x=8y,x与y.【答案】成正比【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:成正比例;因为x=8y,x÷y=8(一定),x与y成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.16.购买礼品的份数与应付钱数如下表.(2)说明这个比值所表示的意义.(3)表中的应付钱数和份数成正例吗?为什么?【答案】(1)全是8:1;(2)比值都是8所表示的是礼品的单价为8元,(3)成正比例;【解析】(1)用应付钱数比上份数,化成最简比即可,(2)比值所表示的礼品的单价,(3)判断购买的份数与应付的总钱数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)80:10=8:1;160:20=8:1;320:40=8:1;480:60=8:1;640:80=8:1;800:80=8:1;(2)比值都是8所表示的是礼品的单价为8元,(3)因为应付的总钱数÷购买的份数=每份礼品的单价(一定),符合正比例的意义,所以购买的份数与应付的总钱数成正比例;17.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】单价不变,数量与总价之间成正比例,需要13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.18.如图是某地区6~~12岁儿童平均体重情况:看图回答问题:(1)从统计图中可以看出,随年龄的增长,平均体重有什么变化?(2)从统计图中可以看出,女生在哪个年龄段平均体重增加最快?(3)平均体重的增加与年龄增长成正比例吗?(4)从图中,你还能得到哪些信息?【答案】增加.11﹣﹣﹣12岁,不成正比例.11岁之前,男生和女生体重的增长速度相当,但11﹣﹣12岁女生体重增长的速度要快于男生.【解析】(1)通过折线看随着年龄的增加数值的变化,是增大还是缩小;(2)折线的坡度越陡,说明变化的越快;(3)根据正比例的意义解决;(4)读图,写出所获取的信息.解:(1)随着年龄的增加折线的数值在增大,所以平均体重是在增加.(2)女生体重的折线在11﹣﹣12岁时最陡,说明这一时期变化的最快,所以11﹣﹣﹣12岁时女生的平均体重变化的最快.(3)男生6岁时的平均体重是19.3千克,体重与年龄的比值是:19.3:6≈3.2;当男生7岁时平均体重是21千克,体重与年龄的比值是:21:7=3;比值不相同,所以体重的增加与年龄的增长不成正比例.(4)由图可知:11岁之前,男生和女生体重的增长速度相当,但11﹣﹣12岁女生体重增长的速度要快于男生.点评:本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.19.题中的两个量成不成比例?成什么比例?每块地砖的面积一定,地砖的块数和铺地的面积..【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.20.有4个同学练习打同一份作文,下表记录的是每人打字所用的时间.小明小刚小英小锋请把上表补充完整,再回答下列问题.(1)打字的速度和所用的时间有什么关系?(2)李老师打这份作文用了24分,你知道她平均每分钟打多少个字?【答案】成反比例关系,100个字.【解析】(1)因打的是同一份作文,所以总字数=打字用的时间×打字的速度,总字数一定,可知打字的速度和所用的时间成反比例关系.(2)先求出这份作文的总字数,再除以24,就果子老师的打字速度.解:总字数是:30×80=2400(个),小刚的打字速度是:2400÷40=60(字/分),小英的打字速度是:2400÷60=40(字/分),小锋的打字速度是:2400÷80=30(字/分),(1)总字数=打字用的时间×打字的速度,总字数一定,可知打字的速度和所用的时间成反比例关系,(2)2400÷24=100(字/分).答:她平均每分钟打100个字.点评:本题主要考查了学生根据统计表分析数量关系,解答问题的能力.21. x、y是两种相关联的量,若7x=8y,则x和y成反比例..【答案】×.【解析】要想判定x和y成什么比例关系,必须根据式子,进行推导,然后根据正、反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定成什么比例关系.解:因为7x=8y,所以x:y=8:7=(一定),符合正比例的意义,不符合反比例的意义,所以x和y成正比例,不成反比例,点评:本题重点考查用正比例和反比例的意义来辨识成正比例的量和成反比例的量.22.(2010•湖北模拟)圆周长计算公式为C=2πr,当C一定,π和r 成反比例..【答案】错误.【解析】在成比例的数量关系中,一定有一个一定的量和两个变化的量,如果三个量都是一定的或都是变化的,那么这些量就不成比例关系.分析题干中的数量关系,发现题干中的三个量都是一定的,故这三个量不成任何比例关系.解:圆周长计算公式C=2πr中,2π是一定的,当C一定,那么r也是一定的,这样在这个关系式中,所有的量都是一定的,所以当C一定,π和r不成任何比例,所以“当C一定,π和r 成反比例”是错误的.点评:此题考查运用正反比例的意义来辨识成正比例和反比例的量.23.运一批货物,每天运的吨数和需要的天数如下表:(1)写出几组这两组量中的对应的两个数的积,并比较积的大小.(2)说明这个积表示什么?(3)表中相关联的两个量成反比例吗?为什么?【答案】因为积都是300,所以积相等;这批货物的总吨数;反比例关系.【解析】(1)把每一组中每天运的吨数和需要的天数相乘,再比较积的大小即可;(2)根据题意,这个积表示这批货物的总吨数;(3)因为表中相对应的两个数的乘积一定,符合反比例的意义,所以成反比例关系.解:(1)300×1=300,150×2=300,100×3=300,75×4=300,60×5=300,50×6=300,因为积都是300,所以积相等;(2)每天运的吨数×需要的天数=这批货物的总吨数,所以这个积表示这批货物的总吨数;(3)因为表中相对应的两个数的乘积一定,符合反比例的意义,所以成反比例关系.点评:此题考查正、反比例的意义,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.若y=,则y与x成比例.【答案】反.【解析】判断x和y之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为y=,所以xy=3(一定),所以y与x成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.已知X×=Y×,则X、Y成比例,且有X:Y=:.【答案】正;2、3.【解析】判断x与y之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:x×=y×,x:y=:=;符合正比例的意义,所以x与y成正比例,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.26.在圆中,面积和半径比例周长和半径比例直径和半径比例直径和面积比例.【答案】不成,正,正,不成.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:①圆的面积公式s=πr2,从这个公式可以看出:s:r2=π(一定),也就是圆的面积只是与半径的平方成正比例关系,和半径不成比例关系.②圆的周长公式c=2πr,从这个公式可以看出:c:r=2π(一定);③因为圆的直径÷半径=2(一定),所以直径和半径成正比例;④圆的面积公式s=πr2,从这个公式可以看出:s:r2=π(一定),也就是圆的面积只是与半径的平方成正比例关系,和半径、直径都不成比例关系,所以直径和面积不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.27.同样的铁丝,每米长的重量一定,铁丝的长度和总质量比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:同样的铁丝,因为:铁丝总重量÷长度=每米长的重量(一定),所以铁丝长度和总重量成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.28.在长方体中,底面积一定,体积和高比例体积一定,底面积和高比例高一定,底面积和体积比例.【答案】正,反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为V÷h=s(一定),即比值一定,所以体积与高成正比例;因为:V=sh,如果体积一定,即底面积与高的乘积一定,所以体积一定,底面积与高成反比例;因为:V÷s=h(一定),即比值一定,所以底面积与体积成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.29.判断题中的两个量是否成正比例,并说明理由订阅《少年报》的份数和钱数..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为钱数÷份数=单价(一定),所以订阅《少年报》的份数与钱数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30.在同一时间,同一地点,华华的身高与他的影长成.【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为在同一时间,同一地点,一个人的身高与它的影长的比值是一定的,所以华华的身高与他的影长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.已知xy=5,x与y成比例.【答案】反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:xy=5(一定),则x与y成反比例;再做判断.32.判断是否成比例,成什么比例:李叔叔从家到工厂,骑自行车的速度和所需时间..【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:骑自行车的速度×所需的时间=李叔叔从家到工厂的路程(一定);已知路程一定,也就是,骑自行车的速度和所需时间的乘积一定,所以,骑自行车的速度和所需时间成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.33.小明要做了12到数学题,做完的题和没做的题..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为做完的题+没做的题=题的总数(一定),因为是“和”一定,所以小明要做了12到数学题,做完的题和没做的题不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.34.判断题中两个量是否成正比例关系:圆的半径与周长..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:圆的周长÷半径=圆周率×2(一定),是对应的比值一定,所以圆的周长与半径成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.35. ab=c,当c一定时a和b;当a一定时b和c;当b一定时a和c.(判断数量间的比例关系)A、成正比例B、成反比例.【答案】B,A,A.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为ab=c,所以c÷a=b,c÷b=a,当c一定时,a和b成反比例;当a一定时,b和c成正比例;当b一定时,a和c成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.36.出米率一定,稻谷的重量和大米的重量成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:×100%=出米率(一定),所以出米率一定,稻谷的重量和大米的重量成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,。
六、比例1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:32、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3、比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
(利用比例的意义和比例的基本性质可以判断两个比是否成比例)4、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
5 、正比例和反比例:(1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
六年级正比例和反比例知识点总结(共10篇) 反比例正比例知识点正比例和反比例判断正比例反比例的题正比例反比例应用题篇一:六年级下册正比例和反比例的知识点知识点:1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系A=K(一定) B3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇二:六年级下册正比例和反比例的知识点六年级下册第二单元知识点1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离A=K(一定) B7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇三:正比例和反比例的意义知识点总结加典型例题正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
六年级数学《正比例和反比例》专题知识一、变化的量与应用1、变化的量:生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
2、固定的量:不会因为某一个变量而改变的量,但有些固定的量是相对的,有些是绝对的。
3、应用练习第一类:概念型例1、一辆车从甲地开往乙地,与速度相关联的量是()。
A. 单价B. 数量C. 时间【随堂练习】小乐用一根长绳做跳绳,与跳绳长度相关联的量是( )。
A跳绳的数量B跳绳的粗细C跳绳的质量例2、一个正方形,( )不是变化的量。
A.正方形边的条数B.正方形的边长C.正方形的面积【随堂练习】手工课老师给六(1)班的每位学生发了一根长60厘米的彩带,让他们制作大小不同的花朵。
则( )不是变化的量。
A花朵的数量B花朵的大小C彩带的长度第二类:图表型例3、如图是笑笑从出生到6岁的年龄与体重变化表,笑笑2岁时,体重是____千克。
例4、下图是某洗澡房水加热过程中水温度变化的情况表,在一定时间范围内,水温随着( )的变化而变化。
A加热时间B间隔长短C体积大小例5、洋洋分别称量了某种液体不同体积时的重量,并记录在了表格中,如下表。
当液体的体积是100立方厘米时,重( )g。
例6、笑笑看一本书,在看书之前,她做了一个计划,如下表。
笑笑6天能看____页。
例7、下图是妙想记录的一天气温。
( )时到( )时温度变化最大。
A 8,12B 4,8C 14,17二、正比例与应用1、定义:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
2、判断依据(1)比值一定,两个数成正比,如BA=2 或者 A ÷B=2 或者 A :B=2 或者A=2B(2)两个数的变化,同时扩大或者同时缩小(简称“同大同小”) 3、正比例的应用第一类:判断是否成正比例例1、下列选项中,表示x 和y 成正比例关系的是( )。