地面制动力
- 格式:ppt
- 大小:367.50 KB
- 文档页数:5
二.名词解释1.汽车的动力性:指在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
评价指标:最高车速、加速时间及最大爬坡度2.汽车的后备功率:将发动机功率Pe与汽车经常遇到的阻力功率之差。
公式表示为(Pf Pw)Pe-ηt3.附着力:地面对轮胎切向反作用力的极限值4.汽车功率平衡图:若以纵坐标表示功率,横坐标表示车速,将发动机功率、经常遇到的阻力功率对车速的关系曲线绘在坐标图上,即得功率平衡图。
5.汽车的驱动力图:一般用根据发动机外特性确定的驱动力与车速之间的函数关系曲线Ft—Ua来全面表示汽车的驱动力,称为汽车的驱动力图。
6.最高车速:在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶车速。
7.发动机特性曲线:将发动机的功率Pe、转矩以及燃油消耗率与发动机曲轴转速n之间的函数关系以曲线表示,则此曲线称为发动机转速特性曲线或简称为发动机特性曲线。
8.附着率:汽车直线行驶状态下,充分发挥驱动力作用时要求的最低附着系数。
9.等速百公里燃油消耗量:汽车在一定载荷下,以最高挡在水平良好路面上等速行驶100km的燃油消耗量。
10.汽车的燃油经济性:在保证动力性的条件下,汽车以尽量少的燃油消耗量经济行驶的能力。
11.等速百公里燃油消耗量曲线:常测出每隔10km/h或20km/h速度间隔的等速百公里燃油消耗量,然后在图上连成曲线12.汽车比功率:单位汽车总质量具有的发动机功率13.同步附着系数:(实际前后制动器制动力分配线)线与(理想前后轮制动器制动力分配曲线)I曲线交点处的附着系数14.I曲线:前、后车轮同时抱死时前、后轮制动器制动力的关系曲线15.制动效能:在良好路面上,汽车以一定初速制动到停车的制动距离或制动时汽车的减速度。
它是制动性能最基本的评价指标。
16.汽车的制动性:汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力17.地面制动力:由制动力矩所引起的、地面作用在车轮上的切向力。
汽车理论(第五版)名词解释汇总1、等速百公里油耗:汽车在一定的载荷下,以最高档位在水平良好路面等速行驶100KM所消耗燃油量。
2、滑水现象:在某一车速下,在胎面下的动水压力的升力等于垂直载荷,轮胎将完全漂浮于水面上与路面毫无接触3、驱动力F t:发动机产生的转矩经传动系传到驱动轮,产生驱动力矩T t,驱动轮在T t的作用下给地面作用一圆周力F0,地面对驱动轮的反作用力F t即为驱动力。
4、汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
5、发动机的转速特性:发动机的转速特性,即Pe、Ttq、b=f(n)关系曲线。
P36、使用外特性曲线:带上全部附件设备时的发动机特性曲线,称为使用外特性曲线。
7、自由半径:车轮处于无载时的半径。
8、静力半径r s:汽车静止时,车轮中心至轮胎与道路接触面间的距离。
9、>10、滚动半径r r:车轮几何中心到速度瞬心的距离。
11、驱动力图:P712、轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
13、驻波现象:在高速行驶时,轮胎离开地面后因变形所产生的扭曲并不立即恢复,其残余变形形成了一种波,这就是驻波。
此时轮胎周缘不再是圆形,而呈明显的波浪形。
轮胎刚离开地面时波的振幅最大,它按指数规律沿轮胎圆周衰减。
14、空气阻力:汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。
15、压力阻力:作用在汽车外形表面上的法向压力的合力在行驶方向上的分力。
16、内循环阻力:满足冷却、通风等需要,使空气流经车体内部时构成的阻力。
17、诱导阻力:空气升力在水平方向的投影。
18、空气升力:由于流经车顶的气流速度大于流经车底的气流速度,使得车底的空气压力大于车顶,从而空气作用在车身上的垂直方向的压力形成压差,这就是空气升力。
19、摩擦阻力:由于空气粘性作用在车身表面产生的切向力的合力在行驶方向的分力。
汽车运用基础必考题一、名词解释1.汽车使用性能:汽车能适应使用条件而发挥最大工作效率的能力。
2.侧偏力:汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮中心沿 Y 轴方向将作用有侧向力 Fy,在地面上产生相应的地面侧向反作用力 FY,使得车轮发生侧偏现象,这个力 FY 侧偏力。
3.地面制动力:汽车制动时,地面作用于车轮与行驶方向相反的使汽车制动减速行驶的外力称为地面制动力。
4.汽车制动性能:行驶中的汽车能在短距离内停车且维持行驶方向稳定,以及在下长坡是能控制一定车速的能力。
5.滑动(移)率:描述制动过程中轮胎滑移成份的多少。
6.同步附着系数:具有固定的β 线与 I 线的交点处的附着系数φ 0,被称为同步附着系数。
7.汽车动力因数:汽车行驶方程式可导出 D=(Ft—Fw)/G,则 D 被定义为汽车动力因数。
8.汽车通过性几何参数:汽车通过性的几何参数是与防止间隙失效有关的汽车本身的几何参数。
它们主要包括最小离地间隙、接近角、离去角、纵向通过角等。
9.汽车动力性及评价指标:汽车动力性,是指在良好、平直的路面上行驶时,汽车由所受到的纵向外力决定的、所能达到的平均行驶速度。
汽车动力性的好坏通常以汽车加速性、最高车速及最大爬坡度等项目作为评价指标。
10.汽车最小离地间隙:汽车除车轮之外的最低点与路面之间的距离。
11.制动距离:在指定的道路条件下机动车在规定的初速度下急踩制动踏板时,从脚接触制动踏板时起,至车辆停住时止车辆驶过的距离。
12.汽车动力性:汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
13.道路交通事故:车辆在道路上因过错或者意外造成的人身伤亡或者财产损失事件。
14.汽车走合期:新车或大修竣工汽车投入使用的初期。
15.间隙失效:指汽车与地面间的间隙不足而被地面拖住。
16.汽车的操纵性:汽车能够确切的响应驾驶员的操纵指令的能力称为操纵性。
17.汽车的通过性:汽车通过性又称为越野性,指汽车在一定的质量条件下能以足够高的平均车速通过各种坏路和无路地带及各种障碍的能力。
汽车理论(第五版)名词解释汇总1、等速百公里油耗:汽车在一定的载荷下,以最高档位在水平良好路面等速行驶100KM所消耗燃油量。
2、滑水现象:在某一车速下,在胎面下的动水压力的升力等于垂直载荷,轮胎将完全漂浮于水面上与路面毫无接触3、驱动力F t:发动机产生的转矩经传动系传到驱动轮,产生驱动力矩T t,驱动轮在T t的作用下给地面作用一圆周力F0,地面对驱动轮的反作用力F t即为驱动力。
4、汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
5、发动机的转速特性:发动机的转速特性,即Pe、Ttq、b=f(n)关系曲线。
P36、使用外特性曲线:带上全部附件设备时的发动机特性曲线,称为使用外特性曲线。
7、自由半径:车轮处于无载时的半径。
8、静力半径r s:汽车静止时,车轮中心至轮胎与道路接触面间的距离。
9、滚动半径r r:车轮几何中心到速度瞬心的距离。
10、驱动力图:P711、轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
12、驻波现象:在高速行驶时,轮胎离开地面后因变形所产生的扭曲并不立即恢复,其残余变形形成了一种波,这就是驻波。
此时轮胎周缘不再是圆形,而呈明显的波浪形。
轮胎刚离开地面时波的振幅最大,它按指数规律沿轮胎圆周衰减。
13、空气阻力:汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。
14、压力阻力:作用在汽车外形表面上的法向压力的合力在行驶方向上的分力。
15、内循环阻力:满足冷却、通风等需要,使空气流经车体内部时构成的阻力。
16、诱导阻力:空气升力在水平方向的投影。
17、空气升力:由于流经车顶的气流速度大于流经车底的气流速度,使得车底的空气压力大于车顶,从而空气作用在车身上的垂直方向的压力形成压差,这就是空气升力。
18、摩擦阻力:由于空气粘性作用在车身表面产生的切向力的合力在行驶方向的分力。
4.1 汽车制动性能的评价指标4.1.1 制动效能制动效能是指汽车迅速降低行驶速度直至停车的能力,是制动性能最根本的评价指标。
他是由制动力、制动减速度、制动距离和制动时间来评价的。
4.1.1.1 制动力汽车在制动过程中人为地使汽车受到一个与其行驶方向相反的外力,汽车在受一外力作用下迅速地降低车速至停车,这个外力称为汽车的制动力。
图4-1为汽车在良好的路面上制动时的车轮受力图,图中为车轮制动器的摩擦力矩,为汽车旋转质量的惯性力矩,车轮的滚动阻力矩,F为车轴对车轮的推力,G为车轮的垂直载荷,是地面对车轮的法向反作用力。
在制动工程中滚动阻力矩,惯性力图4-1 制动时车轮受力矩相对较小时可忽略不计。
地面制动力可写为:式中:r――车轮半径。
地面制动力是汽车制动时地面作用于车轮外力,值取决于车轮的半径与制动器的摩擦力矩,但其极限值受到轮胎与地面间附着力的限制。
在轮胎周缘克制车轮制动器摩擦力矩所需的力称为制动器制动力即式中:――车轮制动器〔制动蹄与制动鼓相对滑转时〕的摩擦力矩。
制动器制动力取决于制动器结构、型式与尺寸大小,制动器摩擦副系数和车轮半径。
一般情况下其数值与制动踏板成正比,即与制动系的液压或气压大小成线性关系。
对于机构、尺寸一定的制动器而言,制动器动力主要取决于制动踏板与摩擦副的外表状况,如接触面积大小,外表有无油污等。
图4-2是在不考虑附着系数变化的制动过程,地面制动力与附着力随制动系的压力〔液压或气压〕的变化关系。
车辆制动时,车轮有滚动或抱死滑移两种运动状态。
当制动踏板力( )较小时,踏板力和制动摩擦力矩不大,地面与轮胎摩擦力即地面制动力足以克制制动器摩擦力矩使车轮滚动。
车轮滚动时的地面制动力等于制动器制动力〔〕时,且随踏板力的增长成正比增长。
图4-2 地面制动力、制动器制动力与附着力之间的关系但当制动踏板力时地面制动力等于附着力时,车轮即抱死不转而出现拖滑现象,显然,地面制动力受轮胎与路面附着条件的限制,其最大值不可超过附着力,即当车轮抱死而拖滑后,随着制动踏板力继续增大〔〕,制动器制动力由于制动器摩擦力矩的增长而直线上升,当地面制动力达到极限值后不再增长。