2.1静电场的标势及其微分方程
- 格式:ppt
- 大小:424.00 KB
- 文档页数:23
₪静电场1.静电场的标势2.静电势的微分方程和边值关系3.静电场能量静电场2.1静电场的标势及其微分方程第2章₪静电场1.静电场的标势(2) 电标势的定义根据静电场无旋性,电场中任一闭合回路L 的环量等于零,C1、C 2是点a 到点b 的两条不同路径 1212d 0d d 0d d 功与路径无关L C C C C b a E l E l E l E l E l b a E dlC 1C 2a bL₪静电场1.静电场的标势(4) 电势参考点在有限的电荷分布于有限区域的情况下,可以选择无穷远处作为零电势参考点,则每一点的电势实际是该点与无穷远点的电势差,因而是有确定的物理意义的。
=PPP P E dl E dl1.静电场的标势(5) 零电势参考点的选取1.有限电荷分布于有限自由空间的情况,选取无穷远处作为零电势参考点;2.对于接地的带电体,选取地球或者接地处、或者接地的导体,作为零电势的参考点、或者参考面、或者参考体;QQ₪静电场₪静电场1.静电场的标势(5) 零电势参考点的选取3.对于电路而言,选取地线为零电势参考线;4.对于无限电荷分布于无限空间,根据题目条件选取参考点。
0地线火线零线拉线开关三孔插座₪静电场1.静电场的标势(6)电势与电场的关系PP E dl E 电势与电场可以由上面两个式子共同决定,相互制约的。
可以看出,只要确定电场分布或者电势的其中一个物理量,另外一个物理量就可以确定。
而且电场强度的方向是电势梯度方向(电势改变最快的方向)。
1.静电场的标势(7)关于电势的五点说明1.引入电势的优点:如果知道电势,只需要通过计算梯度,即可求出电场强度矢量。
这说明电势和电场强度矢量所包含的信息量是一样的,但是电场强度矢量有三个分量,而电势只是一个标量,因此通过引入电势这个量,可以将矢量问题约化为标量问题。
₪静电场₪静电场1.静电场的标势(7)关于电势的五点说明3.参考点的选择是任意的,选择不同的参考点电势会增加一个常数K ,K 是电场强度矢量在两个参考点之间的线积分。
第二章 静电场带电体系:电荷静止,所激发的电场不随时间变化;给定自由电荷的分布以及周围空间介质或者导体的分布,运用电磁场理论求解这样的带电体系的电场。
§1 静电场的标势及其微分方程 1、 静电场的标势——静电势 麦克斯韦方程0 , ,=⋅∇∂∂+=⨯∇∂∂-=⨯∇=⋅∇B tD J H tB E Dρ静电条件:()00==∂∂J t 物理量 将静电条件代入麦克斯韦方程得到00=⋅∇=⨯∇=⋅∇=⨯∇B H D Eρ✧ 在静电条件下,电场和磁场相互独立,可以分开求解;✧ 静电场是无旋场;自由电荷分布是D的源。
解决静电问题的基本方程: 微分方程0 =⨯∇=⋅∇E D ρ +边界条件f D D n σ=-⋅1221+介质的电磁性质方程静电势的定义:静电场的无旋性是静电场的一个重要的特征,其积分形式为0d =⋅⎰l E L——(1.3)“电场沿任一闭合回路的线积分等于零。
”将单位电荷从1P 点移至2P 点时电场对它所做的功⎰⋅21d P P l E将单位电荷从1P 点移至2P 点时电场对它所做的功与具体的路径无关,只与起点和终点有关。
0d =⋅⎰l E L0d d 21=⋅+⋅⎰⎰-C C l E l E0d d 21=⋅-⋅⎰⎰C C l E l E⎰⎰⋅=⋅21d d C C l E l E利用这一特点,引入电势的概念,是空间位置的标量函数(标势); 定义两点间的电势差为⎰⋅-=-21d )()(12P P l E P Pϕϕ ——(1.4)推论:如果电场对(单位)正电荷做正功,则电势降低;只有两点的电势差才具有物理意义; 如果知道空间的电场的分布,则可以计算空间任意两点间的电势差;实际的计算中为了方便,常选取某个参考点,规定该点的电势为零,这样整个空间里的电势就有一个确定的值。
如果电荷分布在有限的空间里,则可以取无穷远处的电势为零,即()0=∞ϕ这样空间P 点的电势为()⎰∞⋅=Pl E P d ϕ相距为ld 的两点的电势的增量为l E dd ⋅-=ϕ式中()lz y x z y x zzy y x x z y x y y xd de d e d e e e e d d d d ⋅∇=++⋅⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=ϕϕϕϕϕϕϕϕ从而得到,ϕ-∇=E——(1.5)如果知道了空间电势的分布情况,则可采用上式计算电场强度的分布。
静电场的标势和微分方程正式版文档资料可直接使用,可编辑,欢迎下载静电场的标势和微分方程1、静电场的微分方程:静电现象满足以下两个条件:即 ①电荷静止不动;②场量不随时间变化。
故, 把静电条件代入Maxwell's equations 中去,即得静电场满足的方程:2、静电场的标势根据电场方程0=⨯∇E (即E的无旋性),可引入一个标势ϕ。
0)( ; 0=∂∂==物理量tj νρ⎪⎩⎪⎨⎧=⋅∇=⨯∇ρD E0ϕ-∇=Eερϕ-=∇2一、库仑定律的应用1.(10海淀)使两个完全相同的金属小球(均可视为点电荷)分别带上-3Q 和+5Q 的电荷后,将它们固定在相距为a 的两点,它们之间库仑力的大小为F 1。
现用绝缘工具使两小球相互接触后,再将它们固定在相距为2a 的两点,它们之间库仑力的大小为F 2。
则F 1与F 2之比为( )A .2:1B .4:1C .16:1D .60:12.(10宣武)如图所示,三个完全相同的金属小球a 、b 、c 位于等边三角形的三个顶点上。
a 带负电,b 和c 带正电, a 所带电量大小比b 的要大。
已知c 受到a 和b 的静电力的合力可用图中四条有向线段中的一条来表示,那么它应是 A. F 1 B.F 2 C.F 3 D.F 4二、表征电场性质几个物理量的理解与应用(电场强度、电势)3.(08海淀)如图1所示,在a 、b 两点上放置两个点电荷,它们的电荷量分别为q 1、q 2,MN 是连接两点的直线,P 是直线上的一点,下列哪种情况下P 点的场强可能为零( ) A. q 1、q 2都是正电荷,且q 1>q 2 B. q 1是正电荷,q 2是负电荷,且q 1<∣q 2∣ C. q 1是负电荷,q 2是正电荷,且∣q 1∣>q 2D. q 1、q 2都是负电荷,且∣q 1∣<∣q 2∣4.(10朝阳)15如图所示,+Q 1、-Q 2是两个点电荷,P 是这两个点电荷连线中垂线上的一点。