2-9
Qf
二、静电势的微分方程和边值关系 静电势的微分方程和边值关系 1.电势满足的方程 电势满足的方程 电势 泊松方程 导出过程
ρ ∇ ϕ =− ε
2
适用于均 匀介质
r 2 ⇒ε∇⋅ E = −ε∇⋅ ∇ϕ = −ε∇ ϕ = ρ
拉普拉斯方程
2-10
r r D = εE,
r E = −∇ϕ
r ∇⋅ D = ρ
Q
P
a
A 2 ϕ = + B (r > 0) 满足 ∇ ϕ = 0 r
2-20
(r > a)
r r ∇⋅ ∇ϕ ∝ −∇⋅ 3 = 0 r
(r ≠ 0)
r → ∞,ϕ → 0
B≡0
A ϕ= r
∂ϕ Q = − ε0 dS = ε 0 dS = ∂r r=a a2
∫
∫
∂ϕ ∂ϕ A = =− 2 ∂n ∂r r ε 0 A4π a2 A
σf =0
σ p = ε0 (E2n − E1n )
电磁性质方程: 电磁性质方程: 静电平衡时的导体: 均匀各向同性线性介质: ② 静电平衡时的导体: ① 均匀各向同性线性介质 r r r r r 导体内 J = σE = 0 σ ≠ 0 ( ) P = χeε0 E = (ε − ε0 )E r r r r r r r r E, D, P, ρ,L= 0 (D = ε0 E + P) D = εE σ 外表面 E = En = , Et = 0 r ε0 ε ρP = −∇⋅ P = ( −1)ρ ε 电荷分布在表面上, 电荷分布在表面上,电 r r r σ P = −n ⋅ (P − P ) 场处处垂直于导体表面 2 1
注意:考虑了束缚电荷, 注意:考虑了束缚电荷,就不能再考虑介质