当前位置:文档之家› 《电路基础》教材第10章 二端口网络

《电路基础》教材第10章 二端口网络

《电路基础》教材第10章 二端口网络
《电路基础》教材第10章 二端口网络

186

第10章 二端口网络

网络按其引出端子的数目可分为二端网络、三端网络及四端网络等,如果一个二端网络满足从一个端子流入的电流等于另一个端子上流出的电流时,就可称为一端口网络,如果电路中有两个一端口网络时就构成了一个二端口网络。

本章是把二端口网络当作一个整体,不研究其内部电路的工作状态,只研究端口电流、电压之间的关系,即端口的外特性。联系这些关系的是一些参数。这些参数只取决于网络本身的元件参数和各元件之间连接的结构形式。一旦求出表征这个二端口网络的参数,就可以确定二端口网络各端口之间电流、电压的关系,进而对二端口网络的传输特性进行分析。本章主要解决的问题是找出表征二端口网络的参数及由这些参数联系着的端口电流、电压方程,并在此基础上分析双口网络的电路。

本章教学要求

理解二端口网络的概念,掌握二端口网络的特点,熟悉二端口网络的方程及参数,能较为熟练地计算参数,理解二端口网络等效的概念掌握其等效计算的方法,理解二端口网络的输入电阻、输出电阻及特性阻抗的定义及计算方法。

通过实验环节进一步加深理解二端口网络的基本概念和基本理论,掌握直流二端口网络传输参数的测量技术。

10.1 二端口网络的一般概念

学习目标:

熟悉二端口网络的判定,了解无源、有源、线性、非线性二端口网络在组成上的不同点。

在对直流电路的分析过程中,我们通过戴维南定理讲述了具有两个引线端的电路的分析方法,这种具有两个引线端的电路称为一端口网络,如图10.1(a )所示。一个一端口网络,不论其内部电路简单或复杂,就其外特性来说,可以用一个具有一定内阻的电源进行置换,以便在分析某个局部电路工作关系时,使分析过程得到简化。当一个电路有四个外引线端子,如图10.1(b )所示,其中左、右两对端子都满足:从一个引线端流入电路的电流与另一个引线端流出电路的电流相等的条件,这样组成的电路可称为二端口网络(或称为双口网络)。

(a )一端口网络 (b )二端口网络

图10.1 端口网络

2U +

_ _

187

当一个二端口网络的端口处电流与电压满足线性关系时,则该二端口网络称为线性二端口网络。通常线性二端口网络内的所有元件都是线性元件,如:电阻、电容、电感等。否则二端口网络为非线性网络。

如果一个二端口网络内部不含有任何独立电源和受控源,则称其为无源二端口网络,否则称为有源二端口网络,如图10.2所示。本章只介绍无源线性二端口网络。

检验学习结果:

10.1.1 什么是二端口网络? 10.1.2 什么是无源线性二端口网络?

10.2 二端口网络的基本方程和参数

学习目标:

熟悉表征二端口网络参数的不同形式,能够写出由这些参数联系着的端口电流、电压方程,并在此基础上分析双口网络的电路。熟悉表征二端口网络不同参数之间的关系。

在实际应用过程中,不少电路(如集成电路)制作完成后就被封装起来,无法看到具体的结构。在分析这类电路时,只能通过其引线端或端口处电压与电流的相互关系,来表征电路的功能。而这种相互关系,可以用一些参数来表示,这些参数只决定于网络本身的结构和内部元件,一但表征这个端口网络的参数确定之后,当一个端口的电压和电流发生变化时,利用网络参数,就可以很容易找出另一个端口的电压和电流。利用这些参数,还可以比较不同网络在传递电能和信号方面的性能,从而评价端口网络的质量。

一个二端口网络输入端口和输出端口的电压和电流共有四个,即1

U 、1I 、2U 、2I 。在分析二端口网络时,通常是已知其中的两个电量,求出另外两个电量。因此由这四个物理量构成的组合,共有六组关系式,其中四组为常用关系式。

10.2.1阻抗方程和Z 参数

在图10.3所示的无源线性二端口网络中,已知电流1I 和2I ,求端口电压1

U 和2U ,这时

I

(a )无源二端口网络 (b )有源二端口网络

图10.2 二端口网络

188

如何列写其关系式呢?我们以图10.3(b )电路为例,列写其关系式。

根据基尔霍夫第二定律,列写出的两个回路电压方程如下:

()()2321322

31311I Z Z I Z U I Z I Z Z U ++=++=

令:Z 11=Z 1+Z 3 Z 12=Z 3

Z 21=Z 3 Z 22=Z 2+Z 3

将它们代入上式,得阻抗方程的一般表示形式 2

2212122

121111I Z I Z U I Z I Z U +=+= (10.1)

式10.1虽然是由T 型二端口网络推导出来的,但具有一般形式。可以证明式(10.1)适合任何无源线性二端口网络。式中的系数Z 11、Z 12、Z 21、Z 22具有阻抗性质,所以式(10.1)称为阻抗方程或Z 方程。

由上述例子可以看出,无源二端口网络的Z 参数,仅与网络的内部结构、元件参数、工作频率有关,而与输入信号的振幅、负载的情况无关。因此,这些参数描述了二端口网络本身的电特性。

二端口网络Z 参数的物理意义,可由式(10.1)推导而得。当输出端口开路时,2I =0,这时有

01

1

11

2

==I I

U Z (10.2a )

即Z 11是输出端口开路时在输入端口处的输入阻抗,称为开路输入阻抗。而

01

2

21

2

==I I

U Z (10.2b )

即Z 21是输出端口开路时的转移阻抗,称为开路转移阻抗。转移阻抗是一个端口的电压与另一个端口的电流之比。

同理,当输入端口开路时,1I =0,这时有

02

2

22

1

==I I

U Z (10.2c )

2 I (a ) (b )

图10.3 无源线性二端口网络

+ _

189

即Z 22是输入端口开路时在输出端口处的输出阻抗,称为开路输出阻抗。而

02

1

12

1

==I I U Z (10.2d )

即Z 12是输入端口开路时的转移阻抗,称为开路转移阻抗。以上四个阻抗的单位都是【Ω】。

对于无源线性二端口网络利用互易定理可以得到证明,即输入和输出互换位置时,不会改变由同一激励所产生的响应。由此得出

Z 12=Z 21 (10.3a )

的结论。即在Z 参数中,只有三个参数是独立的。

如果二端口网络是对称的,则输出端口和输入端口互换位置后,电压和电流均不改变,表明

Z 11=Z 22 (10.3b )

无源线性二端口网络如果同时满足式(10.3)时,则Z 参数中只有两个参数是独立的。

10.2.2 导纳方程与Y 参数

当已知一个无源二端口网络输入电压和输出电压的值,要求解出输入电流和输出电流时,

我们可以利用式(10.1)写出1

I 和2

I 的表示式

2

21

122211111211222112122

21

12221112

121122211221

U Z Z Z Z Z U Z Z Z Z Z I U Z Z Z Z Z U Z Z Z Z Z I -+--=--+-=

由此得到导纳方程的一般表示形式

2

2212122

121111U Y U Y I U Y U Y I +=+= (10.4)

二端口网络Y 参数的物理意义,可由式(10.4)推导得到。当输出端口短路时,2

U =0,这时有

011

112

==U U

I Y (10.5a )

即Y 11是输出端口短路时在输入端口处的输入导纳,称为短路输入导纳。

012

212

==U U

I Y (10.5b )

Y 21是输出端口短路时的转移导纳,称为出端短路转移导纳。 当输入端口短路时,1

U

=0,这时有

190

02

2

22

1

==U U

I Y (10.5c )

Y 22是输入端口短路时在输出端口处的输出导纳,称为短路输出导纳。

02

1

121

==U U

I Y (10.5d )

Y 12是输入端口短路时的转移导纳,称为入端短路转移导纳。Y 参数的单位是西门子。

同样可以证明,对于无源线性二端口网络Y 12=Y 21。对称二端口网络有Y 11=Y 22。 例10.1 写出图10.4电路的Z 参数方程。 解:根据Z 参数的定义,将输出端22′开路得

01

1

11

2

==I I

U Z =()()()

Ω=+++?=

+8121212121212//321R R R 01

2

21

2

==I I

U Z =

Ω=?+=+4812

1212

11322Z R R R

因为该电路是对称无源线性二端口网络,所以Z 22=Z 11,Z 12=Z 21,图10.4电路的Z 参数方程为

2

122

118448I I U I I U +=+=

10.2.3 传输方程和A 参数

在已知二端口网络的输出电压2U 和电流2I ,求解二端口网络的输入电压1

U 和电流1I 的情况下,用A 参数建立输出信号与输入信号之间的关系。当选择电流的参考方向为流入二端口网络时,A 参数方程的一般形式为 ()

()

2

22

2

21

1

2

122111I

A U A I I A U A U -+=-+= (10.6)

若选择输出电流的参考方向为流出二端口网络时,方程中电流2I 符号为“+”。

当二端口网络为无源线性网络时,A 11A 22-A 12A 21=1,A 参数中有三个是独立的。如果网络是对称的,则A 11=A 22,这时A 参数中只有二个是独立的。

A 参数的意义可以这样来理解。当输出端口开路时,有

02

1112==I U

U

A (10.7a )

02

1

212

==I U

I A (10.7b )

当输出端口短路时,有

1 2

图10.4 例10.1电路

第十六章二端口网络

第十六章二端口网络 16-1 求题16-1图所示各二端口网络的开路阻抗矩阵Z。 (a) (b) (c) (d) 题16-1 图 16-2 求题16-2图所示二端口网络的短路导纳矩阵Y。 16-3 求题16-3图所示二端口网络的短路导纳矩阵Y。 题16-2 图题16-3 图16-4 求题16-4图所示各二端口网络的开路阻抗矩阵Z和短路导纳矩阵Y。 (a) (b) (c) 题16-4 图 16-5求题16-5图所示二端口网络的开路阻抗矩阵Z 和短路导纳矩阵Y。 16-6求题16-3图所示二端口网络的混合参数矩阵H 和逆混合参数矩阵G。 题16-5 图

16-7 求题16-7图所示二端口网络的混合参数矩阵H。 16-8 求题16-8图所示二端口网络的逆混合参数矩阵G。 题16-7 图题16-8 图 16-9 求题16-4图所示各二端口网络的传输矩阵T和逆传输矩阵T'。 16-10 写出题16-10图所示二端口网络的传输矩阵T,并验证关系式:AD-BC=1 题16-10 图题16-12 图 16-11 根据上题(16-10)所求得的传输矩阵T,计算该网络的逆传输矩阵T'、开路阻抗矩阵Z、短路导纳矩阵Y、混合参数矩阵H和逆混合参数矩阵G。 16-12 试求题16-12图所示网络的开路阻抗参数,并用这些参数求出该二端口网络的T形等效模型。 16-13 试绘出对应于下列各短路导纳矩阵的任意一种等效二端口网络模型,并标出各端口电压、电流的参考方向。 Y Y = - ? ? ? ? ? ?=- ? ? ? ? ? ? 52 03 100 520 16-14 试绘出对应于下列各开路阻抗矩阵的任意一种等效二端口网络模型,并标出各端口电压、电流的参考方向。 ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? = 4 4 2 3 ) ( )c( 2 3 2 2 4 1 ) ( )b( 2 1 1 3 ) ( )a(s s s s s s s Z Z Z 16-15 题16-15图所示网络可视为由两个Γ形网络级联而成的复合二端口网络,试求其传输参数A、B、C、D。 16-16 求题16-16图所示复合二端口网络的传输参数矩阵T。 题16-15 图题16-16 图

二端口网络介绍

项目五二端口网络 基本要求 1. 掌握二端口网络的概念; 2. 熟悉二端口网络的方程(Z、Y、H、T)及参数; 3. 理解二端口网络等效的概念和计算方法; 4. 理解二端口网络的输入电阻、输出电阻和特性阻抗的定义 重点 ●二端口网络及其方程 ●二端口网络的Z、Y、T(A)、H参数矩阵以及参数之间的相互关系 ●二端口网络的连接方式以及等效 难点 二端口网络的T形和 形等效电路分析计算 任务1 二端口网络方程和参数 1..二端口网络 一个网络,如果有n个端子可以与外电路连接,则称为n端网络,如图5.1(a)所示。 如果有n对端可以与外电路连接,且满足端口条件,则称为n端口网络,如图5.1(b)所示。 仅有一个端口的网络称为一端口网络或单端口网络,如图5.1(c)所示。 只有两个端口的网络称为二端口网络或双端口网络,如图5.1(d)所示。

图5.1 端口网络框图 2.二端口网络Z 方程和Z 参数 1)Z 方程 图5.2 线性二端口网络 图5.3 线性二端口网络 二端口的Z 参数方程是一组以二端口网络的电流1I &和2I &表征电压1U &和2 U &的方程。二端口网络以电流1 I &和2 I &作为独立变量,电压1U &和2 U &作为待求量,根据置换定理,二端口网络端口的外部电路总是可以用电流源替代,如图5.2和图5.3 11111222211222U Z I Z I U Z I Z I ?=+??=+?? &&&&&& 2)Z 参数 Z 参数具有阻抗的性质,是与网络内部结构和参数有关而与外部电路无关的一组参数 11Z 为输出端口开路时,输入端口的入端阻抗; 22Z 为输入端口开路时,输出端口的入端阻抗; 12Z 为输入端口开路时,输入端口电压与输出端口电流构成的转移阻抗; 21Z 为输出端口开路时,输出电压与输入电流构成的转移阻抗。

习题解答第16章(二端口网络)

第十六章(二端口网络)习题解答 一、选择题 1.二端口电路的H 参数方程是 a 。 a .???+=+=22212122121111U H I H I U H I H U b . ???+=+=22212122 121111I H U H U I H U H I c .???+=+=22222112122111U H I H U U H I H I d . ???+=+=2 2212112 121112I H U H I I H U H U 2.图16—1所示二端口网络的Z 参数方程为 b 。 a .??????---+j1j4j4j43; b .?? ????----j1j4j4j43; c .??????--j1j4j4j43; d .?? ????--+j1j4j4j43 3.无任何电源的线性二端口电路的T 参数应满足 d 。 a .D A = b .C B = c .1=-AD BC d .1=-BC AD 4.两个二端口 c 联接,其端口条件总是满足的。 a .串联 b .并联 c .级联 d .a 、b 、c 三种 5.图16—2所示理想变压器的各电压、电流之间满足的关系为 d 。 a . n u u 121=,n i i =2 1 ; b . n u u =21,n i i 121-=; c . n u u 121-=,n i i =2 1; d . n u u =21,n i i 121=; 二、填空题 1.图16—3(a )所示二端口电路的Y 参数矩阵为Y = ?? ??? ?--Y Y Y Y ,图16—3 (b )所示二端口的Z 参数矩阵为Z = ?? ????Z Z Z Z 。

第十六章(二端口网络)习题

第十六章(二端口网络)习题 一、选择题 1.二端口电路的H 参数方程是 。 a .???+=+=22212122121111U H I H I U H I H U b . ???+=+=2221212 2 121111I H U H U I H U H I c .???+=+=2 2222112 122111U H I H U U H I H I d . ???+=+=22212112121112I H U H I I H U H U 2.图16—1所示二端口网络的Z 参数方程为 。 a .??????---+j1j4j4j43; b .?? ????----j1j4j4j43; c .??????--j1j4j4j43; d .?? ????--+j1j4j4j43 3.无任何电源的线性二端口电路的T 参数应满足 。 a .D A = b .C B = c .1=-AD BC d .1=-BC AD 4.两个二端口 联接,其端口条件总是满足的。 a .串联 b .并联 c .级联 d .a 、b 、c 三种 5.图16—2所示理想变压器的各电压、电流之间满足的关系为 。 a . n u u 121=,n i i =2 1 ; b .n u u =21,n i i 121-=; c . n u u 121-=,n i i =2 1; d . n u u =21,n i i 121=; 二、填空题 1.图16—3(a )所示二端口电路的Y 参数矩阵为Y = 。 图16—3(b )所 示二端口的Z 参数矩阵为Z = 。

2.图16—4所示二端口网络的Y 参数矩阵是Y = 。 3.图16—5所示回转器的T 参数矩阵为 。 4.图16—6所示的二端口网络中,设子二端口网络1N 的传输参数矩阵为?? ? ???D C B A , 则复合二端口网络的传输参数矩阵为 。 5.图16—7所示二端口网络的Y 参数矩阵为 。式中 。 三、计算题 1.图16—8所示二端口网络的Z 参数是Ω=1011Z 、Ω=1512Z 、Ω=521Z , Ω=2022Z 。试求s U U 2。

《电路基础》教材第10章 二端口网络

186 第10章 二端口网络 网络按其引出端子的数目可分为二端网络、三端网络及四端网络等,如果一个二端网络满足从一个端子流入的电流等于另一个端子上流出的电流时,就可称为一端口网络,如果电路中有两个一端口网络时就构成了一个二端口网络。 本章是把二端口网络当作一个整体,不研究其内部电路的工作状态,只研究端口电流、电压之间的关系,即端口的外特性。联系这些关系的是一些参数。这些参数只取决于网络本身的元件参数和各元件之间连接的结构形式。一旦求出表征这个二端口网络的参数,就可以确定二端口网络各端口之间电流、电压的关系,进而对二端口网络的传输特性进行分析。本章主要解决的问题是找出表征二端口网络的参数及由这些参数联系着的端口电流、电压方程,并在此基础上分析双口网络的电路。 本章教学要求 理解二端口网络的概念,掌握二端口网络的特点,熟悉二端口网络的方程及参数,能较为熟练地计算参数,理解二端口网络等效的概念掌握其等效计算的方法,理解二端口网络的输入电阻、输出电阻及特性阻抗的定义及计算方法。 通过实验环节进一步加深理解二端口网络的基本概念和基本理论,掌握直流二端口网络传输参数的测量技术。 10.1 二端口网络的一般概念 学习目标: 熟悉二端口网络的判定,了解无源、有源、线性、非线性二端口网络在组成上的不同点。 在对直流电路的分析过程中,我们通过戴维南定理讲述了具有两个引线端的电路的分析方法,这种具有两个引线端的电路称为一端口网络,如图10.1(a )所示。一个一端口网络,不论其内部电路简单或复杂,就其外特性来说,可以用一个具有一定内阻的电源进行置换,以便在分析某个局部电路工作关系时,使分析过程得到简化。当一个电路有四个外引线端子,如图10.1(b )所示,其中左、右两对端子都满足:从一个引线端流入电路的电流与另一个引线端流出电路的电流相等的条件,这样组成的电路可称为二端口网络(或称为双口网络)。 (a )一端口网络 (b )二端口网络 图10.1 端口网络 2U + _ _

二端口网络

二端口网络 重点:两端口的方程和参数的求解 难点:二端口的参数的求解 本章与其它章节的联系: 学习本章要用到前几章介绍的一般网络的分析方法。 预备知识: 矩阵代数 §16.1 图的矩阵表示 1. 二端口网络 端口由一对端钮构成,且满足端口条件:即从端口的一个端钮流入的电流必须等于从该端口的另一个端钮流出的电流。当一个电路与外部电路通过两个端口连接时称此电路为二端口网络。在工程实际中,研究信号及能量的传输和信号变换时,经常碰到图 16.1 所示的二端口网络。 图 16.1(a)放大器 图 16.1(b) 滤波器 图 16.1(c) 传输线 图 16.1(d )三极管 图 16.1(e )变压器 注意: 1)如果组成二端口网络的元件都是线性的,则称为线性二端口网络;依据二端口网络的二个端口是否服从互易定理,分为可逆的和不可逆的;依据二端口网络使用时二个端口互换是否不改变其外电路的工作情况,分为对称的和不对称的。 2)图16.2(a)所示的二端口网络与图(b)所示的 四端网络的区别。 图 16.2(b )四端网络

图 16.2(a)二端口网络 3)二端口的两个端口间若有外部连接, 则会破坏原二端口的端口条件。若在图 16.2(a)所示的二端口网络的端口间连接 电阻 R 如图16.3所示,则端口条件破坏, 因为 图 16.3 即1-1'和2-2'是二端口,但3-3'和4-4'不是二端口,而是四端网络。 2. 研究二端口网络的意义 1)两端口应用很广,其分析方法易推广应用于 n 端口网络; 2)可以将任意复杂的图16.2(a)所示的二端口网络分割成许多子网络(两端口)进行分析,使分析简化; 3)当仅研究端口的电压电流特性时,可以用二端口网络的电路模型进行研究。 3. 分析方法 1)分析前提:讨论初始条件为零的无源线性二端口网络; 2)….. 3)分析中按正弦稳态情况考虑,应用相量法或运算法讨论。 §16.2 二端口的参数和方程 用二端口概念分析电路时,仅对端口处的电压电流之间的关系感兴趣,这种关系可以通过一些参数表示,而这些参数只决定于构成二端口本身的元件及它们的连接方式,一旦确定表征二端口的参数后,根据一个端口的电压、电流变化可以找出另一个端口的电压和电流。 1.二端口的参数 线性无独立源的二端口网络,在端口上有 4 个物理量 ,如图16.4所示。在 外电路限定的情况下,这 4 个物理量间存在着通过两端口网络来表征的约束方程,若任取其中的两个为自变量,可得到端口电压、电流的六种不同的方程表示,即可用六套参数描述二端口网络。其对应关系为:

第十章 双口网络

第十章双口网络 为了方便复杂电网络的分析、设计和调试,常将复杂电网络分解为若干简单的子网络。双口网络是最常见的子网络,对于复杂电网络中的双口网络,通常更多关注的是其外部的电压、电流的约束关系,而不把注意力放在对双口网络内部的分析上。 本章以不含独立源,且电容、电感处于零状态的线性双口网络为研究对象,依次介绍了双口网络方程及参数、双口网络的互连、双口网络的开路阻抗和短路阻抗、对称双口网络的特性阻抗和双口网络的等效电路。 §10-1双口网络概述 一般把具有2n个对外引出端子的网络称为2n端网络(2n-terminal network),如图10-1所示。当一对端子如nn'满足端口条件(current relationship of port),即由一个端子n 流入的电流能全部从另一个端子n'流出时,就称nn'这对端子为一个端口(port)。如果图10-1所示的n对端子均满足端口条件,则称为n端口(n-port network)网络。 根据上述可知,一个四端网络的两对端子如果满足端口条件,则称为二端口网络或双口网络(two-port network)。双口网络的电路符号如图10-2所示,习惯上把11'端称为输入端口(input port),把22'端称为输出端口(output port),通常也分别简称为入口和出口。 图10-1 2n端网络图10-2 双口网络的电路符号双口网络的电路符号并没有体现双口网络内部元件参数和结构,而是把双口网络视为一个满足端口上某种电压和电流关系的“黑箱子”。即使对于某些内部元件参数和结构已知的双口网络,采用端口电压和电流关系即双口网络的外特性来描述其电性能也更有意义。因为这样有利于双口网络输入、输出特性的讨论,特别是在分析含有集成电路元件的电路时更是如此。 一个双口网络的内部结构可能很简单,如图10-3所示,也可能很复杂。对于复杂的双口网络可以适当分解为若干简单的双口网络来研究。 249

电路第十章答案(简)

10-1. 写出图示二端口网络的Z 参数矩阵。 解:(a) R R R R R +??=????1 2 22 2Z ;(c) Ω?? =???? 3412Z 10-2 写出图示二端口网络的Y 参数矩阵。 解:(b) R -??=??-?? 13113Y (c) S .-?? =? ? -?? 43315Y 10-3写出图示二端口的传输参数矩阵。 解:(a) ..S j j +?? =? ??? 105500011T Ω (b) 2 22 ()j j ?? --=? ?-?? 121T ωωωωω (c) ..S .--?? =??--??0910101T Ω 10-9. 解:=5,=10,=20.R R R Ω Ω Ω122 U 2 - U 1 - · · · · · · 2' 2 1'1 · · 2' 2 1'1 · ·

10-11. 双口网络如图所示,求: (1) Y 参数; 解:S ?? -? ?=????-???? 4175 10115 5Y 10-14. 将图示电路先分解成若干个简单二端口的级联,计算出每个简单二端口的T 参数,再 求整个网络的T 参数。 解:(a) S ?? =?? ?? 5332T Ω (b) .S .--?? =??- - ?? 263055622389T Ω 10-18. 图示电路中,直流电源U S =10V ,网络N 的传输参数矩阵为?? ????Ω=1S 1.0102T ,t '0时电 路处于稳态,t 50时开关S 由a 打向b 。求t ?0时的响应u (t )。 解:().V .t u t e t -=->10250, 10-19. 解:() (..), t L i t e t -=+≥1015050, 10-20. 图示为具有终端负载的复合二端口网络,已知?? ????=??????Ω=1S 05.001 , 10101 21T T ,求负载电 压U 2和电流I 2 。 解: V, .A.U I =??=-?22 1005 △10-20. 图示含二端口的电路中,已知?? ? ???=2051510Z Ω。 (1) 当负载电阻R L =25Ω时,求输出电压与输入电压之比;(2) 当R L =?时可以获得最大功率? 解:S () U U =21139 L () ..R Ω= =425 2193222 10-21. 解:max ,W L Z P Ω ==501 10-22. 解:(1) .S .?? =?? ?? 310505T Ω ; (2) W P =20. : 2:U S u 20? R L

四、二端口网络的H方程和H参数(精)

四、 二端口网络的H 方程和H 参数 除去上述的3套方程和参数,还有一套常用的参数方程称为混合参数或H 参数。即: . . . 1111122. . . 2211222 U H I H U I H I H U =+=+ 在晶体管电路中,H 参数得到了广泛的应用。其具体定义为: 211 11==U I U H H 11是输出端短路时,输入端的入端阻抗,在晶体管电路中称为晶体管的输入电阻; 01 21 12 ==I U U H H 12是输入端开路时,输入端电压与输出端电压之比,在晶体管电路中称为晶体管的内部反馈系数或电压 传输比; 212 21 ==U I I H H 21是输出端短路时,输出端电流与输入端电流之比,在晶体管电路中称为晶体管的电流放大倍数或电流 增益; 122 22 ==I U I H H 22是输入端开路时,输出端的入端导纳,在晶体管电流中称为晶体管的输出电导。 用矩阵形式表示为; ?????????? ??=??????212221121121U I H H H H I U 其中,H 称为H 参数矩阵 ?? ?? ??=2221 1211 H H H H H H 参数的求解方法也可分为3种,用定义直接求,用KCL 定理转换方程求解,在已知其他3种参数的前提下,用转换公式直接求(见表6-1)。 例如:在已知Y 参数下 112112221122 11 2121 11 121211111Y Y Y Y Y H Y Y H Y Y H Y H -= =- == 可见对于无源线性二端网络,H 参数中只有3个是独立的。H 21=-H 12。对于对称的二端口,由于Y 11=Y 22或Z 11=Z 22,则有

第十六章二端口网络

第十六章 二端口网络 第一节 二端口网络简介 一、 端口条件: 在实际工程中,常常涉及具有四个外部接线端的网络,如图16-1-1。 共同特点是:一对输入端,一对输出端,通常用图16-1-2表示。 当i 1=i 1’,i 2=i 2’时,此四端网络称为二端口网络。则i 1=i 1’,i 2=i 2’称为端口条件。 网络内部含有不可抵消的独立源时,称为含源二端口网络,否则称为无源二端口网络。本章只研究后者,又局限于线性。 第二节 二端口网络的方程和参数 二端口网络的外部特性可以通过其端口的电压、电流来表示。 一、Y 方程和Y 参数:如图16-1-3。 用端口电压表示端口电流。方程的标准形式为(用相量形式表示): Y 参数与二端口网络的内部结构有关,这些参数可以通过标准方程得到,也可通过实验的方法的到,实验测试方法如下: ??? ? ??????????=??? ?????+=+=2.1. 222112112. 1.2. 221. 212. 2. 121.111.U U Y Y Y Y I I U Y U Y I U Y U Y I 矩阵形式为:

Y 参数为输入、输出或转移导纳。Y 参数又称为短路参数。 对于可互易网络,Y 12=Y 21。只有三个独立的参数。对于对称 (可以是结构对称,也可以是电对称)的二端口网络,Y 11=Y 22。只有两个独立的参数。 二、Z 方程和Z 参数: 用端口电流表示端口电压。由Y 方程很容易推得Z 方程。标准形式为: Z 参数与二端口网络的内部结构有关,这些参数可以通过标准方程得到,也可通过实验的方法的到,实验测试方法如下: Z 参数为输入、输出或转移阻抗。Z 参数又称为开路参数。 对于可互易网络,Z 12=Z 21。只有三个独立的参数。对于对称 (可以是结构对称,也可以是电对称)的二端口网络,Z 11=Z 22。只 有两个独立的参数。 三、T 方程T 参数(又称A 方程A 参数或传输方程、传输参数): 用2-2’端口的电压、电流表示1-1’端口的电压、电流。方程如下: 0U 2. 2 . 220U 2. 1 . 120 U 1. 2 . 210 U 1 . 1. 111. 1. 2. 2. U I Y U I Y U I Y U I Y ======== ? ?????????????=??? ?????+=+=2.1.222112112.1.2. 221.212.2 .121.111.I I Z Z Z Z U U I Z I Z U I Z I Z U 矩阵形式为:0I 2. 2 . 220 I 2. 1 . 120 I 1. 2 . 210 I 1. 1. 111. 1. 2.2.I U Z I U Z I U Z I U Z ========

第16章二端口网络

第十六章 二端口网络 重点: 1. 二端口网络的有关基本概念 2. 熟练计算二端口网络的四种参数矩阵 3. 掌握分析网络参数已知的二端口网络组成的复杂电路的分析方法 16.1 概述 16.1.1 N 端网络与N 端口网络 前面的电路分析与计算中,我们常常是研究一个具体的电路在一定电路结构与电路参数的情况下所产生的响应。如果一个网络N 有2n 个端子向外接出(在大多数情况下,我们又并不关心电路的内部结构及内部各个支路的情况,而只讨论外电路的状态与变化,当这2n 个端子成对出现,即端口处的输入电流等于输出电流时,该网络可以视为一个n 端口网络,特别的,当网络只有四个端子引出时,我们称其为二端口网络。(注意二端口网络与四端网络的区别与联系) sL U s I s I 2 12)()(= -= 其实我们前面介绍一般的电路的分析,也可以用网络分析的思路来理解,即分析电路内某一条支路的情况时,可以将该支路划出原电路,而原电路的其他部分可以用戴维南或诺顿等效电路来代替,从而的出结果。这就将原电路除了待求支路外的其他电路部分组成一个一端口网络,经过戴维南等效,该一端口网络的电量关系就可以表征成为一种简单的端口电压与端口电流的伏安关系,从而研究在此伏安关系下外电路的情况。 在本书中,我们仅仅研究由线性电阻、电容、电感(包括互感)元件所组成的线性非时变无源网络,其中的“无源”是指无独立电压、电流源,动态元件初始状态为零的情况。 另外,本章中我们均采用拉氏变换法来研究二端口网络。(实际上,如果激励为正弦量即可用相量法分析,方法完全相同)

16.1.2 研究的问题 对于二端口网络N ,我们需要研究怎样通过定义及电路的计算方法求其各种参数矩阵,另外还需要研究复杂网络中的二端口网络的参数矩阵对复杂网络分析的作用,从而通过模块化的思想将复杂网络等效成为简单的单口网络及二端口网络的组合,分别计算其参数或参数矩阵,得出电路的解。 16.1.3 研究的对象特性 在本课程中,对所研究的二端口网络加以下面的限制。 1.二端口网络中不含独立源及附加电源,也就是说动态元件的初始状态为零; 2.二端口网络中的元件均为线性无源非时变元件; 3.在分析中一般使用拉氏变换或相量法进行分析。 16.1.4 二端口网络的变量与方程 对于二端口网络而言,共有两对端口电压电流——)(1s U 、)(2s U 、)(1s I 、)(2s I ——任意选择其中两个作为自变量,其余两个即可用这两个自变量来表示,由于二端口网络由线性元件组成,因此前述表达式应该是线性表达式。 16-2 二端口参数 在下面研究的二端口网络中,均采用以下参考方向: 图18-2 二端口网络 16.2.1 流控型参数—开路阻抗矩阵Z 1.对应的方程 当以)(1s I 、)(2s I 作为自变量(即以之为激励)时,由于网络为线性无源,所以函数(即响应))(1s U 、)(2s U 可以分别用自变量)(1s I 、)(2s I 的线性组合表示出来: ?? ?+=+=) ()()()()()()()()()(22212122121111s I s Z s I s Z s U s I s Z s I s Z s U 写成矩阵形式,有 ? ? ??????????=??????)()()()()()()()(212221121121s I s I s Z s Z s Z s Z s U s U

第十六章(二端口网络)习题解答

第十六章(二端口网络)习题解答 一、选择题 1.二端口电路的H 参数方程是 a 。 a .???+=+=22212122121111U H I H I U H I H U b . ???+=+=22212122 121111I H U H U I H U H I c .???+=+=22222112122111U H I H U U H I H I d . ???+=+=2 2212112 121112I H U H I I H U H U 2.图16—1所示二端口网络的Z 参数方程为 b 。 a .??????---+j1j4j4j43; b .?? ????----j1j4j4j43; ! c .???? ??--j1j4j4j43; d .?? ? ???--+j1j4j4j43 3.无任何电源的线性二端口电路的T 参数应满足 d 。 a .D A = b .C B = c .1=-AD BC d .1=-BC AD 4.两个二端口 c 联接,其端口条件总是满足的。 a .串联 b .并联 c .级联 d .a 、b 、c 三种 5.图16—2所示理想变压器的各电压、电流之间满足的关系为 d 。 a . n u u 121=,n i i =2 1 ; b . n u u =21,n i i 121-=; c . n u u 121-=,n i i =2 1; d . n u u =21,n i i 121=; ~ 二、填空题 1.图16—3(a )所示二端口电路的Y 参数矩阵为Y = ?? ????--Y Y Y Y ,图16—3 (b )所示二端口的Z 参数矩阵为Z = ?? ????Z Z Z Z 。

二端口网络

第五部分 二端口网络 (一)基本概念和基本定理 1、二端口网络的端口方程和参数 (1)端口特性方程 在两个端口的四个变量1 U 、2 U 、 1I 、2I 中任取两个为变量,另两个为函数构成的方程。 电压、电流方向如图示。 (2)描述二端口的四个参数矩阵 Z 参数 对于由线性R 、L (M )、C 元件组成的任意二端口无源网络都有12 21Z Z =,即Z 参数矩阵是对称的。对于对 称二端口有12 21Z Z =、1122Z Z = Y 参数 对于由线性R 、L (M )、C 元件组成的任意二端口无源网络都有1221Y Y =,即Y 参数矩阵是对称的。对于对称 二端口有12 21Y Y =、1122Y Y = T 参数 对于由线性R 、L (M )、C 元件组成的任意二端口

无源网络都有1AD BC -=,即T 参数矩阵是对称的。对于对称二端口有A D =. H 参数 2、二端口等效电路 (1)T 型电路 11112Z Z Z =- 212Z Z = 32212Z Z Z =- (2) π型电路 11112Y Y Y =+ 2122 Y Y Y =-=- 322 1Y Y Y =+ (3)如果二端口不互易,则等效T 型电路含有受控电压源,如图 (4)如果二端口不互易,则等效π型电路含有受控电流源,如图

3、二端口的连接 (1)级联 (2)并联 (3)串联 4、回转器和复阻抗变换器 (1)回转器是一种线性非互易的多端元件。互 易定理不适应回转器。 r 和g分别称为回转电阻和回转电导,简称回转

常数。 (2)负阻抗变换器 电流反向型:1 212,U U I kI ==, 电压的大小和方向均不改变;但电流1 I 经传输后变为2 kI ,即改变了方向; 电压反向型:1 212,U kU I I =-=-,电压改变了极性(方 向),但电流方向不变; NIC 可把正阻抗变为负 阻抗。 (二)典型例题及解题方法分析 例题1:图示电路二端口网络是由线性电阻构成的,此对称二端口的传输参数A=2,B=30,若将电阻L R 并联在22'-两端,输入端11'-的入端电阻为将电阻L R 并联在11'-两端的入端电阻的6倍,求L R 解法1:

第十六章 二端口电路

第十六章二端口网络 1、教学基本要求 (1). 了解多端网络和多口网络的概念。 (2). 牢固掌握双口不含独立电源时的方程及其参数,以及各种参数之间的换算关系和互易条件。 (3). 掌握双口的相互连接的计算。 (4). 了解双口的等效电路,具有端接双口的分析方法。 2、重点和难点 (1)不同参数对应的方程 (2)互易、对称双口其参数的特殊关系 (3)参数矩阵的求解 (4)有端接的电路的分析求解 ?端口的概念 所谓端口:是这样的一对端子,即从一个端子进入网络的电流等于从另一端子流出的电流。含有m个端口的网络叫做m端口网络,最简单的二端网络也就是一端口网络。二端口网络也就是四端网络,但四端网络不一定是二端口网络。 ?二端口网络的方程和参数 对于一个已知的二端口网络如图16.0所示,有四个变量即:两个电压变量、两个电流变量,其中任给两个变量的值,其余两个变量的值就被唯一确定。 图16.0 设一个端口为输入端口,则另一端口为输出端口。所以该二端口网络应有六种可能的方程组: ①Z(阻抗)参数方程、Z参数: ②Y(导纳)参数方程、Y参数: ③T(传输)参数方程、T参数(又称为链参数方程、链参数): ④倒T(倒传输)参数方程、倒T参数(又称为倒链参数方程、倒链参数): ⑤H(混合)参数方程、H参数:

⑥倒H(倒混合)参数方程、倒H参数: ?. 二端口网络的连接形式 ①级联形式,特点:T = T’* T” ②串联形式,特点:Z = Z’+ Z” ③并联形式,特点:Y = Y’+ Y” ?. 两种特殊的二端口元件 ①回转器 ②负阻抗变换器 3、典型例题分析 【例题1】:二端口网络、四端网络的区分。 图16.1所示的网络是:答(C)A.二端口网络;B.三端网络;C.四端网络;D.以上都不是。 图16.1 【例题2】:熟练掌握四种常用参数Z、Y、H、T的定义和求解。 是二端口网络的:答( C) 二端口网络Z参数中,z 11 A. 输入端阻抗; B. 输出端短路时的输入端阻抗; C. 输出端开路时的输入端阻抗; D. 以上皆非。 【例题3】:含受控源的线性两端口网络不满足互易性。 求图16.2所示二端口电路的Y参数。 图16.2 解:应用KCL和KVL直接列方程求解,有:

二端口网络理论

1 二端口网络理论 网络理论是一种非常普遍的处理问题的方法,它把系统用一个由若干端口对外的未知网络表示。微波网络理论是微波工程强有力的工具,主要研究微波网络各端口的物理量之间的关系,实际的微波/射频滤波器也是用网络分析仪进行测量。微波网络分为线性与非线性,有源与无源,有耗与无耗,互易与非互易。 双口元件[18][19][20]是在微波工程中应用最多的一种元件,主要有滤波器、移相器、衰减器等。与单口元件相似,双口元件一般采用网络理论进行分析,但是,值得指出的是元件的网络参数本身还是需要用场论方法求得,或者实际测量得到,从这个意义上讲,场论是问题的内部本质,而网络则是问题的外部特性。 几乎所有的微波元件都可以由一个网络来代替,并且可以用网络端口参考面上的变量来描述其特性(在传输线上端口所在的位置,与能流方向垂直的横截面通常称为“参考面”)。选择参考面的原则是在该参考面以外的传输线上只传输主模。 微波网络有不同的网络参量:阻抗参量Z 、导纳参量Y 和A 参量反映的是参考面上电压与电流的关系;散射参量S 、传输参量T 反映的是参考面上归一化入射波电压和归一化反射波电压之间的关系。在微波频率下,阻抗参量Z 、导纳参量Y 和A 参量不能直接测量,所以引入散射参量S 和传输参量T 。利用S 参数,射频电路设计者可以在避开不现实的终端条件以及避免造成待测器件损坏的前提下,用两端口网络的分析方法来确定几乎所有射频器件的特征,故S 参量是微波网络中应用最多的一种主要参量。 图2.5 二端口网络示意图 S 参量是根据某端口上接匹配负载的情况下所得到的归一化波来定义的。设a n 表示第n 个端口的归一化入射波电压,b n 表示第n 个端口的反射波归一化电压。 U 1 U 2

第十六章(二端口网络)习题

第十六章(二端口网络)习题一、选择题

二、填空题 1.图16—3(a )所示二端口电路的Y 参数矩阵为Y = ,图16—3(b )所示二端口的Z 参数矩阵为Z = 。 2.图16—4所示二端口网络的Y 参数矩阵是Y = 。 3.图16—5所示回转器的T 参数矩阵为 。 4.图16—6所示的二端口网络中,设子二端口网络1N 的传输参数矩阵为? ? ? ? ??D C B A ,则复合二端口网络的传输参数矩阵为 。 5.图16—7所示二端口网络的Y 参数矩阵为 。 6.描述无源线性二端口网络的4个参数中,只有 个是独立的,当无源线性二端口网络

为对称网络时,只有 个参数是独立的。 三、计算题 1.图16—8所示二端口网络的Z 参数是Ω=1011Z 、Ω=1512Z 、Ω=521Z ,Ω=2022Z 。试求s U U 2。 2.求图16—11所示二端口网络的T 参数。 3.图示电路中,二端口网络N 的传输参数矩阵为 2.560.5 1.6T S Ω?? =?? ?? , 求(1)L R 等于多少时其吸收功率最大? (2)若9V S U =,求L R 所吸收的最大功率max P ,以及此时网络N 吸收的功率N P 4.图示电路中,直流电源U S =10 V ,网络N 的传输参数矩阵为?? ? ???=11.0102][T ,t <0时电路处于稳态,t =0时开关S 由a 打向b 。求t >0时的响应u (t )。 0.01F

7.已知图示电路中,二端口网络N 的传输参数矩阵为 1.5 2.50.5 1.5T S Ω?? =? ??? ,t=0时闭合开关k 。 求零状态响应()C i t 8.电路如图所示,N 不含独立电源,25202020Z ?? =Ω ??? ,原电路已处于稳态,今于0t =时闭合S , 求0t >时的()c u t 。 u i 本章作业:计算题的3、4、7、8小题

第4章 阻抗与互阻抗

第四章 阻抗与互阻抗 1、互易性定理 接于传输线的天线的阻抗可以表示成一个二端口网络,将天线用接于传输线末端的等效阻抗Z 代替。在设计发射机及其传输线时,将天线简单地当作二端阻抗是很方便的,这种作用于传输线末端的阻抗称为馈端阻抗或激励点阻抗。对于无耗且孤立的天线,即远离地面和其它物体的天线,其终端阻抗就是该天线的自阻抗,具有称为自电阻(辐射电阻)的实部和称为自电抗的虚部。当天线用作接收时,其自阻抗与用作发射时的相同。 在天线邻近存在物体(如若干其它天线)时,终端阻抗仍可用一个二端网络来代替。其等效阻抗由该天线与其它天线间的互阻抗以及在这些天线上的电流所确定。 瑞利-亥姆霍兹的互易性定理已被卡森推广到含连续媒质的情况,该定理应用于天线时阐述如下:若在天线A 的馈端上施加电动势,在天线B 的馈端上测得电流;则对应于在天线B 的馈端施加相同电动势的情况,在天线A 的馈端上2、二元耦合对称振子的阻抗 2.1二元耦合对称振子的阻抗 在二元耦合对称振子阵中,假设在二振子输入端都接入电动势,于是振子上激励也将得到相等幅度和相位的电流。 起电流,在空间激发出电磁场。二振子电流和所激发的空间电磁场是互相作用、互相制约的。设振子1在自身电流及其场作用下的辐射功率为11P ,称为振子1的自辐射功率;设振子1在振子2的电流及其场作用下而辐射的功率为,称为振子1的感应辐射功率。 振子1的总辐射功率 12P

11121P P P =+∑ (4.1) 同理振子的总辐射功率 222212P P P =+∑ (4.2) 从耦合振子的自辐射功率、感应辐射功率和总辐射功率,射阻抗、感应辐射阻抗和辐射阻抗: 可以得出它的自辐11112Z I = 12m P 121Z 2212m P 1121 2P I ′= m Z I ∑=∑ 2222 2m P Z I ∑=∑2222222m P Z I =2121222m P Z I ′= (4.3) 式中、12Z ′21Z ′、、1Z ∑2Z ∑11Z 和22Z 、分别为振子1、振子2归流的自阻抗、感应辐射阻抗和辐射阻抗。并有: 于各自波腹电11121Z Z Z ′=+∑ 22212Z Z Z ′=+∑ (4.4) 2.2等效阻抗方程 1按照电路理论 11111112122222222m m m m m m U I Z I Z I Z U I Z I Z I Z ?′==+∑??′==+?∑? (4.5) 振子1和振子2的感应辐射阻抗12Z ′、21Z ′分别与2m I 、1m I 成正比,即 21212m 1121212m m m I Z Z I I Z Z I ?=????′=?? (4.6) 将式(4.6)代入式(4.5),得: 222 (4.7) ′11112121212m m m m U I Z I Z I Z I Z =+?=+?U ?

二端口网络

第10章二端口网络 电子技术工程实际应用中,很多电路都是通过端口和外部电路相联的。例如耦合电路、滤波电路、放大电路及变压器等,这些电路都属于二端口网络。尤其在中、大规模集成电路迅速发展的今天,各类功能不同的集成块研制出来的越来越多,这些集成电路往往制造好以后就被封装起来,对外引出多个端钮与外电路连接。对于此类电路一般不考虑电路内部的情况,只对各个端口的功能及其特性予以研究。因此,对端口网络的分析显得日益重要。 本章的学习重点: ●二端口网络的四个基本方程及有关参数; ●二端口网络的T形和Л形等效电路及其它们之间的互换; ●线性二端口网络的输入阻抗、输出阻抗和特性阻抗; ●二端口网络的实际应用。 10.1 二端口网络的一般概念 1、学习指导 (1)二端口网络 本章研究的问题,接触到的很多概念都是从前面研究的二端网络中直接引入的,因此学习本章内容的基础仍是前面学过的电路分析基础知识。二端网络和二端口网络是不同的,二端网络对外引出端子只有两个,两个引出端子满足端口条件:自一个引出端子流入网络的电流恒等于从另一个引出端子上流出的电流。因此,二端网络也称为一端口网络。现在讨论的二端口网络,和二端网络的主要区别就在于它具有四个对外引出端子,即两对满足端口条件的端口。 (2)研究二端口网络的意义 对线性无源二端口网络的分析,是通过对二端口网络端口处电压和电流的测试,找出一组参数来表征该二端口网络的性能,在分析过程中并不涉及网络内部电路的工作状况,即不考虑二端口网络的内部结构如何,由此给实际问题的分析和研究带来了极大的方便,同时,还可以利用这些参数来比较不同的二端口网络在传递电能和信号方面的性能,从而正确评价它们的质量,这就是研究二端口网络的意义。 2、学习检验结果解析 (1)什么是二端口网络? 解析:有四个端钮的网络叫做四端网络。四端网络中的四个端钮构成两对,如果流入其中 138

第十六章 二端口网络

第十六章二端口网络 §16-1 二端口网络 §16-2 二端口的方程和参数(16-4转移函数) §16-3 二端口的等效电路 §16-5 二端口的连接 §16-6 回转器和负阻抗变换器 §16-1 二端口网络 一、二端口网络 以前学过的都是知道电路具体的结构和元件参数,要求求解各个支路的电压和电流,只能借助于求解各种电路变量的电路方程。 如果有一个较复杂的电路,只有两个端子向外连接,内部电路不清楚,而我们也仅对外接电路中的电压电流感兴趣,就可以将电路视为一个二端网络用戴维南等效电路或诺顿等效电路来代替,然后计算感兴趣的电压电流。 戴维南定理是典型的求某一条支路电压电流的等效电路求解法,由此我们引入一端口、二端口的概念。 1、一端口:——具有一对引出端子的电路网络(具有一个端口 的电路网络)。必然满足i 1=i 2 的端口条件。

2 、二端口:——具有两对引出端子,且满足端口条件的电路 网络。不满足端口条件的电路网络只是四端网络。 端口1 端口2 端口条件:流入端钮1的电流i 1=流出端钮1’的电流i 1 ’; 流入端钮2的电流i 2=流出端钮2’的电流i 2 ’。 要构成一个端口,流入电流i 1必然等于流出电流i 1 ’。 比如图示网络,是不是二端口呢? 显然i 1+i 3 =i 2 +i 4 ,即满足KCL,但不是二端口,只是四端网络。 3.研究端口网络的原因 现代电子器件或集成电路,往往只会给出端口特性,并不给出内部具体电路。对用户来说,只要知道端口输入输出特性就可以应用了,也没有必要去了解内部电路,因此我们有必要来研究多端网络及外部描述特性。 常见多端网络(比如二端口)比如:运放,变压器,隔离器,放大器,滤波器等等。 4.二端口的分类 ①按是否线性来分:线性二端口(不含非线性元件) 非线性二端口(含有非线性元件) ②按有无电源分:有源二端口(含有独立源)用Ns或N表示; 无源二端口(不含独立源,但含受控源)用N 或N表示. ③按是否可逆来分:可逆二端口(一般不含受控源); 不可逆二端口(含有受控源的二端口)。 ④按是否对称来分:对称二端口(电路结构对称,参数也对称); 不对称二端口。

第四章 多端元件和双口网络

ab R 432 34 R u u R R =+Q 14121u u i i R -==412221 1341()() R R R R u u R R R R +=-+第四章 多端元件和双口网络 4-1 .图示电路中,求a,b 端等效电阻. 解:设各电流电压方向如图示,根据题意得: 所以 则 由KVL 有: 4-2求图所示电路的输出电压u 0。 解: (“虚断”) u 4=u 3 (“虚短”) 414322222341134[]()o R u R u u i R u R u R R R R R R ∴=-=--++ 4-3电路如下图所示,已知 R 1= 10 k Ω ,R F = 50 k Ω 。求转移电压比K =u 0 / u i

因虚断,i += i – = 0 ,所以 i 1 ≈ i f 因虚短, 所以u –=u + = 0, 4-4如下图所示,试求二端口网络的R 参数 解:(1)令二端网络的输出端口开路 则:Ω===2011 112i i u R Ω== =201 2 212i i u R 令输入端开路, 则: 2223121u u i =+= 2213 2212u u u =+?= Ω===2021 121i i u R Ω===2022 221i i u R 开路电阻矩阵R 为:??????=3222R 4-5 求下图所示网络的R 参数。 + – u o R F u i R 2 R 1 + – + + – 2 1 R R u u K F i o -==1i 1R u u i - -=F o f R u u i -=-

解:Ω?+===212512011 112=i i u R Ω== =10012212i i u R Ω===1002112 1i i u R Ω===5022 221i i u R 开路电阻矩阵R 为: ??????=5101021R

相关主题
文本预览
相关文档 最新文档