高一数学必修一函数的定义域和值域
- 格式:doc
- 大小:342.50 KB
- 文档页数:7
诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。
(2)掌握两个函数是同一函数的条件。
(3)会求简单函数的定义域和值域。
过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。
(2)使学生掌握求函数是=式的值得方法。
(3)培养批判思维才能、自我调控才能、交流与才能。
情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。
(2)学会全面的观察、分析、研究问题。
重点难点
重点:符号“y=f(x)〞的含义。
难点:符号“y=f(x)〞的含义。
教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。
函数两域及其法则的求法一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
高一值域和定义域的知识点高一数学知识点:值域和定义域解析数学中的值域和定义域是一项基本概念,特别在高一的课程中,这两个概念被频繁地引用和运用。
理解和掌握这些概念,对于高一学生来说是至关重要的。
一、定义域的概念与运用1.1 定义域的定义在函数的定义中,值域和定义域是两个至关重要的概念。
首先,定义域指的是自变量的取值范围。
也就是说,在一个函数中,自变量可以取到的所有可能值形成的集合就是该函数的定义域。
例如,在函数 y = 2x + 3 中,自变量 x 可以取到任何实数的值,所以定义域是整个实数集R。
1.2 定义域的限制在实际问题中,有时候函数并不适用于所有的自变量取值范围。
例如,对于一个表示温度的函数而言,可能只适用于自变量为正数的情况,因为负温度在实际生活中并没有意义。
所以,在这种情况下,定义域就需要做出相应的限制。
例如,函数y = √x 的定义域就是非负实数集[0, +∞)。
1.3 定义域的确定方法确定一个函数的定义域,首先要注意函数中不能出现负号下的奇次根号,因为这样的根无法在实数范围内取得。
其次,要注意有分数形式的分母,不能等于零,因为除数不能为零。
最后,要留意任何其他潜在的限制条件,如有意义性等。
二、值域的概念与运用2.1 值域的定义与定义域类似,值域也是函数的一个重要概念。
值域指的是函数的因变量所能取到的所有可能值所形成的集合。
例如,在函数 y = 2x + 3 中,对于任何实数的自变量 x ,函数的值域都是整个实数集R。
2.2 值域的限制对于某些函数而言,其值域可能受到一些限制。
例如,函数 y = x^2 的值域就是非负实数集[0, +∞),因为平方的结果永远不会是负数。
在寻找函数的值域时,我们需要考虑是不是有潜在的限制条件。
2.3 值域的确定方法确定一个函数的值域,可以通过图像分析和数学推导等多种方法。
对于某些函数而言,我们可以通过观察函数的图像,来判断函数的值域。
例如,当一个函数的图像形状是一个开口向上的抛物线时,我们就可以确定其值域是非负实数集。
高一数学值域定义域知识点数学中的值域(Range)和定义域(Domain)是描述函数的两个重要概念。
值域表示函数的所有可能输出值的集合,而定义域表示函数的所有可能输入值的集合。
在高一数学中,理解和应用这两个概念对于解决函数相关的问题至关重要。
一、定义域(Domain)定义域是指函数中所有可能的输入值的集合。
在数学中,定义域可以是实数集、整数集、有理数集或者其他特定的数集,根据具体问题而定。
为了确定一个函数的定义域,我们需要考虑以下几个因素:1. 根式的定义域:对于包含根式的函数,我们需要确保根式内的数值为非负数或者分母不为零。
2. 分式的定义域:对于包含分式的函数,我们需要注意分母不能为零,因为分母为零时函数无定义。
3. 对数函数的定义域:对于对数函数,底数必须为正数且不等于1,同时函数中的参数也必须满足相应的定义条件。
4. 指数函数的定义域:对于指数函数,底数必须为正数且不等于1。
在确定函数的定义域时,我们还需要考虑其他限制条件,如不等式、约束条件等。
通过合理的分析和推理,我们可以准确地确定一个函数的定义域。
二、值域(Range)值域是指函数中所有可能的输出值的集合。
通过确定一个函数的定义域以及函数的性质,我们可以进一步确定它的值域。
1. 线性函数的值域:对于形如y = kx + b的线性函数,值域是整个实数集。
由于线性函数的图像是一条直线,我们可以看到函数的输出可以取任意的实数值。
2. 幂函数的值域:对于形如y = x^n的幂函数,如果n为奇数,则值域是整个实数集(或者负实数集,根据函数的性质而定);而如果n为偶数,则值域是非负实数集。
3. 指数函数的值域:对于形如y = a^x的指数函数,值域是正实数集。
通过观察函数的图像,结合函数的性质和定义域,可以帮助我们准确地确定一个函数的值域。
总结:值域和定义域是解决函数问题的重要概念,我们可以通过分析函数的性质、图像以及定义域的限制条件来确定一个函数的值域。
高一数学必修一函数知识点分析1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
函数的定义域和值域(一)求函数定义域的一般原则:(1)如果f (x )是整式,那么函数的定义域是实数集R .(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义. (二):抽象函数的定义域求法:①函数f (x )的定义域是指x 的取值范围所组成的集合。
②函数[])(x f ϕ的定义域还是指x 的取值范围,而不是)(x ϕ的取值范围。
③已知f(x)的定义域为A ,求[])(x f ϕ的定义域:其实质是(求法):已知)(x ϕ的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x f ϕ的定义域。
④已知[])(x f ϕ的定义域为B ,求f(x)的定义域:其实质是(求法):已知[])(x f ϕ中x 的取值范围为B ,求出)(x ϕ的取值范围;解得的)(x ϕ的取值范围即是f(x)的定义域。
⑤同在对应法则f 下的范围相同:即[][])(,)(),(x h f x f t f ϕ三个函数中)(),(,x h x t ϕ的范围相同。
(三):复合函数的定义域及其求法:(1)定义:如果函数)(t f y =的定义域为A,函数)(x g t =的定义域为D ,值域为C ,则当A C ⊆时,称函数[])(x g f y =为)(x f 与)(x g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫做内层函数,)(t f y =叫做外层函数。
(2)复合函数定义域求法:①函数[])(x g f 的定义域还是指x 的取值范围,而不是)(x g 的取值范围。
②已知f(x)的定义域为A ,求[])(x g f 的定义域:其实质是(求法):已知)(x g 的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x g f 的定义域。
函数的值域与表示知识集结知识元常见的求函数值域类型知识讲解一、定义函数值的集合{f(x)|x∈A}叫做函数的值域.A是函数的定义域.二、求函数值域的常用方法(1)公式法:适用于一次函数、二次函数、反比例函数及以后要学的基本初等函数,形如(且分式不可约)的值域为.(2)图象法:适用于能画出图象的函数,如,.(3)不等式性质法(包含观察法、配方法、分离常数法、有界法):适用于解析式中只出现“一个”或通过变形化成只能出现“一个”函数,如:,等.(4)换元法:适用于无理式中含有自变量的函数,如等.(5)判别式:适用于形如(,不全为零且分式不可约)的函数.(6)方程思想(包括判别式法、反解法):适用于可解出的解析式函数,如等.例题精讲常见的求函数值域类型例1.函数f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3B.0≤y≤3C.{0,2,3}D.[0,3]例2.函数y=的定义域是(﹣∞,1)∪[2,5),则其值域是()A.(﹣∞,0)∪(,2]B.(﹣∞,2]C.(﹣∞,)∪[2,+∞)D.(0,+∞)例3.函数y=的值域是()A.(﹣∞,1)∪(1,+∞)B.(﹣∞,0)∪(0,+∞)C.(﹣∞,)∪(,+∞)D.(﹣∞,)∪(,+∞)例4.函数的值域是.备选题库知识讲解本题库作为知识点“函数的值域”的题目补充.例题精讲备选题库例1.函的值域是()A.R B.[-1,1]C.{-1,1}D.{-1,0,1}例2.函数y=的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)例3.函数的值域为()A.[-1,+∞)B.[0,+∞)C.(-1,+∞)D.(0,+∞)例4.已知,则函数f(x)=log2x的值域是()A.[-3,-2]B.[-2,3]C.[-3,3]D.[-2,2]例5.函数y=2+1的值域为()A.[0,+∞)B.[1,+∞)C.[2,+∞)D.例6.已知函数f(x)=-,则函数f(x)的值域为()A.[-3,0]B.[0,3]C.[-3,3]D.[3,12]例7.下列哪个函数的定义域与函数f(x)=()x的值域相同()A.y=|x|B.y=C.y=x+D.y=lnx例8.定义函数f(x)={x∙{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{-2.5}=-2,当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=()A.n B.C.D.图象法知识讲解1.图象法在坐标平面中用曲线的表示出函数关系.即图象上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图象上.这种由图形表示函数的方法叫作图象法.2.函数图象的作法步骤①列表;②.描点;③.连线.注意:一般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直角坐标系中,准确描点,然后连线(平滑曲线)例题精讲图象法例1.若a+b=0,则直线y=ax+b的图象可能是()A.B.C.D.例2.若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.例3.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点例4.已知函数f(x)=x2﹣2x,则下列各点中不在函数图象上的是()A.(1,﹣1)B.(﹣1,3)C.(2,0)D.(﹣2,6)例5.可作为函数y=f(x)的图象的是()A.B.C.D.图象的平移变换知识讲解一、变换作图法设,.例题精讲图象的平移变换例1.已知函数f(x)的图象关于直线x=1对称,如图所示,则满足等式f(a﹣1)=f(5)的实数a的值为.例2.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.例3.若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)例4.函数y=f(x)的图象是两条直线的一部分(如图所示),其定义域为[﹣1,0)∪(0,1],则不等式f(x)﹣f(﹣x)>﹣1的解集为.例5.将y=f(x)的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的,则所得函数的解析式为()A.y=3f(3x)B.C.D.函数的解析式知识讲解一、解析法:用解析式把把x与y的对应关系表述出来,y=f(x);这种方法叫做解析法.注意:函数的三种表示方法间具有互补性,因此在实际研究问题时,通常是三种方法交替使用,例如在研究用解析式表示的某一函数的性质时,可以根据解析式画出函数图象,数形结合更清晰、直观,如何画函数图象?列表法,通常取其自变量的部分值,根据解析式算出相应的函数值,列表显示其数值的对应关系,再根据表格,在平面直角坐标系中描点,形成该函数的图象.二、求函数解析式的常用方法1.配凑法:原函数的表达式为,t是关于x的式子,要求的解析式,这是要把通过变形、整理,使其变为只含t与常数的式子,然后将t换成x,即可以得到的解析式,这种方法叫做配凑法.2.换元法:解题时,把某个式子看做整体,用一个新的变量取代替它,从而使问题简化,这种方法叫做配凑法.3.待定系数法:已知的函数类型,要求的解析式时,可根据类型先设出函数解析式,再将对应值代入,利用恒等式原理求出待定系数即可.4.解方程组法(或消元法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做解方程组法(或消元法).5.赋值法:如果一个函数关系式中的变量对某个范围内的一切值都成立,结合题设条件的结构特点,给变量适当赋值,从而使问题简单化、具体化.例题精讲函数的解析式例1.若函数,,则f(x)+g(x)=.例2.已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a﹣b =.例3.已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1B.2x﹣1C.2x﹣3D.2x+7例4.已知g(x)=1﹣2x,f[g(x)]=(x≠0),则f()等于()A.15B.1C.3D.30例5.已知f(x+1)=2x2+1,则f(x﹣1)=.构造函数知识讲解例题精讲分段函数知识讲解1.定义分段函数是定义在不同区间上解析式也不相同的函数.若函数在定义域的不同子集上的对应法则不同,可用几个式子来表示函数,这种形式的函数叫分段函数.已知一个分段函数在某一区间上的解析式,求此函数在另一区间上的解析式,这是分段函数中最常见的问题.1.学习分段函数的注意事项(1)分段函数是一个函数,而不是几个函数;(2)处理分段函数问题时,要首先确定自变量的取值属于哪一范围,然后选取相应的对应关系.要注意写解析式是各自端点的开闭,做到不重复、不遗漏.(3)分段函数的定义域是各段定义域的并集,分段函数的值域是分别求出各段上值域的并集;分段函数的最大(小)值则是分别在没端上求出最大(小)值,然后取各个最大(小)值中的最大(小)值.例题精讲分段函数例1.设f(x)=,则f(5)的值为()A.10B.11C.12D.13例2.函数,其中P、M为实数集R的两个非空子集,又规定A={y|y =f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.其中错误的判断是(只需填写序号).例3.已知函数f(x)=则f(f(5))=()A.0B.-2C.-1D.1例4.设f(x)=,则f(5)的值为()A.10B.11C.12D.例5.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f (x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()列表法知识讲解1.列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法.例题精讲列表法例1.设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1映射f的对应法则原象1234象3421表2映射g的对应法则原象1234象4312则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]例2.已知函数f(x),g(x)分别由表给出,则f(g(1))=.x123 f(x)213 g(x)321例3.已知函数分别由下表给出x123f(x)131x123g(x)321则f(g(1))=.备选题库知识讲解本题库作为知识点“函数的表示方法”的题目补充.例题精讲备选题库例1.直线l1:y=kx+b和直线l2:(k≠0,b≠0)在同一坐标系中,两直线的图形应为()A.B.C.D.例2.函数f(x)=ln|x|-|x|的图象为()A.B.C.D.例3.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:则不等式ax2+bx+c>0的解集是()A.(-∞,-6)∪(-6,+∞)B.(-∞,-2)∪(3,+∞)C.(-2,3)D.(-6,+∞)例4.已知函数f(x)=x2+bx,若函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,则实数b的取值范围是______________。
数学必修一定义域知识点定义(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数某,在集合B中都有唯一确定的数f(某)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(某),某属于集合A。
其中,某叫作自变量,某的取值范围A叫作函数的定义域;常见题型1,f(某)的定义域,求f(g(某))的定义域.例1,f(某)的定义域为(-1,1),求f(2某-1)的定义域.略解:由 -1<2某-1<1有 0<1∴f(2某-1)的定义域为(0,1)2,f(g(某))的定义域,求f(某)的定义域.例2,f(2某-1)的定义域为(0,1),求f(某)的定义域。
解:0<1,设t=2某-1∴某=(t+1)/2∴0<(t+1)/2<1∴-1<1∴f(某)的定义域为(-1,1)注意比拟例1与例2,加深理解定义域为某的取值范围的含义。
3,f(g(某))的定义域,求f(h(某))的定义域.例3,f(2某-1)的定义域为(0,1),求f(某-1)的定义域。
略解:如例2,先求出f(某)的定义域为(-1,1),然后如例1有 -1<1,即0<2∴f(某-1)的定义域为(0,2)指使函数有意义的一切实数所组成的集合。
其主要根据:①分式的分母不能为零②偶次方根的被开方数不小于零③对数函数的真数必须大于零④指数函数和对数函数的底数必须大于零且不等于1例4,f(某)=1/某+√(某+1),求f(某)的定义域。
略解:某≠0且某+1≧0,∴f(某)的定义域为[-1,0)∪(0,+∞)注意:答案一般用区间表示。
例5,f(某)=lg(-某 2+某+2),求f(某)的定义域。
略解:由-某 2+某+2 >0 有某 2-某-2 <0即-1<2∴f(某)的定义域为(-1,2)函数应用题的函数的定义域要根据实际情况求解。
某 1 2 3 4 (89)p 2/99 1/49 2/97 1/48 …2/11又知每生产一件正品盈利100元,每生产一件次品损失100元.求该厂日盈利额T(元)关于日产量某(件)的函数;解:由题意:当日产量为某件时,次品率p=2/(100-某)那么次品个数为:2某/(100-某),正品个数为:某-2某/(100-某)所以T=100[某-2某/(100-某) ]-100·2某/(100-某)即T=100[某-4某/(100-某) ],(某∈N且1≦某≦89)数学必修一值域知识点名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)根本不等式法等关于函数值域误区“范围”与“值域”相同吗“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。