数学建模与数学实验
- 格式:ppt
- 大小:1.46 MB
- 文档页数:39
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模与数学实验:矿区储藏量和面积的计算问题研究研究目标本实验的目的是通过对矿区面积的计算,掌握定积分的近似计算方法,对有关数值积分的有关理论和数值计算方法有所了解。
解决问题1.计算积分42() f x dx的近似值。
2.矿区储量问题1:计算积分42()f x dx ⎰的近似值。
已知函数()y f x =的一些数据点如下:分别用矩形,梯形和辛普生公式计算积分42()f x dx ⎰的近似值。
[问题分析]这个问题就是基本的计算,我们可以直接套用公式进行编程计算即可。
复合矩形求积公式,分为三种情况:11111111(1) ()()()(2) ()()()(3) ()()()2n b i i i a i n b i i i a i n b i ii i a i f x dx f x x x f x dx f x x x x x f x dx f x x --=-=--=⎧=-⎪⎪⎪=-⎨⎪⎪+=-⎪⎩∑⎰∑⎰∑⎰ 梯形求积公式: ()[()()]2ba a bf x dx f a f b +=+⎰ 辛普生求积公式: ()[()()()]62ba b a a bf x dx f a f f b -+=++⎰[实验程序]⏹ function shiyan131⏹ x=[2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0];⏹ y=[1.65,1.56,1.38,1.12,0.77,0.34,-0.15,-0.7,-1.3,-1.91,-2.01]; ⏹ n=length(x)⏹for i=2:n⏹s1(i-1)=y(i-1)*(x(i)-x(i-1));⏹s2(i-1)=y(i)*(x(i)-x(i-1));⏹end⏹s11=sum(s1)⏹s12=sum(s2)⏹for i=2:(n-1)⏹s3(i-1)=y(i)*(x(i+1)-x(i-1));⏹end⏹s13=sum(s3)⏹s4=(x(n)-x(1))*(y(n)+y(1))/2⏹s5=(x(n)-x(1))*(y(1)+4*y((n+1)/2)+y(n))/6[运行结果]复合矩形求积法:方法一: s11= 0.5520方法二: s12 = -0.1800方法三: s13 = 0.4440梯形求积法: s4 =﹣0.3600辛普生求积法: s5 = 0.3333问题2:矩形矿区储藏量煤矿的储量估计,下表给出了某露天煤矿在平面矩形区域(800m ⨯600m)上,在纵横均匀的网格交点处测得的煤层厚度(单位:m)(由于客观原因,有些点无法测量煤层厚度,这里用/标出),其中的每个网格都为(10m ⨯8m)的小矩形,试根据这些数据,来估算出该矩形区域煤矿的储藏量(体积)。
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
《数学建模与数学实验》考查方案教学部门及专业数学学院11级数学与应用数学专业课程名称数学建模与数学实验教学班级2011级数学与应用数学1、2班考查时间第 19 周考核方式试卷□ 过程评价□ 作业或调查□ 作品 项目任务□ □√一、必做题:(60分)1、简答题:(20分)(1)通过《数学建模与数学实验》课程的学习,请谈谈对数学建模和数学实验的认识,学习《数学建模与数学实验》课程的收获。
(不少于500字)(15分)(2)简要说明数学建模的一般过程或步骤。
(5分)2、(40分) 一阶常微分方程模型——人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(),0=t 万人。
1016540=N 年198219831984198519861987198819891990人口(万)101654103008104357105851107507109300111026112704114333年19911992199319941995199619971998人口(万)115823117171118517119850121121122389123626124810要求:(1)建立中国人口的指数增长模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。
(5)用两个模型估计2015年中国人口。
二、选作题:(40分)(在如下问题中任选一题做建模解答)第1题 送货模型某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C 从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
数学建模与数学实验复习范围: 题型为:简答题、建模计算题和编写程序。
1. 数学建模的步骤和模型按照表现特性的分类。
(1)数学建模步骤:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用、(2)模型按照表现特性分类:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型2. 人口模型:要求(1)指数增长模型的建立及求解(2)阻滞增长模型的建立.(1)指数增长模型的建立及求解:设t 时刻的人口为)(t x ,经过一段短的时间t ∆后,在t t ∆+时刻,人口数量变化为)(t t x ∆+。
由基本假设,在这段短的时间t ∆内,人口数量的增加量应与当时的人口)(t x 成比例,不妨设比例系数为0r ,即t ∆内人口的增量可写为t t x r t x t t x ∆=-∆+)()()(0等式两边同除以t ∆,当0→∆t 时)()()(lim00t x r t t x t t x t =∆-∆+→∆ 等号的左边即是导数t x d d ,已知初始时刻人口数量为0x ,则⎪⎪⎩⎪⎪⎨⎧==00)0()(d d x x t x r t x (2.2) 就是描述人口随时间变化的带初始条件的微分方程。
用分离变量法求解,得t r x t x 0e )(0=(2)阻滞增长模型的建立:由于自然资源的约束,人口存在一个最大容量m x 。
增长率不是常数,随人口增加而减少。
它具有以下性质:当人口数量)(t x 很小且远小于m x 时,人口以固定增长率0r 增加;当)(t x 接近m x 时,增长率为零。
0r 和m x 可由统计数据确定。
满足上述性质的增长率可以写作)1()(0mx x r x r -= (2.4)这样Malthus 模型公式(2.2)变为⎪⎪⎩⎪⎪⎨⎧=-=00)0()1(d d x x x x x r t x m (2.5) 称为阻滞增长模型或Logistic 模型。
数学建模与数学实验pdf
1数学建模与数学实验
数学建模是运用数学方法描述实际问题,并用数学模型表示真实系统,以实现问题特征和解决问题的过程。
它是一种广泛应用于工程,物理,经济和社会等学科的重要方法。
数学建模是从宏观层面深入理解真实系统,揭示系统本质结构,分析和解决实际问题的有用方法。
数学实验是采用科学方法,通过实践探索,模拟,原型测试,从初步发现和总结由此得出的规律,来达到解释和提出新理论,从而检验数学建模关系式前后矛盾等目的。
数学实验是通过事实材料来论证数学建模和数学思想的实践过程,可以深入了解数学本身的特性,加深对数学的理解,进一步完善数学建模的过程。
数学建模与数学实验相辅相成,可以有效地提高数学模型的建立效率,进而降低时间和成本的消耗。
在工程,物理,经济和社会等多个领域,数学建模与数学实验都有着重要的作用。
它们给人们以有用的思路,是今天有效求解数学问题和发现数学形式解决方案不可或缺的重要工具。
结论:数学建模与数学实验以及科学方法相结合,是研究有关问题求解和理论发现的有效工具。
数学建模与数学实验数学建模是指利用一定的数学方法和技巧,对实际问题进行描述、分析和解决的过程。
数学建模是将数学与实际问题相结合的一门学科,在理论研究和实际应用中都具有重要的意义。
而数学实验则是通过实际的实验操作,观测数据,验证数学模型的准确性和可靠性。
一、数学建模数学建模是将实际问题抽象化,建立数学模型,通过数学工具求解问题。
数学建模的基本步骤包括:问题描述,建立数学模型,选择方法解决问题,模型分析和结果验证。
数学建模需要综合运用数学分析、概率统计、优化理论等数学学科知识,对问题进行全面深入的研究。
数学建模在科学研究、工程技术、金融经济等领域有着广泛的应用。
例如,在气象预报中,可以利用数学建模对气象系统进行模拟,预测未来的气象变化;在医学领域,可以通过建立数学模型研究疾病的传播规律,提出有效的防控措施。
二、数学实验数学实验是对数学理论进行验证和实际应用的过程,通过实际操作和数据观测,检验数学模型的有效性和可行性。
数学实验可以帮助研究者理解数学问题的本质,加深对数学知识的理解和掌握。
数学实验通常包括设计实验方案、收集数据、进行数据处理和分析等步骤。
通过数学实验,可以验证数学定理和推论的正确性,检验数学模型的准确性和可靠性。
数学实验是数学研究中重要的一环,可以促进数学理论的发展和应用。
三、数学建模与数学实验的关系数学建模和数学实验是相辅相成的。
数学建模是将实际问题转化为数学问题进行求解,而数学实验则是对数学模型进行检验和验证,使得模型更加符合实际情况。
数学建模离不开数学实验的支持,数学实验则需要数学建模的指导和支持。
在现代科学研究和工程实践中,数学建模与数学实验密切结合,共同推动科学技术的发展。
通过数学建模和数学实验,人们可以更好地理解和解决实际问题,促进科学知识的传播和应用。
总之,数学建模与数学实验是数学研究中不可或缺的两个环节,它们相互交融、相互促进,共同推动数学学科的发展和应用。
数学建模和数学实验的重要性在于将数学理论与实际问题相结合,提高数学研究的实用性和应用价值,为人类社会的发展进步做出贡献。
数学建模与数学实验机械工程学院机械设计制造及其自动化1106班刘鹏1105040617实验目的:1,了解数学建模与数学实验的区别:数学建模与数学实验都要用到计算机,但数学建模课是让学生学会利用数学知识和计算机来解决实际问题,而数学实验课侧重于在计算机的帮助下学习数学知识。
一个用数学,一个学数学,两者目标不同。
从内容选材上两者都是从实际出发,而不是从概念出发,但数学建模强调问题的实用,而不是强调普遍性,解决问题本身就是目的,数学实验可以从理论问题出发,也可以由实际问题出发,也可以由实际问题引入,但这个问题一般是比较经典,有较普遍意义。
2,了解数学实验的含义:数学实验是计算机技术和数学软件引用教学后出现的新兴事物,是数学教学体系,内容和方法改革的一项创造性尝试,在国家教育部关于“高等教育面向21世纪教学内容和课程体系改革”计划中,已把数学实验列为高校非数学类专业的数学基础课之一。
数学实验概括的讲包括两部分内容,即“数学的实验”“数学实验应用”。
数学的实验实用计算机及有关的工作软件解决数学问题,数学的实验应用实用计算机及有关的工作软件及数学知识和方法求解其他科学领域的实际问题3,了解数学实验的意义:数学实验是将数学知识,数学建模知识和计算机应用能力三者融为一体,他可以使我们深入的了解数学的基本概念,数字常用数学软件,培养我们应用知识建立数学模型和计算机解决实际问题的能力,使我们对数学软件进行初步的了解,使我们对sin、Cos、tan、cot、sec、csc、fix、ceil、exp、log、conj、imag、real、limit、diff、int、desolve、ezplotfminban 等一些键功能的了解。
实验能容2 编写函数M文件SQRT.M;函数在x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit,打开空白的M文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M即可6 用matlab计算函数在x=-2.1处的值.>> 2-3^x*log(abs(x))ans =1.92618 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.>>syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>>plot(x,y,'mx-')9 用红色.加号连线虚线绘制函数在[-10,10]上步长为0.2的图像.>>syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>>plot(x,y,'r+--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加各种标注.>>syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像>>syms x y t z>> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)15 求极限>>syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right')ans =22 求函数y=的导数>>syms x y>> y=(2*x-1)^5+atan(x);>>diff(y)ans =28在区间()内求函数的最值. >> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN30 求不定积分>>syms x y>> y=log(3*x)-2*sin(x);>>int(y)ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分>>syms x y>> y=exp(x)*sin(x)^2;>>int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>>syms x y>> y=x*atan(x)/(1+x)^0.5;>>int(y)Warning: Explicit integral could not be found.ans =int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分>>syms x y>> y=1/exp(x^2)*(2*x-cos(x));>>int(y)Warning: Explicit integral could not be found. ans =int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分>>syms x y>> y=exp(-x)*(3*x+2);>>int(y,0,1)ans =5 - 8*exp(-1)35.计算定积分>>syms y x>> y=(x^2+1)*acos(x);>>int(y,0,1)ans =11/936.计算定积分>>syms x y>> y=(cos(x)*log(x+1));>>int(y,0,1)Warning: Explicit integral could not be found. ans =int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;>>syms y x>> y=(1/(x^2+2*x+2));>>int(y,-inf,inf)ans =pi38.计算广义积分;>>syms x y>> y=x^2*exp(-x);>>int(y,0,+inf)ans =y =NaN>> f='3*x^4-4*x^3+1'>> [x,y]=fminbnd(f,-inf,inf)x = NaNy =NaN>>syms x>> x=-2.1;数学实验学院:机械工程学院专业班级:机设1106姓名:刘鹏学号:1105040617日期:2013年1月6日星期日。
方案2024河南科技大学数学建模与实验方案A一说到数学建模,我脑海中瞬间浮现出那些复杂的公式、冗长的数据,以及那些需要我们深入挖掘的内在规律。
而实验方案,则是对这些规律的验证和探索。
今天,我就要带大家一起走进这场数学建模与实验的奇妙旅程。
我们得明确我们的目标。
这次,我们的任务是根据给定的数据,构建一个数学模型,并通过实验验证我们的模型。
这个模型,既要能够准确反映数据的内在规律,又要具有一定的预测能力。
那么,我们该如何进行呢?第一步,数据预处理。
数据,是构建模型的基础。
我们需要对数据进行清洗、整理,去除其中的噪声和异常值,提取出有用的信息。
这个过程,就像是在沙滩上寻找美丽的贝壳,需要我们有耐心,有细心,还要有慧眼。
第二步,模型构建。
根据预处理后的数据,我们开始构建模型。
这个过程,就像是在拼图,我们需要找到每一块拼图的正确位置,让它们组成一幅完整的画面。
这个模型,既要能够反映数据的内在规律,又要具有一定的预测能力。
在模型构建的过程中,我们可能会遇到各种各样的问题。
比如,我们可能会发现,我们的模型在某一方面的表现并不理想,那么我们就需要回到数据预处理阶段,重新审视我们的数据,看看是否有遗漏或者错误的地方。
又比如,我们可能会发现,我们的模型在某些情况下会出现过拟合或者欠拟合的情况,那么我们就需要对模型进行调整,优化模型的参数。
就是实验验证阶段。
我们需要根据我们的模型,设计一系列的实验,来验证我们的模型的准确性和预测能力。
这个过程,就像是在进行一场考试,我们的模型就是我们的答案,而实验结果就是我们的分数。
在实验过程中,我们可能会发现,我们的模型在某些情况下并不能很好地预测结果。
这个时候,我们不要灰心,也不要气馁,而是应该回到模型构建阶段,重新审视我们的模型,看看是否有改进的空间。
在整个过程中,我们需要不断地迭代,不断地优化我们的模型,直到我们找到一个既能够准确反映数据内在规律,又具有良好预测能力的模型。
当然,这个过程并不是一帆风顺的。