电阻率剖面法.
- 格式:ppt
- 大小:305.50 KB
- 文档页数:39
常用物探方法应用范围及适用条件方法名称应用范围适用条件电法勘探电阻率法电阻率剖面法探测地层岩性在水平方向的电性变化,解决与平面位置有关的问题被测地质体有一定的宽度和长度,电性差异显著,电性界面倾角大于30°;覆盖层薄,地形平缓电阻率测深法探测地层岩性在垂直方向的电性变化,解决与深度有关的地质问题被测岩层有足够的厚度,岩层倾角小于20°;相邻层电性差异显著,水平方向电性稳定;地形平缓高密度电阻率法探测浅部不均匀地质体的空间分布被测地质体与围岩的电性差异显著,其上方没有极高阻或极低阻的屏蔽层;地形平缓,覆盖层薄充电法用于钻孔或水井中测定地下水流向流速;测定滑坡体的滑动方向和速度含水层埋深小于50m,地下水流速大于1m/d;地下水矿化度微弱;覆盖层的电阻率均匀自然电场法判定在溶岩、滑坡及断裂带中地下水的活动情况地下水埋藏较浅,流速足够大,并有一定的矿化度激发极化法寻找地下水,测定含水层埋深和分布范围,评价含水层的富水程度在测区内没有游散电流的干扰,存在激电效应差异电磁法勘探频率测深法探测断层、裂隙、地下洞穴及不同岩层界面被测地质体与围岩电性差异显著;覆盖层的电阻率不能太低瞬变电磁法可在基岩裸露、沙漠、冻土及水面上探测断层、破碎带、地下洞穴及水下第四系厚度等被测地质体相对规模较大,并相对围岩呈低阻;其上方没有极低阻屏蔽层;没有外来电磁干扰可控源音频大地电磁测探法探测中、浅部地质构造被测地质体上方没有极低阻的屏蔽层和地下水的干扰;没有较强的电磁场源干扰探地雷达探测地下洞穴、构造破碎带、滑坡体;划分地层结构被测地质体上方没有极低阻的屏蔽层和地下水的干扰;没有较强的电磁场源干扰地震勘探直达波法测定波速,计算岩土层的动弹性参数反射波法探测不同深的的底层界面被探测地层与相邻底层有一定的波阻抗差异折射波法探测覆盖层厚度及基岩埋深被测地层大地波速应大于上覆地层波速瑞雷波法探测覆盖层厚度和分层;探测不良地质体被测地层与相邻地层之间、不良地质体与围岩之间,存在明显的波速和波阻抗差异声波探测测定岩体的动弹性参数;评价岩体的完整性和强度;测定洞室围岩松动圈和应力集中区的范围层析成像评价岩体质量;划分岩体风化程度、圈定地质异常体、对工程岩体进行稳定性分类;探测溶洞、地下暗河、被探测体与围岩有明显的物性差异;电磁波CT要求外界电磁波噪声干扰小断裂破碎带等综合测井电测井划分底层,区分岩性,确定软弱夹层、裂隙破碎带的位置和厚度;确定含水层的位置、厚度;划分咸、淡水分界面;测定地层电阻率无管套、有井液的孔段进行声波测井区分岩性,确定裂隙破碎带的位置和厚度;测定地层的孔隙度;研究岩土体的力学性质无管套、有井液的孔段进行放射性测井划分地层;区分岩性,鉴别软弱夹层、裂隙破碎带;确定岩层密度、孔隙度无论钻孔有无管套及井液均可进行电视测井确定钻孔中岩层节理、裂隙、断层、破碎带和软弱夹层的位置及结构面的产状;了解岩溶洞穴的情况;检查灌浆质量和混凝土浇注质量无管套和清水钻孔中进行井径测量划分地层;计算固井时所需的水泥量;判断套管井的套管接箍位置及套管损坏程度有无套管及井液均可进行井斜测井测量钻孔的倾角和方位角有无铁套管的井段进行方法名称应用范围适用条件电法勘探电阻率法电阻率剖面法探测地层岩性在水平方向的电性变化,解决与平面位置有关的问题被测地质体有一定的宽度和长度,电性差异显著,电性界面倾角大于30°;覆盖层薄,地形平缓电阻率测深法探测地层岩性在垂直方向的电性变化,解决与深度有关的地质问题被测岩层有足够的厚度,岩层倾角小于20°;相邻层电性差异显著,水平方向电性稳定;地形平缓高密度电阻率法探测浅部不均匀地质体的空间分布被测地质体与围岩的电性差异显著,其上方没有极高阻或极低阻的屏蔽层;地形平缓,覆盖层薄充电法用于钻孔或水井中测定地下水流向流速;测定滑坡体的滑动方向和速度含水层埋深小于50m,地下水流速大于1m/d;地下水矿化度微弱;覆盖层的电阻率均匀自然电场法判定在溶岩、滑坡及断裂带中地下水的活动情况地下水埋藏较浅,流速足够大,并有一定的矿化度电磁法勘探频率测深法探测断层、裂隙、地下洞穴及不同岩层界面被测地质体与围岩电性差异显著;覆盖层的电阻率不能太低瞬变电磁法可在基岩裸露、沙漠、冻土及水面上探测断层、破碎带、地下洞穴及水下第四系厚度等被测地质体相对规模较大,并相对围岩呈低阻;其上方没有极低阻屏蔽层;没有外来电磁干扰探地雷达探测地下洞穴、构造破碎带、滑坡体;划分地层结构被测地质体上方没有极低阻的屏蔽层和地下水的干扰;没有较强的电磁场源干扰地震勘探反射波法探测不同深的的底层界面被探测地层与相邻底层有一定的波阻抗差异折射波法探测覆盖层厚度及基岩埋深被测地层大地波速应大于上覆地层波速瑞雷波法探测覆盖层厚度和分层;探测不良地质体被测地层与相邻地层之间、不良地质体与围岩之间,存在明显的波速和波阻抗差异层析成像评价岩体质量;划分岩体风化程度、圈定地质异常体、对工程岩体进行稳定性分类;探测溶洞、地下暗河、断裂破碎带等被探测体与围岩有明显的物性差异;电磁波CT要求外界电磁波噪声干扰小综合测井电测井划分底层,区分岩性,确定软弱夹层、裂隙破碎带的位置和厚度;确定含水层的位置、厚度;划分咸、淡水分界面;测定地层电阻率无管套、有井液的孔段进行声波测井区分岩性,确定裂隙破碎带的位置和厚度;测定地层的孔隙度;研究岩土体的力学性质无管套、有井液的孔段进行放射性测井划分地层;区分岩性,鉴别软弱夹层、裂隙破碎带;确定岩层密度、孔隙度无论钻孔有无管套及井液均可进行电视测井确定钻孔中岩层节理、裂隙、断层、破碎带和软弱夹层的位置及结构面的产状;了解岩溶洞穴的情况;检查灌浆质量和混凝土浇注质量无管套和清水钻孔中进行。
,R=UI ,则为同步变化,不受电流大小影响7.在可控源电磁测深中,反映物性的电磁参数主要是哪个?(B)A. 直立的低阻矿体B. 直立的高阻矿体C. 处于山谷的低阻矿体D. 水平的高阻矿体19. MT中浅部电性不均体主要影响哪个量的测量:(A)A.电场振幅B.电场相位C.磁场振幅D.磁场相位20. 下列条件中,对岩矿石电阻率无影响的是(B)A 岩矿石结构与岩矿石成分B测量装置 C 温度 D 岩矿石的孔隙度21.下列哪些情况可视为远区工作的有(D)A.观测场为平面波B.发收距大于趋肤深度C.CSAMT工作法D.MT工作法22. 下列地球物理勘探方法中,属于电磁法勘探的是(D)A.充电法B.频率测深法C.激发激化法D.对称四极测深法23. 下列条件中,对岩矿石电阻率无影响的是(B)A 岩矿石结构与岩矿石成分B测量装置 C 温度 D 岩矿石的孔隙度三、填空题1.在电法勘探中已被利用的岩(矿)石的电学性质有岩(矿)石的电阻率,极化率,介电性以及介电常数。
2. 目前用于煤田的勘探方法主要包括MT、 AMT、CSAMT以及TEM等3.电法勘探按观测的场所分海洋电法、地面电法、航空电法、以及井下电法。
4.大地电磁测深曲线中,高视电阻率对应低相位。
5.中间梯度法理论上在寻找直立的高阻体和水平的低阻体能产生明显的异常。
6.作为边界条件,在两种岩石分界面上,连续的参数有电流密度的法向分量及电场的法向分量。
7. 自然电场法的测量方式有电位梯度测量、电位观测法以及追索等位线。
四、简答题1、瞬变电磁勘探存在一个最小勘探深度,即盲区,为什么?因为无论是发送线圈还是接收线圈,自身有一个过渡过程,在激励关断瞬间,接收线圈接收到的信号既有地下电磁感应信号,又有线圈本身的自感及发送线圈的自感信号,在早期,自感信号大于感应信号。
第 4 页共6 页这个点采集时间需要1/0.0001,也就是10000s,但是半分钟不可能得到如此低频的数据;2.“通过软件直接反演电道磁道数据而无需阻抗数据”不合理,对于人工源,我们是可以知道频谱的,但是对于天然源,我们是无法知晓的,因此天然源只能反应阻抗差,不能直接反演电道磁道数据。
8.根据位场的叠加原理,运用二极装置所测电位值,求出三极剖面法、联合剖面法和对称四极剖面法的视电阻率值。
9.试对比联合剖面法、中间梯度法和对称剖面法的装置特点、应用范围及其优缺点。
10.根据电流密度在地下的分布规律,用视电阻率微分表示式,定性分析倾角不同的低阻和高阻脉状体上联合剖面法 r s 、 r s 曲线的变化规律。
11.试根据图 1 中联合剖面rs 曲线判断地下导体的个数及其与围岩的电阻率关系(绘在图下方相应位置)。
12.如图 2 所示,地下大约 10m 深处埋藏着一个低阻体,分别采用极距 A1B1=50m、A2B2=10m、A3B3=200m 的三种对称剖面装置进行观测,获得如图中所示的三种反映明显程度不同的rs 曲线,试分析其原因。
A B 图 1 图2 13.图 3(a)和(b)是在不同地质构造上测得的复合对称四极rs 曲线,试根据不同极距曲线的组合关系,判断地下构造及各层间电阻率关系(极距 AB>A¢B¢),并绘在图的下部。
图 3 14.用“镜像法”的虚电源作用代替界面影响,对对称四极装置通过两种岩石( r 1 < r 2 和r 1 > r 2 )垂直界面时的 r sAB 剖面曲线进行解释。
15.在中梯装置的均匀电流场中有一低阻或高阻球形矿体存在,试根据式(1.3.40)进行计算,绘制等值线平面图,并对其作出物理解释。
16.绘图说明在直立脉状体上,如果将中梯装置的测线(AB 连线)方向由垂直脉状体的走向转为与其斜交或平行时,低阻脉体和高阻脉体上的rs 异常特征和大小将如何变化,并作物理解释。
B 17.绘图说明山脊、山谷地形上联合剖面法的 r sA 和r s 曲线特征,并用电流密度分布规律对其进行定性分析。
18.通过比较,说明山脊、山谷地形上联合剖面法、偶极剖面法和中梯法rs 剖面曲线特征的异同处。
75。
电阻率法电阻率法1、电阻率法是以地壳中岩⽯的导电性差异为基础,通过观测与研究⼈⼯建⽴的地中稳定直流或者脉动电场,按某种极距的装置形式沿测线逐点观测,研究某⼀深度范围内岩(矿)⽯沿⽔平⽅向电阻率变化,以查明矿产资源和研究有关地质问题的⼀组直流电发勘探⽅法。
2、电阻率剖⾯法的应⽤主要在于:填图、追索断层破碎带、确定基岩起伏,追索各种⾼低阻陡倾斜地电体及接触⾯、查岩溶发育带。
3、电阻率装置如下:1、⼆级装置(AM)如图这种装置的特点是供电电极B和测量电极N均置于“⽆穷远”处接地。
⽆穷远是相对概念,若B极在M点产⽣的电位或A极在N点所产⽣的电位相对于A极在M点所产⽣的电位可以忽略不计时,便可以认为B极或N极位于“⽆穷远”。
因此,⼆极装置实际上时⼀种测量电位的装置。
⼀般OB、ON>10AM,且OB,ON>5 倍的剖⾯长度。
观测结果记录点O⼀般为AM中点。
2、三级装置(AMN)如图;将电极B置于⽆穷远处,并OB垂直于剖⾯线⽅向;观测记录点O为MN 中点;且OB≥5OA。
3、联合剖⾯装置(AMN或MNB):本质为将两个三极装置对称于测量点布置,负极C 为理论上的“⽆穷远”垂直剖⾯⽅向布极,观测点O为MN中点,且OC≥5AO。
装置系数K计算公式为4、对称四极装置(AMNB):这种装置是AM=NB,记录点O在MN中点,当AM=MN=NB时,称为温纳装置当AM>MN时,称为施仑贝尔装置装置系数K计算公式为5、中间梯度装置(MN)这种装置供电电极AB的距离取得很⼤,且固定不动;测量电极MN在AB中间三分之⼀地段逐点测量,记录点O取MN中点。
⼀般情况下,取MN=(1/30—1/50)AB6、偶极装置(ABMN):AB 与MN 均以偶极⽅式对称置于观测点两侧,记录点O取BM中点装置应⽤(复制)1 四极对称(Wenner)⽅法四极对称在传统电阻率法占有很重要的地位,也是我们常⽤的⼀种⽅法,其装置⽰意图如图1所⽰。