有机化学课件烯烃的化学性质
- 格式:ppt
- 大小:521.50 KB
- 文档页数:3
烯烃的化学性质烯烃是一类含有碳-碳双键的不饱和烃,具有一系列独特的化学性质。
它们在广泛的化学反应中扮演着重要的角色,包括聚合反应、加成反应、环化反应等。
了解烯烃的化学性质对于掌握它们的化学反应机理和应用具有重要意义。
第一部分烯烃的结构和基本性质烯烃的通式为CnH2n,其中n为整数。
它们通常用以下通式表示:R-CH=CH-R'其中R和R'代表烃基,它们可以相同或不同。
双键可以处于不同的位置,例如,丁烯可以具有以下两种结构:H2C=CH-CH2-CH3CH3-CH=CH-CH3烯烃与烷烃相比具有以下基本性质:1. 烯烃比烷烃更不稳定。
由于碳-碳双键中含有一个较弱的π键,烯烃比烷烃更容易发生化学反应。
然而,这种不稳定性也是烯烃广泛应用的原因之一。
2. 烯烃比烷烃的相对分子质量要小,这是由于没有饱和的碳-碳单键所带来的。
3. 烯烃的熔点和沸点通常较低,这使得它们易于挥发和处理。
4. 由于双键的存在,烯烃比烷烃更极性,从而更容易溶解在极性溶剂中。
然而,这也使得它们在空气中更易于氧化,从而稳定性较差。
第二部分烯烃的聚合反应烯烃聚合反应是一种重要的工业化学反应。
聚合反应是指将小分子单体通过共价键连接成高分子化合物的反应。
在烯烃聚合反应中,烯烃分子本身作为单体,通过引发剂或其他催化剂的作用,加入双键反应,形成高分子链。
聚合反应不仅在工业上应用广泛,也是生命体系中最基本的过程之一。
人体中的蛋白质、多糖和核酸等都是通过聚合反应形成的高分子化合物。
1. 自由基聚合反应烯烃自由基聚合是一种重要的聚合反应。
自由基聚合反应通常分为两个阶段:引发阶段和链延长阶段。
引发阶段由自由基引发剂引发。
自由基引发剂是一种可以在加热的条件下向双键直接断裂的化学物质。
断裂后,自由基会将一个氢原子从烯烃分子中夺取,从而生成新的自由基,继续进行反应。
链延长阶段是指自由基不断向分子添加,从而形成更长的链。
通常需要控制温度和催化剂添加速率以控制连锁反应的速率。
有机化学中的烯烃类化合物烯烃是有机化合物的一类,其分子中含有一个或多个碳碳双键。
烯烃分为单烯和多烯两种类型。
单烯指的是分子中只有一个碳碳双键,而多烯则指的是分子中存在两个或两个以上的碳碳双键。
烯烃类化合物在有机合成和工业生产中具有重要的应用。
为了更好地理解和利用烯烃类化合物,我们有必要了解其结构、性质和反应。
第一节:单烯烃的结构和性质单烯烃是由碳和氢组成的化合物,其基本结构为碳链上有一个碳碳双键。
根据双键的位置,单烯可以分为顺式和反式两种构型。
顺式烯烃指的是两个双键上的取代基位于同一侧,而反式烯烃则指的是取代基位于两侧。
这两种构型的烯烃在物理性质和化学性质上有所区别。
顺式烯烃通常比反式烯烃具有较低的熔点和沸点,这是因为两个双键上的取代基在空间构型上相互接近,使分子间的相互作用增强,从而增加了相对的稳定性。
而反式烯烃则相对较不稳定。
第二节:单烯烃的反应由于双键的存在,单烯烃可以进行多种不同的反应,其中一些是与饱和烃相似的,而另一些是由于双键的特殊化学性质而独有的。
1. 加成反应单烯烃可以与一些试剂发生加成反应,其中最常见的是氢气的加成反应。
在存在催化剂的条件下,双键上的碳原子可以与氢原子结合,生成饱和烃。
这种反应称为氢化反应。
例如,乙烯可以在催化剂存在下与氢气反应,生成乙烷,反应方程式为:C2H4 + H2 → C2H6。
2. 氧化反应单烯烃可以与氧气发生氧化反应,生成醇、酮等化合物。
最典型的是乙烯的燃烧反应,乙烯与氧气在高温条件下反应,生成二氧化碳和水。
例如,乙烯的燃烧反应方程式为:C2H4 + 3O2 → 2CO2 + 2H2O。
3. 加聚反应单烯烃中的双键可以进行加聚反应,生成高聚物。
通过调节反应条件和催化剂的选择,可以合成不同类型的高聚物,例如乙烯可以通过合适的催化剂合成聚乙烯。
例如,乙烯的加聚反应方程式为:nC2H4 → -(-CH2-CH2-)n-。
第三节:多烯烃的结构和性质多烯烃是含有两个或两个以上碳碳双键的烯烃。
第三章烯烃Alkenes12烯烃的结构烯烃的顺反异构烯烃的命名烯烃的物理性质CONTENT1234烯烃的化学性质烯烃的制备56SP杂化轨道C C C C7乙烯键长和键角乙烷键长和键角134 pm 烯烃的键长和键角烯烃的结构特征•sp2杂化•π-键•C=C键长比C-C短•π键电子云流动性较大•存在顺反异构——相同基团在双键同侧为顺式,不同侧为反式83.3 烯烃的命名•主链应含双键称“某碳烯”•C10•主官能团的位号尽可能小•如烯烃存在位置异构,母体名称前要加官能团位号•取代基的位置、数目、名称按“次序规则”顺序写在母体前面•Z或E加圆括号,写在化合物名称最前面123.5 烯烃的化学性质1. 烯烃的亲电加成2. 烯烃的自由基加成3. 硼氢化反应4. 催化氢化5. 烯烃的氧化6. 烯烃的α−卤化7. 聚合反应21烯烃亲电加成的原则当不对称烯烃与极性试剂加成时:试剂中的正离子(或带有部分正电荷的部分)加到带有部分负电荷的双键碳原子上试剂中的负离子(或带有部分负电荷的部分)加到带有部分正电荷的双键碳原子上24可能发生重排反应重排反应( rearrangement)——在化学键的断裂和形成过程中,组成分子的原子配置方式发生了改变,从而形成组成相同,结构不同的新分子。
31结论•反应是亲电加成反应•反应是分步进行的•立体化学上表现为反式加成38反应特点•Br2, Cl2对烯烃的加成主要为环正离子过渡态的反式加成•碘加成一般不发生,但ICl, IBr可与烯键发生定量加成反应,用来监测油脂中双键的含量40。
烯烃的化学性质烯烃主要化性示意图:一、加成反应1、催化加氢(亦即烯烃还原)R CH=CH R’ + H2 RCH2CH2R’NiPt or意义:实验室制备纯烷烃;工业上粗汽油除杂;根据吸收氢气的量测定重键数目2、加卤素CH2=CH2 + Br2 CH2BrCH2Br红棕无色应用:鉴别X2反应活性:F2 > Cl2 > Br2 > I2,常用Cl2和Br2机理:极性条件下的分步的亲电加成①极性条件下Br2发生极化Br-Br Brδ+—— Brδ–②亲电进攻,形成中间体溴鎓离子BrCH3CH2+δ+CH2CH2δ+CH3CH2+Br–Br Br Br Br溴鎓离子③Br-背面进攻中间体得产物(反式加成,立体化学此处不需掌握)BrCH3CH2+Br–BrCH2CH23、加卤化氢CH2=CH2 + H BrCH3COOH CH2CH2BrH历程:分步的亲电加成H CH 2=CH 2 + H +HBr+ + Br -CH 3 —CH 2+ Br -+CH 3CH 2BrCH 3 —— CH 2+(碳正离子,有时会重排)HX 反应活性:HI > HBr > HCl**不对称烯烃与卤化氢加成产物符合马氏规律:氢加到含氢少的碳上。
**当有过氧化物存在、且只与HBr 加成时产物为反马氏:氢加到含氢多的碳上。
4、加水(烯烃水合)CH 3CH=CH 2 + H 2O H +CH 3CHCH 3OH(异丙醇)强酸催化,遵守马氏规律,产物为醇。
5、加浓硫酸CH 3CHCH 3 + H 2SO 4OSO 2OHCH 3CHCH 3OH 硫酸氢异丙酯异丙醇丙烯CH 3CH=CH 2相当于间接水合,遵守马氏规律,产物为醇(注意硫酸的结构表示)。
6、加次卤酸CH 3CH=CH 2 + X 2 + H 2O CH 3CHCH 2XOH δ-HO X δ+产物卤代醇,遵守马氏规律(次卤酸极性:X —OH ,由于氧的电负性较大,所以X 带部分正电荷,OH 带部分负电荷)7、硼氢化反应甲硼烷以B —H 键与烯(炔)加成 有机硼化合物 3 CH 3CH=CH 2 + BH 3 (CH 3CH 2CH 2)3B特点:反马氏(形式反马,因B —H 键中H 带部分负电荷),不重排(经四元过渡态)四中心环状过渡态形式反马产物 操作:采用乙硼烷(B 2H 6)在醚类溶液中离解出BH 3一锅煮:BF 3乙醚溶液加到NaBH 4与烯烃的混合物中,使乙硼烷一生成即与烯烃反应。