2019-2020学年河南中考数学一轮模拟卷
- 格式:docx
- 大小:1.02 MB
- 文档页数:18
河南省2019-2020学年数学中考模试试卷一(含答案)一、单选题1.﹣3的绝对值是()A.﹣3B.3C.-D.【答案】B【考点】绝对值及有理数的绝对值2.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A. 9.97×105B. 99.7×105C. 9.97×106D. 0.997×107【答案】C【考点】科学记数法—表示绝对值较大的数3.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A. 9B. 8C. 7D. 6【答案】B【考点】由三视图判断几何体4.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B. C. D.【答案】B【考点】在数轴上表示不等式(组)的解集,一次函数与不等式(组)的综合应用5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A. 甲B. 乙C. 丙D. 丁【答案】D【考点】平均数及其计算,方差6.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【考点】三角形内角和定理,圆周角定理,圆内接四边形的性质7.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为()A.(3,)B.(3,- )C.(,)D.(,- )【答案】 D【考点】含30度角的直角三角形,勾股定理,菱形的性质,旋转的性质,等腰直角三角形8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB 的值为()A. 1:3B. 1:5C. 1:6D. 1:11【答案】C【考点】相似三角形的判定与性质9.如图,在平面直角坐标系中,抛物线y= x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【答案】C【考点】二次函数图象的几何变换,三角形的面积10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()2017【答案】C【考点】正方形的性质,解直角三角形二、填空题11.计算:+(π﹣2)0+(﹣1)2017=________.【答案】-2【考点】实数的运算,零指数幂12.已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是________.【答案】a=1【考点】根的判别式13.如图,已知第一象限内的点A在反比例函数y= 上,第二象限的点B在反比例函数y= 上,且OA⊥OB,tanA= ,则k的值为________.【答案】【考点】反比例函数系数k的几何意义,相似三角形的性质,锐角三角函数的定义14.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为________.【答案】2π-4【考点】二次函数的最值,三角形的面积,勾股定理,扇形面积的计算15.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.【答案】或15.【考点】等腰三角形的性质,勾股定理,矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质三、解答题16.先化简,再求值:÷ ,其中m是方程x2+2x-3=0的根.【答案】解:原式=∵x2+2x-3=0,∴x1=-3,x2 =1∵‘m是方程x2 +2x-3=0的根,∴m=-3或m=1∵m+3≠0, ∴.m≠-3,∴m=1当m=l时,原式=【考点】利用分式运算化简求值17.在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1)这次接受调查的有________户;(2)在扇形统计图中,“E”所对应的圆心角的度数是________;(3)请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【答案】(1)50(2)28.8°(3)(4)2000×(28%+8%+40%)=1520(户),答:估计月信息消费额不少于200元的约有1520户.【分析】【考点】用样本估计总体,频数(率)分布直方图,统计表,扇形统计图18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D 是AC的中点,连接PD,PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为________;②连接OD,当∠PBA的度数为________时,四边形BPDO是菱形.【答案】(1)证明:∵D是AC的中点,且PC=PB∴DP∥AB,DP= AB,∴∠CPD=∠PBO,∵OB= AB,∴DP=OB,∴△CDP≌△POB(2)4;;.60º【考点】三角形全等的判定,等边三角形的判定与性质,三角形中位线定理,菱形的性质,平行四边形的面积19.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【答案】(1)解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE= DC=2米(2)解:过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC= = = = 米,BD= BF= x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2= +16,解得:x=4+4 ,则AB=(6+4 )米.【考点】解直角三角形的应用20.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
河南省平顶山市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )A .280×103B .28×104C .2.8×105D .0.28×1063.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A .8B .10C .21D .224.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.55.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1 B .2 C .3 D .46.估算18的值是在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A.8,9 B.8,8.5 C.16,8.5 D.16,10.58.19的值为()A.19B.-19C.9 D.-99.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×10710.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠011.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°12.估计19﹣1的值为()A.1和2之间B.2和3之间C.3和4之间D.4和5之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).15.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.16.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.17.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.18.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC 于点F,求证:AE=AF.21.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值. 22.(8分)如图,AB AE =,12∠=∠,C D ∠=∠,求证:ABC AED ≌△△。
2020年中考数学一轮专项复习——图形的旋转问题中考真题汇编一.选择题1.(2019•济南)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.(2019•湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°3.(2019•大连)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形4.(2019•内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6 B.1.8 C.2 D.2.6 5.(2019•河北)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对6.(2019•毕节市)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方7.(2019•孝感)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)8.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)9.(2019•河南)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB 与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)10.(2019•贵港)若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n 的值是()A.1 B.3 C.5 D.7 11.(2019•宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+) D.(﹣3,)12.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)13.(2019•呼和浩特)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为()A.(﹣2,),(2,﹣)B.(﹣,2),(,﹣2)C.(﹣,2),(2,﹣)D.(,)()14.(2019•荆州)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A 顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)15.(2019•青岛)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)16.(2019•舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)17.(2019•聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF=BC D.S四边形AEOF=S△ABC 18.(2019•天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC二.填空题19.(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D 旋转一周,当AE取最小值时,AG的长为.20.(2019•包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.21.(2019•梧州)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP 的长是.22.(2019•河池)如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A 顺时针旋转90°而得,则AC所在直线的解析式是.23.(2019•贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE 交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.24.(2019•邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.25.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE 与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG 内一点,则点O到△MNG三个顶点的距离和的最小值是.26.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB 边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.27.(2019•随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为.28.(2019•哈尔滨)如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.29.(2019•海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB =3,AC=2,且α+β=∠B,则EF=.30.(2019•山西)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC 内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.三.解答题31.(2019•济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.32.(2019•阜新)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(﹣4,4),B (﹣1,1),C(﹣1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)33.在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.(3)接写出在上述旋转过程中,点A所经过的路径长.34.如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且PC<BC,连接MP交AC于点H.将射线MP绕点M逆时针旋转60°交线段CA的延长线于点D.(1)找出与∠AMP相等的角,并说明理由.(2)如图2,CP=BC,求的值.(3)在(2)的条件下,若MD=,求线段AB的长.35.(2019•日照)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.36.(2019•遵义)将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADE的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)37.(2019•辽阳)如图1,△ABC(AC<BC<AC)绕点C顺时针旋转得△DEC,射线AB交射线DE于点F.(1)∠AFD与∠BCE的关系是;(2)如图2,当旋转角为60°时,点D,点B与线段AC的中点O恰好在同一直线上,延长DO至点G,使OG=OD,连接GC.①∠AFD与∠GCD的关系是,请说明理由;②如图3,连接AE,BE,若∠ACB=45°,CE=4,求线段AE的长度.38.(2019•本溪)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).参考答案一.选择题1.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.2.解:∵△OAB绕点O逆时针旋转70°到△OCD的位置,∴∠BOD=70°,而∠AOB=40°,∴∠AOD=70°﹣40°=30°.故选:D.3.解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.4.解:由旋转的性质可知,AD=AB,∵∠B=60°,AD=AB,∴△ADB为等边三角形,∴BD=AB=2,∴CD=CB﹣BD=1.6,故选:A.5.解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.6.解:如图所示:每次旋转4个图形为一个周期,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C.7.解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.8.解:如图,在Rt△OCB中,∵∠BOC=30°,∴BC=OC=×=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(,﹣1).故选:A.9.解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.10.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,则m+n=﹣2+7=5.故选:C.11.解:如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=A′B′=1,B′H=,∴OH=3,∴B′(﹣,3),故选:B.12.解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.13.解:如图,连接OA、OD,过点A作AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≌△OED(AAS),∴OE=AF=,DE=OF=2,∴D(,﹣2),∵B、D关于原点对称,∴B(﹣,2),故选:B.14.解:如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OFA′=90°,∠AOE=∠AOA′=∠A′OF=30°∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△A′OF(AAS),∴OF=OE=,A′F=AE=1,∴A′(,1).故选:A.15.解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.16.解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.17.解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.在△EOA和△FOC中,,∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°﹣∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=S△ABC,选项D正确.故选:C.18.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.二.填空题(共12小题)19.解:过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.20.解:由旋转的性质可知:AE=AC,∠CAE=70°,∴∠ACE=∠AEC=55°,又∵∠AED=∠ACB,∠CAB=55°,∠ABC=25°,∴∠ACB=∠AED=100°,∴∠DEC=100°﹣55°=45°,∴tan∠DEC=tan45°=1,故答案为:121.解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,∴OB=AB=1,∴OA=OB=,∴AC=2,由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC﹣AE=2﹣2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=CE=﹣1,PC=PE=3﹣,∴DP=CD﹣PC=2﹣(3﹣)=﹣1;故答案为:﹣1.22.解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x﹣4.故答案为:y=2x﹣4.23.解:作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE==2,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵AB•GF=FN•AG,∴GF==2,∴CF=CG﹣GF=4+2﹣2=6﹣2.故答案为6﹣2.24.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).25.(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,26.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.27.解:∵点C的坐标为(1,0),AC=2,∴点A的坐标为(3,0),如图所示,将Rt△ABC先绕点C逆时针旋转90°,则点A′的坐标为(1,2),再向左平移3个单位长度,则变换后点A′的对应点坐标为(﹣2,2),故答案为:(﹣2,2).28.解:∵将△ABC绕点C逆时针旋转得到△A′B′C,∴AC=A'C=3,∠ACB=∠ACA'=45°∴∠A'CB=90°∴A'B==故答案为29.解:由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==故答案为:30.解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3cm,在Rt△AFG中,GF==cm,AF=2FG=2cm,∴CF=AC﹣AF=(10﹣2)cm,故答案为:(10﹣2)cm.三.解答题(共8小题)31.解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠PA1Q,∴∠QA1B1=∠PA1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△PA1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1•sin60°=4,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A 1C1=4,∴NC 1=A1C1﹣A1N=4﹣8,在Rt△NHC1,∵∠C1=45°,∴NH=4﹣4,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4﹣4.32.解:(1)如图,△A l B1C1为所作;(2)如图,△A2BC2为所作;(3)AB==3,所以线段AB在旋转过程中扫过的图形面积==π.33.解:(1)如图,A点坐标为(﹣2,3);(2)如图,△A′B′C′为所作;(2)如图,OA==,所以点A所经过的路径长==π.△A2B2C2为所作;点A2的坐标为(﹣1,﹣1).34.解:(1)∠D=∠AMP.理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°.∴∠D+∠DMA=60°.由旋转的性质知,∠DMA+∠AMP=60°.∴∠D=∠AMP;(2)如图,过点C作CG∥BA交MP于点G.∴∠GCP=∠B=30°,∠BCG=150°.∵∠ACB=90°,点M是AB的中点,∴CM=AB=BM=AM.∴∠MCB=∠B=30°.∴∠MCG=120°.∵∠MAD=180°﹣60°=120°.∴∠MAD=∠MCG.∵∠DMG﹣∠AMG=∠AMC﹣∠AMG,∴∠DMA=∠GMC.在△MDA与△MGC中,∴△MDA≌△MGC(ASA).∴AD=CG.∵CP=BC.∴CP=BP.∵CG∥BM,∴△CGP∽△BMP.∴==.设CG=AD=t,则BM=3t,AB=6t.在Rt△ABC中,cos B==.∴BC=3t.∴==;(3)如图,由(2)知△CGP∽△BMP.则MD=MG=.∵CG∥MA.∴∠CGH=∠AMH.∵∠GHC=∠MHA,∴△GHC∽△MHA.∴===.∴HG=MG=×=.∴MH=﹣=.由(2)知,CG=AD=t,则BM=AM=CA=3t.∴CH=t,AH=t.∵∠MHA=∠DHM,∠HMA=∠D.∴△MHA∽△DHM.∴=.∴MH2=AH•DH,即()2=t t.解得t1=,t2=﹣(舍去).∴AB=6t=2.35.证明:(1)∵对角线AC的中点为O∴AO=CO,且AG=CH∴GO=HO∵四边形ABCD是矩形∴AD=BC,CD=AB,CD∥AB∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA ∴△COF≌△AOE(ASA)∴FO=EO,且GO=HO∴四边形EHFG是平行四边形;(2)如图,连接CE∵∠α=90°,∴EF⊥AC,且AO=CO∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9﹣AE)2+9,∴AE=536.解:(1)结论:S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,∴∠DAE=∠CAG,∵AB=AE=AD=AC,∴==1.(2)如图2中,S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.不妨设∠ADC=30°,则AD=AC,AE=AB,∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,∴∠DAE=∠CAG,∴==.(3)如图3中,如图2中,S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.∵∠BAE+∠CAD=180°,∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,∴∠DAE=∠CAG,∵AB=a,AE=b,AC=m,AD=n∴==.37.解:(1)如图1,AF与CD的交点记作点N,由旋转知,∠ACB=∠DCE,∠A=∠D,∴∠BCE=∠ACD,∵∠ACD=180°﹣∠A﹣∠ANC,∠AFD=180°﹣∠D﹣∠DNF,∠ANC=∠DNF,∴∠ACD=∠AFD,∴∠AFD=∠BCE,故答案为:∠AFD=∠BCE;(2)①∠AFD=∠GCD或∠AFD+∠GCD=180°,理由:如图2,连接AD,由旋转知,∠CAB=∠CDE,CA=CD,∠ACD=60°,∴△ACD是等边三角形,∴AD=CD,∵∠AMC=∠DMF,∴△ACM∽△DFM,∴∠ACD=∠AFD,∵O是AC的中点,∴AO=CO,∵OD=OG,∠AOD=∠COG,∴△AOD≌△COG(SAS),∴AD=CG,∴CG=CD,∴∠GCD=2∠ACD=120°,∴∠AFD=∠GCD或∠AFD+∠GCD=180°,故答案为:∠AFD=∠GCD或∠AFD+∠GCD=180°;②由①知,∠GCD=120°,∠ACD=∠BCE=60°,∴∠GCA=∠GCD﹣∠ACD=60°,∴∠GCA=∠BCE,∵∠GCB=∠GCA+∠ACB,∠ACE=∠BCE+∠ACB,∴∠GCB=∠ACE,由①知,CG=CD,CD=CA,∴CG=CA,∵BC=EC=4,∴△GCB≌△ACE(SAS),∴BC=CE=4,∴GB=AE,∵CG=CD,OG=OD,∴CO⊥GD,∴∠COG=∠COB=90°在Rt△BOC中,BO=BC•sin∠ACB=2,CO=BC•cos∠ACB=2,在Rt△GOC中,GO=CO•tan∠GCA=2,∴GB=CO+BO=2+2,∴AE=2+2.38.解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.。
河南省郑州市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则»DE的长为( )A .3πB .23π C .43π D .76π 2.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×1083.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米4.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个5.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()6.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( ) A .1或5B .5-或3C .3-或1D .3-或57.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃B .零下3℃C .零上7℃D .零下7℃9.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根10.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .方体最少有()A.4个B.5个C.6个D.7个12.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.14.= .15.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.16.计算:sin30°﹣(﹣3)0=_____.17.计算:2sin245°﹣tan45°=______.18.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.20.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.21.(6分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.23.(8分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.25.(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.26.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.27.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.参考答案题目要求的.)1.B【解析】【分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴»DE的长=602180π⨯=23π;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确3.D【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长. 【详解】∵在热气球C 处测得地面B 点的俯角分别为45°, ∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°, ∴AC =2×100=200米,∴AD∴AB =AD+BD =100( 故选D . 【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形. 4.B 【解析】 【分析】根据二次函数的图象与性质判断即可. 【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误; ②Q 对称轴为直线x=-1,12ba∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值, 即a-b+c <2am bm c ++(1m ≠-), 即a ﹣b <m (am+b )(m≠﹣1), 故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确; ⑤由图像可得,当x=2时,y >1, 即: 4a+2b+c >1,故正确选项有③④⑤, 故选B. 【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键. 5.D 【解析】∵⊙O 的半径OD ⊥弦AB 于点C ,AB=8,∴AC=AB=1. 设⊙O 的半径为r ,则OC=r -2, 在Rt △AOC 中,∵AC=1,OC=r -2,∴OA 2=AC 2+OC 2,即r 2=12+(r ﹣2)2,解得r=2. ∴AE=2r=3. 连接BE ,∵AE 是⊙O 的直径,∴∠ABE=90°.在Rt △ABE 中,∵AE=3,AB=8,∴2222BE AE AB 1086=--=.在Rt △BCE 中,∵BE=6,BC=1,∴2222CE BE BC 64213=+=+=D . 6.D 【解析】 【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h <时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可. 【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍). 综上所述,h 的值为-3或5, 故选:D . 【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 7.A 【解析】 【分析】根据从正面看得到的图形是主视图,可得答案. 【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形, 故选:A . 【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 8.B 【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃. 故选B.考点:负数的意义 9.C 【解析】 【详解】解:由题意可知4的算术平方根是2,4的算术平方根是, 2<,8的立方根是2, 故根据数轴可知, 故选C 10.D 【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.11.B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!12.D【解析】【分析】的范围,进而可得的范围.【详解】解:a=12×(,∵2<3,∴6<<7,∴a 的值在6和7之间,故选D .【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.1【解析】【分析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB , ∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.14.2【解析】试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a 的算术平方根,特别地,规定0的算术平方根是0.∵22=4,∴=2.考点:算术平方根.15.(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.16.-1 2【解析】【分析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键. 17.0【解析】原式=22121=212⎛⎫⨯-⨯-⎪⎪⎝⎭=0,故答案为0.18.2【解析】【分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】【分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x⩽74无,共0个;75⩽x⩽79之间有75,共1个;80⩽x⩽84之间有84,82,1,83,共4个;85⩽x⩽89之间有89,86,86,85,86,共5个;90⩽x⩽94之间和95⩽x⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,∴中位数为12(84+85)=84.5;∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.20.(1)y6x=;(2)y12=-x+1.【解析】【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y 6x =的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.21.(1)100元和150元;(2)购进A 种级别的茶叶67kg ,购进B 种级别的茶叶133kg .销售总利润最大为26650元.【解析】试题分析:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元;(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200-a )kg .销售总利润为w 元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A 级别茶叶和B 级别茶叶的销售利润分别为x 元和y 元.由题意, 解得, 答:每千克A 级别茶叶和B 级别茶叶的销售利润分别为100元和150元.(2)设购进A 种级别的茶叶akg ,购进B 种级别的茶叶(200﹣a )kg .销售总利润为w 元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.22.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.23.(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣12x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:44 62 k bk b+=⎧⎨+=⎩,解得:18kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣12x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣12x+5)﹣3=﹣12x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣12x2+7x﹣23=﹣12(x﹣7)2+32,当x=7时,w2取最大值是1.5,∴101.5=203=623,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.25.(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得 366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0).由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5, 连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC ,∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.26.△A′DE 是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F 为菱形时,△A′D E 是等腰三角形,△A′DE ≌△EFC′.先证明CD=DA=DB ,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB 推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠D EA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.27.(1)1;(2)详见解析;(3)750;(4)15.【解析】【分析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
河南省信阳市潢川县中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣12.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣43.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100πcm2D.200πcm24.郑州某中学在备考 2018 河南中考体育的过程中抽取该校九年级 20 名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1 则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.072 55.下列各式中与是同类二次根式的是()A.B.C.D.6.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.27.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m9.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD 沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.计算:÷=;﹣=;(+2)2015×(﹣2)2014=.12.如图将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,若∠1=35°,则∠2的大小为度.13.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为.14.如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.15.如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F 两点.若点P、Q分别为DG、CE的中点,则PQ的长为.三.解答题(共8小题,满分75分)16.先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.17.数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角.(1)请在图2中画出所对的一个圆内角;提出猜想(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填“大于”、“等于”或“小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P 的位置.(写出思路即可,不要求写出作法和画图)18.在读书月活动中学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就”我最喜爱的课外读物”从文学、艺术、科普和其他四个类別进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买深外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?19.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG =125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?20.已知反比例函数的图象过点A(﹣2,2).(1)求函数的解析式.y随x的增大而如何变化?(2)点B(4,﹣2),C(3,)和D()哪些点在图象上?(3)画出这个函数的图象.21.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.河南省信阳市潢川县中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故选:D.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.4.【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【解答】解:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选:B.【点评】此题考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A.=3,与是同类二次根式;B.=2,与不是同类二次根式;C.=,与不是同类二次根式;D.与不是同类二次根式;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.6.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.7.【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.8.【分析】先把方程化为一般式,再计算判别式的值得到△=37(m2﹣4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.【解答】解:方程整理为x2+7mx+3m2+37=0,△=49m2﹣4(3m2+37)=37(m2﹣4),∵0<m<2,∴m2﹣4<0,∴△<0,∴方程没有实数根.故选:A.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了判别式的意义.9.【分析】连结EF,作GH⊥x轴于H,根据矩形的性质得AB=OD=OF+FD=3,再根据折叠的性质得BA=BG=3,EA=EG,∠BGE=∠A=90°,而AE=DE,则GE=DE,于是可根据“HL”证明Rt△DEF≌Rt△GEF,得到FD=FG=2,则BF=BG+GF=5,在Rt△OBF中,利用勾股定理计算出OB=2,然后根据△FGH∽△FBO,利用相似比计算出GH=,FH=,则OH=OF﹣HF=,所以G点坐标为(,).【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了坐标与图形的性质和相似三角形的判定与性质.10.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键.二.填空题(共5小题,满分15分,每小题3分)11.【分析】原式利用二次根式除法法则计算即可得到结果;原式利用五次方根定义计算即可得到结果;原式变形后,逆用积的乘方运算法则计算即可得到结果.【解答】解:原式==;原式=2;原式=(+2)[(+2)(﹣2)]2014=+2.故答案为:;2; +2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.【分析】直接利用已知得出∠3的度数,再利用平行线的性质得出答案.【解答】解:∵将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,∴∠1+∠3=90°,∠2=∠3,∵∠1=35°,∴∠3=55°,∴∠2=∠3=55°.故答案为:55.【点评】此题主要考查了平行线的性质,正确把握平行线的性质是解题关键.13.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与甲、乙、丙三名学生在同一书店购书的情况数,然后根据概率公式求解即可求得答案.【解答】解:画树状图得:由树状图知共有8种等可能结果,其中甲、乙、丙三名学生在同一书店购书的有2种情况,∴甲、乙、丙三名学生到同一个书店购书的概率为=,故答案为:.【点评】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:【点评】本题考查了折叠问题、扇形的面积.解决本题的关键是把阴影部分的面积转化为△OBC的面积.15.【分析】根据题意作出合适的辅助线,利用三角形中位线定理、三角形的相似可以求得PH和QH的长,然后根据勾股定理即可求得PQ的长.【解答】解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.【点评】本题考查三角形中位线定理、正方形的性质、勾股定理、三角形相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三.解答题(共8小题,满分75分)16.【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.17.【分析】(1)在⊙O内任取一点M,连接AM,BM;(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解;(3)(i)BM与⊙O相交于点C,连接AC,利用三角形外角的性质可得出∠ACB=∠M+∠MAC,进而可证出∠ACB>∠M;(ii)延长BM交⊙O于点C,连接AC,利用三角形外角的性质可得出∠AMB=∠ACB+∠CAM,进而可证出∠AMB>∠ACB;(4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P.【解答】解:(1)如图2所示.(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角.故答案为:小于;大于.(3)证明:(i)如图1,BM与⊙O相交于点C,连接AC.∵∠ACB=∠M+∠MAC,∴∠ACB>∠M;(ii)如图4,延长BM交⊙O于点C,连接AC.∵∠AMB=∠ACB+∠CAM,∴∠AMB>∠ACB.(4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点P.【点评】本题考查了圆的综合应用以及三角形外角的性质,解题的关键是:(1)依照题意画出图形;(2)观察图形,找出结论;(3)利用三角形外角的性质证出:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角;(4)利用(2)的结论找出点P的位置.18.【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据圆心角计算公式,即可得到艺术类读物所在扇形的圆心角;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量.【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得 8000×=1200(册).答:学校购买其他类读物1200册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.19.【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.【分析】(1)利用待定系数法求反比例函数的解析式;(2)根据反比例函数图象上点的坐标特征,将B、C、D三点分别代入进行验证即可;(3)根据该反比例函数所在的象限、以及该函数的单调性画出图象.【解答】解:设该反比例函数的解析式为y=(k≠0),则2=,解得,k=﹣4;所以,该反比例函数的解析式为y=﹣;∵﹣4<0,∴该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;(2)由(1)知,该反比例函数的解析式为y=﹣,则xy=﹣4.∵﹣2×4=﹣8≠﹣4,3×(﹣)=﹣4,2×(﹣)=﹣4,∴点B(4,﹣2)不在该函数图象上,点C(3,)和D()在该函数图象上;(3)反比例函数的图象过点A(﹣2,2),由(1)知,该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;所以其图象如图所示:【点评】本题考查了反比例函数的图象与性质、待定系数法求反比例函数的解析式以及反比例函数图象上点的坐标特征.经过函数的某点一定在该函数的图象上.21.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.22.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM =CE ,PN =BD ,解(2)的关键是判断出△ABD ≌△ACE ,解(3)的关键是判断出MN 最大时,△PMN 的面积最大.23.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,...... ∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4); ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =, 当t =时,﹣t 2+2t +3=, 当t =时,﹣t 2+2t +3=, ∴Q 点坐标为(,)或(,); 综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
河南中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)1. 下列各数中,绝对值最小的数是( )A .πB .0C .-2D .13-2.移动互联网已经全面进入人们的日常生活,截至2016年1月,全国4G 用户总数达到3.86亿,其中3.86亿用科学记数法表示为( )A .3.86×104B .3.86×106C .3.86×108D .0.162×109 3.下面的图形中,既是轴对称图形又是中心对称图形的是( )4. 如图,BE ∥AF ,点D 是AB 上一点,且DC ⊥BE 于点C ,若∠A =35°,则∠ADC 的度数为( )A .105°B .115°C .125°D .135°FE DC BA第4题图 第6题图5.不等式组的整数解的个数为( )A .1B .2C .3D .46.如图,在平面直角坐标系中,已知B 、C 的坐标分别为点B (-3,1)、C (0,-1),若将△ABC 绕点C 逆时针方向旋转90°后得到111C B A ∆,则点B 对应点1B的坐标是( )A .(3,1)B .(2,2)C .(1,3)D .(3,0)7. 一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球,随机从中摸出一球,不再放回,充分搅均后再随机摸出一球,则两次都摸到红球的概率是( )A .13B .23C .12D .148. 已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1 9. 如图,在平面直角坐标系中,以点O 为圆心,以适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,在分别以M 、N 为圆心,以大于MN 21的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为(a 2,1+b ),则a 与b 的数量关系为( )A. b a = B .12-=+b a C .12=-b a D .12=+b a第9题图 第10题图10. 如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG .点F ,G 分别在边AD ,BC 上,连结OG ,DG .若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成立的是( )A .CD+DF=4B .CD ﹣DF=2﹣3 C .BC+AB=2+4D .BC ﹣AB=2二、填空题(每小题3分,共15分) 11. 计算+(﹣1)2017= .12. 方程211x x x-=-的解为____________.13. 如图,在平面直角坐标系中,函数y=kx+b(k≠0)与m yx =(m≠0)的图象相交于点A(2,3),B(-6,-1),则关于x的不等式kx+b>mx的解集是___________.yxBOA第13题图第14题图14.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是.15.如图,已知矩形ABCD,AB=2,AD=6,点E、F分别是线段AD、BC上的点,且四边形ABFE是正方形,若点G是线段AD上的动点,连接FG,将矩形延FG 折叠。
河南省信阳罗山县联考2019-2020学年中考数学模拟试卷一、选择题 1.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A.m >﹣2 B.m <﹣2 C.m >2D.m <22.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 3.下列计算正确的是( ) A .a+a =a 2B .6a 3﹣5a 2=a C .(2x 5)2=4x 10 D .a 6÷a 2=a 34.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是( ) A .a 8÷a 4=a 2 B .a 3•a 4=a 12C .a 5+a 5=a 10D .2x 3•x 2=2x 55.在函数y =x 的取值范围是( )A.x 2≠-B.x 0>C.x 2>-D.x 2≥-6.如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 交于点P ,OP =43,则⊙O 的半径为( )A .8B .123C .83D .127.下列计算正确的是( )A .(﹣3)﹣2=9B 3C .(3﹣π)0=1D =8.如图:A B C D E F ∠∠∠∠∠∠+++++等于( )A .180B .360C .540D .7209.如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =3,则下列结论:①1=2AF FD ;②S △BCE =30;③S △ABE =9;④△AEF ∽△ACD ,其中一定正确的是( )A .①②③④B .①③C .②③④D .①②③10.如图,已知∠BED =55°,则∠B+∠C =( )A .30°B .35°C .45°D .55°11.已知边长为4的等边△ABC ,D 、E 、F 分别为边AB 、BC 、AC 的中点,P 为线段DE 上一动点,则PF+PC 的最小值为( )A .4B .C .D .212.已知,⊙O 的半径是一元二次方程x 2﹣5x ﹣6=0的一个根,圆心O 到直线l 的距离d =4,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .平行二、填空题13.若x 2-4x+1=0,则221x x+=______.14.方程20x =的根是_____.15.抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.16.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.17.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2=_____°.18.当1x =时,多项式226x x ++的值等于_______. 三、解答题 19.先化简分式(311x x x x --+)÷21xx -,再从不等式组3(2)24251x x x x --≥⎧⎨-<+⎩的解集中取一个非负整数值代入,求原分式的值.20.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为 ;(2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.21.(1)计算:1020181|21)3tan 30(1)2-︒⎛⎫+-+-- ⎪⎝⎭(2)解不等式组:11210x x x --⎧->⎪⎨⎪->⎩(3)已知x 1,x 2是方程x 2﹣3x ﹣1=0的两不等实数根,求1211x x +的值 22.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合)我们把这样的两抛物线L 1、L 2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图2,已知抛物线L 3:y=2x 2-8x+4与y 轴交于点C ,试求出点C 关于该抛物线对称轴对称的对称点D 的坐标;(2)请求出以点D 为顶点的L 3的“友好”抛物线L 4的解析式,并指出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物y=a 1(x-m )2+n 的任意一条“友好”抛物线的解析式为y=a 2(x-h )2+k ,请写出a 1与a 2的关系式,并说明理由.23.如图,已知一次函数y 1=k 1x+b 的图象与x 轴、y 轴分别交于A .B 两点,与反比例函数y 2=2k x的图象分别交于C .D 两点,点D (2,﹣3),OA =2. (1)求一次函数y 1=k 1x+b 与反比例函数y 2=2k x的解析式; (2)直接写出k 1x+b ﹣2k x≥0时自变量x 的取值范围.24.某特产店出售大米,一天可销售20袋,每袋可盈利40元,为了扩大销售,增加盈利,尽快减少库存,决定采取降价措施,据统计发现,若每袋降价2元,平均每天可多售4袋. (1)设每袋大米降价为x (x 为偶数)元时,利润为y 元,写出y 与x 的函数关系式. (2)若每天盈利1200元,则每袋应降价多少元?(3)每袋大米降价多少元时,商店可获最大利润?最大利润是多少?25.在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD 与CE 交于点F ,AB =CF . (1)如图1,求证:DF =DB ;(2)如图2,若AF ,在不添加任何辅助线和字母的情况下,请写出图中所有度数与3∠FAE 的度数相等的角.【参考答案】*** 一、选择题13.1414.120,x x ==. 15.()1,1m -- 16.4-17. 18.15 三、解答题 19.【解析】 【分析】先根据分式的混合运算法则化简所给分式,再解不等式组求出解集,然后从不等式组的解集中取一个使所给分式有意义的非负整数代入计算即可. 【详解】 ∵23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭=3(1)(1)11x x x x x x x +-⎛⎫-⋅⎪-+⎝⎭=3(x+1)﹣(x ﹣1)=2x+4,∵3(2)2(1)4251(2)x x x x -->⎧⎨-<+⎩,解①得:x≤2, 解②得:x >﹣3,∴此不等式组的解集是﹣3<x≤2; ∴非负整数值有0,1,2, ∵x 2﹣1≠0,x≠0, ∴x≠±1且x≠0, ∴当x =2时,原式=8. 【点睛】本题考查了分式的化简求值,一元一次不等式组的解法,熟练掌握分式的运算法则及一元一次不等式组的解法是解答本题的关键.20.(1) 200;72°;(2)见解析;(3)13【解析】 【分析】(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解. 【详解】解:(1)(50+45+15)÷(1﹣15%﹣30%)=200, 所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=72°; 故答案为200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3, 所以两人恰好选择同一种付款方式的概率=39=13. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图. 21.(1)2-;(2)1<x <3;(3)﹣3. 【解析】 【分析】(1)根据实数的运算法则进行计算(2)根据不等式组的解法解答,注意去分母(3)先根据一元二次方程的根与系数之间的关系求未知数,再化简求值. 【详解】解:(1)120181|21)3tan 30(1)2-︒⎛⎫+-+-- ⎪⎝⎭2131221122=---=---=-(2)112x x ---> 11|210x x x --⎧->⎪⎨⎪->⎩ 解不等式112xx --->,得:x <3, 解不等式x ﹣1>0,得: 1,310x x x ><->故不等式组的解集为1<x <3;(3)由根与系数的关系得:x 1+x 2=3,x 1x 2=﹣1, 则121212113x x x x x x ++==- . 【点睛】此题重点考察学生对实数的运算,不等式组的解,一元二次方程根与系数之间的关系的理解,掌握实数的运算法则,不等式组和一元二次方程的解法是解题的关键.22.(1)(4,4);(2)2≤x≤4;(3)a 1=-a 2,理由如下:见解析 【解析】 【分析】(1)设x =0,求出y 的值,即可得到C 的坐标,把抛物线L 3:y =2x 2−8x +4配方即可得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标;(2)由(1)可知点D 的坐标为(4,4),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得:(a 1+a 2)(m −h )2=0,可得a 1=−a 2. 【详解】解:(1)∵抛物线L 3:y=2x 2-8x+4, ∴y=2(x-2)2-4,∴顶点为(2,4),对称轴为x=2, 设x=0,则y=4, ∴C (0,4),∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,4); (2)∵以点D (4,4)为顶点的抛物线L 4过点(2,-4), 设L 4的解析式2(4)4y a x =-+, 将点(2,-4)代入L 4可得,a=-2, ∴L 4的解析式为y=-2(x-4)2+4,L 3与L 4的两个交点分别为(4,4)和(2,-4)∴L 3与L 4中y 同时随x 增大而增大的自变量的取值范围是:2≤x≤4时; (3)a 1=-a 2, 理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,∴可以列出两个方程2221()()n a m h k k a h m n ⎧=-+⎨=-+⎩①②, ①+②得:(a 1+a 2)(m-h )2=0, ∴a 1=-a 2. 【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度. 23.(1)3342y x =--;26y x=-;(2)x≤﹣4或0<x≤2. 【解析】 【分析】(1)把点D 的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作DE ⊥x 轴于E ,根据题意求得A 的坐标,然后利用待定系数法求得一次函数的解析式; (2)根据图象即可求得k 1x+b ﹣2k x≥0时, ,自变量x 的取值范围. 【详解】解:(1)∵点D (2,﹣3)在反比例函数y 2=2k x的图象上, ∴k 2=2×(﹣3)=﹣6, ∴y 2=﹣6x; 如图,作DE ⊥x 轴于E ∵OA =2 ∴A (﹣2,0),∵A (﹣2,0),D (2,﹣3)在y 1=k 1x+b 的图象上,112k b 02k b 3-+=⎧⎨+=-⎩, 解得133,42k b =-=-, 3342y x ∴=--;(2)由图可得,当k 1x+b ﹣2k x≥0时,x≤﹣4或0<x≤2. 【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和反比例函数的解析式,方程组的解等知识,解题的关键是灵活应用所学知识解决问题.24.(1)y=-2x 2+60x+800(2)x=20(3)x=14或16时获利最大为1248元 【解析】 【分析】(1)根据题意设出每天降价x 元以后,准确表示出每天大米的销售量,列出利润y 关于降价x 的函数关系式;(2)根据题意列出关于x 的一元二次方程,通过解方程即可解决问题; (3)运用函数的性质即可解决. 【详解】(1)当每袋大米降价为x (x 为偶数)元时,利润为y 元, 则每天可出售20+4×2x=20+2x ; 由题意得:y=(40-x )(20+2x ) =-2x 2+80x-20x+800 =-2x 2+60x+800;(2)当y=1200时,-2(x-15)2+1250=1200, 整理得:(x-15)2=25,解得x=10或20但为了尽快减少库存,所以只取x=20, 答:若每天盈利1200元,为了尽快减少库存,则应降价20元; (3)∵y=-2(x-15)2+1250=1200, 解得x=15, ∵每袋降价2元,则当x=14或16时获利最大为1248元. 【点睛】题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.25.(1)证明见解析;(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由见解析.【解析】【分析】(1)由余角的性质可得∠DAB=∠DCE,由“AAS”可证△ADB≌△CDF,可得DF=BD;(2)由等腰三角形的性质可求∠DFB=∠DBF=45°,即可求∠ABD=∠DBF+∠ABF=67.5°,由全等三角形的性质可得∠CAB=∠DCF=∠ABD=∠AFE=67.5°=3∠FAE.【详解】(1)∵AD⊥BC,CE⊥AB∴∠B+∠DAB=90°,∠B+∠DCE=90°∴∠DAB=∠DCE,且∠ADB=∠ADC=90°,CF=AB∴△ADB≌△CDF(AAS)∴DF=BD(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由如下:如图:连接BF,∵DF=DB,∠ADB=90°∴∠DFB=∠DBF=45°,BF DF,且AF DF∴AF=BF∴∠FAE=∠FBE∴∠DFB=2∠FAE=2∠ABF=45°∴∠FAE=∠FBE=22.5°∴∠ABD=∠DBF+∠ABF=67.5°∴∠ABD=3∠FAE∵△ADB≌△CDF∴∠DCF=∠ABD=∠AFE=67.5°=3∠FAE,AD=CD∴∠DAC=∠DCA=45°∴∠CAB=67.5°=3∠FAE【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.。
2020年中考数学一轮复习——二次函数的图象及性质一、选择题1.(2019·河南)已知抛物线y =-x 2+bx +4经过(-2,n)和(4,n)两点,则n 的值为( ) A .-2 B .-4 C .2 D .42.(2019·兰州)已知点A(1,y 1),B(2,y 2)在抛物线y =-(x +1)2+2上,则下列结论正确的是( )A .2>y 1>y 2B .2>y 2>y 1C .y 1>y 2>2D .y 2>y 1>23.(2019·湖州)已知a ,b 是非零实数,|a |>|b |,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( )4.(2019·陕西)在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187 B .m =5,n =-6C .m =-1,n =6D .m =1,n =-25.四位同学在研究函数y =x 2+bx +c (b ,c 是常数)时,甲发现当x =1时,函数有最小值;乙发现-1是方程x 2+bx +c =0的一个根;丙发现函数的最小值为3;丁发现当x =2时,y =4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁6.(2019·巴中)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0.其中正确的是( )A .①④B .②④C .②③D .①②③④ 二、填空题7.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).8.将二次函数y =x 2-4x +5化成y =a (x -h)2+k 的形式为 .9.(2019·武汉)抛物线y =ax 2+bx +c 经过点A(-3,0),B(4,0)两点,则关于x 的一元二次方程a (x -1)2+c =b -bx 的解是 .10.(2019·长春)如图,在平面直角坐标系中,抛物线y =ax 2-2ax +83(a >0)与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点.若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为 .三、解答题11.(2019·温州)如图,在平面直角坐标系中,二次函数y =-12x 2+2x +6的图象交x 轴于点A ,B(点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.12.(2019·黄石)如图,已知抛物线y =13x 2+bx +c 经过点A(-1,0),B(5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积.13.设二次函数y =ax 2+bx -(a +b )(a ,b 是常数,a ≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.14.(温州二模)如图,在平面直角坐标系中,点A(1,2),B(5,0),抛物线y=ax2-2ax(a>0)交x轴正半轴于点C,连结AO,AB.(1)求点C的坐标和直线AB的表达式;(2)设抛物线y=ax2-2ax(a>0)分别交边BA,BA延长线于点D,E.①若AE=3AO,求抛物线表达式;②若△CDB与△BOA相似,则a的值为.(请直接写出答案)参考答案一、选择题1.(2019·河南)已知抛物线y =-x 2+bx +4经过(-2,n)和(4,n)两点,则n 的值为( B ) A .-2 B .-4 C .2 D .42.(2019·兰州)已知点A(1,y 1),B(2,y 2)在抛物线y =-(x +1)2+2上,则下列结论正确的是( A )A .2>y 1>y 2B .2>y 2>y 1C .y 1>y 2>2D .y 2>y 1>23.(2019·湖州)已知a ,b 是非零实数,|a |>|b |,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( D )4.(2019·陕西)在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( D )A .m =57,n =-187 B .m =5,n =-6C .m =-1,n =6D .m =1,n =-25.四位同学在研究函数y =x 2+bx +c (b ,c 是常数)时,甲发现当x =1时,函数有最小值;乙发现-1是方程x 2+bx +c =0的一个根;丙发现函数的最小值为3;丁发现当x =2时,y =4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( B )A .甲B .乙C .丙D .丁6.(2019·巴中)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④ 二、填空题7.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 y =x 2(答案不唯一) (只要写出一个符合题意的答案即可).8.将二次函数y =x 2-4x +5化成y =a (x -h)2+k 的形式为 y =(x -2)2+1 .9.(2019·武汉)抛物线y =ax 2+bx +c 经过点A(-3,0),B(4,0)两点,则关于x 的一元二次方程a (x -1)2+c =b -bx 的解是 x 1=-2,x 2=5 .10.(2019·长春)如图,在平面直角坐标系中,抛物线y =ax 2-2ax +83(a >0)与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点.若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为 2 .三、解答题11.(2019·温州)如图,在平面直角坐标系中,二次函数y =-12x 2+2x +6的图象交x 轴于点A ,B(点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.解:(1)A(-2,0),B(6,0),由函数图象得,当y ≥0时,-2≤x ≤6;(2)由题意得,B 1(6,m),B 2(6-n ,m),B 3(-n ,m),函数图象的对称轴为直线x =2,∵点B 2,B 3在二次函数图象上且纵坐标相同,∴6-n +(-n)2=2,∴n =1,∴m =-12×(-1)2+2×(-1)+6=72,∴m ,n 的值分别为72,1.12.(2019·黄石)如图,已知抛物线y =13x 2+bx +c 经过点A(-1,0),B(5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积.解:(1)函数的表达式为:y =13(x +1)(x -5)=13(x 2-4x -5)=13x 2-43x -53,点M 坐标为(2,-3); (2)当x =8时,y =13(x +1)(x -5)=9,即点C(8,9),S 四边形AMBC =12AB(y C -y M )=12×6×(9+3)=36.13.设二次函数y =ax 2+bx -(a +b )(a ,b 是常数,a ≠0). (1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a +b <0,点P(2,m)(m >0)在该二次函数图象上,求证:a >0.解:(1)由题意Δ=b 2-4·a [-(a +b )]=b 2+4ab +4a 2=(2a +b )2≥0,∴二次函数图象与x 轴的交点的个数有两个或一个;(2)当x =1时,y =a +b -(a +b )=0,∴抛物线不经过点C ,把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ), 解得⎩⎪⎨⎪⎧a =3,b =-2, ∴抛物线解析式为y =3x 2-2x -1;(3)当x =2时,m =4a +2b -(a +b )=3a +b >0①,∵a +b <0,∴-a -b >0②, ①②相加得:2a >0,∴a >0.14.(温州二模)如图,在平面直角坐标系中,点A(1,2),B(5,0),抛物线y =ax 2-2ax (a >0)交x 轴正半轴于点C ,连结AO ,AB.(1)求点C 的坐标和直线AB 的表达式;(2)设抛物线y =ax 2-2ax (a >0)分别交边BA ,BA 延长线于点D ,E. ①若AE =3AO ,求抛物线表达式;②若△CDB 与△BOA 相似,则a 的值为 .(请直接写出答案)解:(1)∵x =-b2a=1,∵O ,C 两点关于直线x =1对称,∴C(2,0),设直线AB :y =k x +b ,把A(1,2),B(5,0)代入得y =-12x +52;(2)①∵A(1,2),B(5,0),O(0,0),∴OA =5,OB =5,AB =25,∴OA 2+AB 2=OB 2,∴∠OAB =90°,∴∠OAE =90°,作EF ⊥AF ,AG ⊥x 轴,∵∠FEA =∠OAG ,∠F =∠AGO =90°,∴△EAF ∽△AOG ,∴EF AG =AF OG =3,∴E(-5,5),代入解析式可得,a =17,∴y =17x 2-27x ;②若△CDB 与△BOA 相似,CD AO =BD AB =BC BO ,∴CD 5=BD 25=35,∴D(135,65),代入解析式可得a =1013.。
2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013 3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.34.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.810.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=.12.(3分)不等式组的整数解的和为.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数为.故选:D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将99.1万亿用科学记数法表示是9.91×1013.故选:D.3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.3【分析】根据二次根式的加减法对A进行判断;根据幂的乘方法则对B进行判断;根据同底数幂的乘法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、2与3不能合并,所以A选项错误;B、原式=a6,所以B选项错误;C、原式=a5,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的视图,注意圆柱内的长方体的放置.【解答】解:其主视图是,故选:B.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°【分析】直接利用平行线的性质得出∠AEG的度数,再利用三角形外角的性质得出答案.【解答】解:由题意可得:∠F=45°,∠A=60°,∵DF∥AC,∴∠AEG=∠F=45°,∴∠AGF=∠AEG+∠A=45°+60°=105°.故选:A.6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况,人数众多,应采用抽样调查,故此选项符合题意;B、北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况,意义重大,人数不多,应采用全面调查,故此选项不合题意;C、某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性,意义重大,应采用全面调查,故此选项不合题意;D、疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测,意义重大,应采用全面调查,故此选项不合题意;故选:A.7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【解答】解:(x+3)(x+6)=x+1,x2+8x+17=0,这里a=1,b=8,c=17,∵b2﹣4ac=82﹣4×1×17=﹣4<0,∴没有实数根.故选:D.8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣【分析】作AD⊥OB于D,根据30°角的直角三角形的性质得出OA=OB,然后通过证得△AOD∽△BOA,求得△AOD的面积,然后根据反比例函数xsk的几何意义即可求得k的值.【解答】解:作AD⊥OB于D,∵Rt△OAB中,∠ABO=30°,∴OA=OB,∵∠ADO=∠OAB=90°,∠AOD=∠BOA,∴△AOD∽△BOA,∴=()2=,∴S△AOD=S△BOA=×2=,∵S△AOD=|k|,∴|k|=,∵反比例函数y=图象在二、四象限,∴k=﹣,故选:D.9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.8【分析】求出AB,BC即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,由作图可知,AE平分∠BAC,∴∠BAE=∠BAC=30°,∴AB=BE,BC=AB,∵BE=2,∴AB=2,BC=6,∴矩形ABCD的面积=12.故选:B.10.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)【分析】设第n秒运动到P n(n为自然数)点,根据点P的运动规律找出部分P n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【解答】解:设第n秒运动到P n(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(,0),P4n+3(,﹣),P4n+4(,0),∵2021=4×505+1,∴P2021为(,),故选:B.二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=﹣4.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解(﹣2)﹣1﹣﹣2cos60°=﹣0.5﹣3﹣2×=﹣3.5﹣1=﹣4.5.故答案为:﹣4.5.12.(3分)不等式组的整数解的和为﹣3.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:,解不等式①得:x≥﹣3,解不等式②得:x<3,所以不等式组的解集为:﹣3≤x<3.不等式组的整数解有﹣3,﹣2,﹣1,0,1,2,所以数解的和为﹣3.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.【分析】列表得出所有等可能的情况数,找出恰好选出一男一女的情况数,即可求出所求的概率.【解答】解:列表如下:男男女女女男﹣﹣﹣(男,男)(女,男)(女,男)(女,男)男(男,男)﹣﹣﹣(女,男)(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)(女,女)﹣﹣﹣所有等可能的情况有20种,其中恰好一男一女的情况有12种,∴恰好选中一男一女的概率是=,故答案为:.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为3+3或3﹣3.【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN =∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:3+3或3﹣3.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.【分析】先把括号内通分,再把除法运算化为乘法运算,约分后得到原式=x2﹣x,然后把x的值代入计算即可.【解答】解:原式=•=•=x(x﹣1)=x2﹣x,当x=+1时,原式=(+1)2﹣(+1)=2+.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?【分析】(1)利用扇形统计图,用1分别减去A、B、C组的百分比可得到a的值;(2)根据中位数和众数的定义求解;(3)利用样本估计总体,把1200乘以样本中七、八年级的优秀率即可.【解答】解:(1)a%=1﹣10%﹣20%﹣×100%=40%,则a=40;b==93;c=96;(2)八年级掌握得更好.理由如下:因为七八年级的平均数、中位数相同,而八年级的众数比七年级高,说明八年级高分的同学更多;八年级方差比七年级小,说明八年级两极分化差距小.(3)1200×=780,所以参加此次调查活动成绩优秀的学生人数约为780名.18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.【分析】(1)连接DO,根据切线的性质得到∠ODC=90°,根据圆周角定理求出∠DAO,根据等腰三角形的判定定理得到DA=DC,根据等边三角形的性质得到DB=DA,等量代换证明结论;(2)①根据直角三角形的性质求出AD,根据矩形的四个角都是直角得到∠EAF=60°,根据余弦的定义计算,求出AE;②作AG⊥DE,根据圆心角、弧、弦之间的关系得到AE=EF,根据圆周角定理得到∠ADE=∠FDE=45°,根据等腰直角三角形的性质求出AE,解直角三角形得到答案.【解答】(1)证明:如图1,连接DO,∵BC与⊙O相切于点D,∴∠ODC=90°,∵∠C=30°,∴∠DOC=60°,由圆周角定理得,∠DAO=∠DOC=30°,∴DA=DC,∵∠BAC=90°,∴∠B=60°,∠BAD=60°,∴DB=DA,∴DB=DC,即点D为线段BC的中点;(2)解:①在Rt△ABC中,∠BAC=90°,∠C=30°,则BC=2AB=6,∵BD=DC,∴AD=BC=3,∴AF===2,当四边形DAEF为矩形时,∠DAE=90°,∵∠DAC=30°,∴∠EAF=60°,∴AE=AF•cos∠EAF=;②如图2,过点A作AG⊥DE于G,∵点E为半圆中点,∴=,∴AE=EF,∠ADE=∠FDE=45°,∴AG=DG=AD=,∵AF=2,∴AE=EF=,由圆周角定理得,∠AED=∠AFD=60°,∴EG=AE•cos∠AED=×=,∴DE=DG+EG=,故答案为:①;②.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)【分析】设AC为xm,根据等腰直角三角形的性质得到BC=AC=x,根据正切的定义列出方程,解方程即可得到答案.【解答】解:设AC为xm,则CD=(x+120)m,在Rt△ACB中,∠ABC=45°,∴BC=AC=x,∴CE=x+20,在Rt△DCE中,tan∠DEC=,即≈1.346,解得,x≈269.0,∴CD=x+120=389.0≈389,答:中原福塔CD的总高度约为389m.20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.【分析】(1)作DM⊥y轴于M,BN⊥y轴于N,通过证得△ANB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线的解析式.(2)利用轴对称求最短路线得出A点关于x轴对称点的性质,进而得出DA′的解析式,可得点E坐标,延长DA交x轴于F,此时|FD﹣F A|的值最大,求出直线AD的解析式可得点F坐标,由此即可解决问题.【解答】解:(1)作DM⊥y轴于M,BN⊥y轴于N,∵点A(0,2),点B(3,﹣2),∴OA=2,ON=2,∴AN=4,BN=3,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠NAB+∠DAM=90°,∵∠NAB+∠ABN=90°,∴∠DAM=∠ABN,在△ANB和△DMA中,∴△ANB≌△DMA(AAS),∴AM=BN=3,DM=AN=4,∴OM=5,∴D(4,5),∵反比例函数y=(x>0)恰好经过点D.∴k=4×5=20,∴双曲线为y=;(2)如图2所示:作A点关于x轴对称点A′,连接DA′,交x轴于点E,此时ED+EA 的值最小,∵A(0,2),∴A′(0,﹣2),设直线DA′的解析式为:y=ax+b,把A(0,﹣2),D(4,5)代入得,解得:,故直线DA′解析式为:y=x﹣2,当y=0则x=,故E点坐标为:(,0),延长DA交x轴于F,此时|FD﹣F A|的值最大,设直线AD的解析式为y=mx+n,把A(0,2),D(4,5)代入得,解得,∴直线AD的解析式为y=x+2,当y=0则x=﹣,∴F(﹣,0),∴EF=+=.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.【分析】(1)根据题意和表格中的数据,可以列出相应的二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍.可以求得普通口罩数量的取值范围,再根据一次函数的性质,即可解答本题.【解答】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,,解得,,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)设购买普通口罩x个,获得的利润为w元,w=(2﹣1)x+(10﹣6)×(1000﹣x)=﹣3x+4000,∴w随x的增大而减小,∵普通口罩的数量不低于N95口罩数量的4倍.∴x≥4×(1000﹣x),解得,x≥200,∴当x=200时,w取得最大值,此时w=3400,100﹣x=800,答:为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩200个,N95口罩800个,最大利润是3400元.。
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)2的相反数是( ) A .2-B .12-C .12D .22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是( )A .B .C .D .3.(3分)要调查下列问题,适合采用全面调查(普查)的是( ) A .中央电视台《开学第一课》的收视率 B .某城市居民6月份人均网上购物的次数 C .即将发射的气象卫星的零部件质量 D .某品牌新能源汽车的最大续航里程4.(3分)如图,12//l l ,34//l l ,若170∠=︒,则2∠的度数为( ) A .100︒B .110︒C .120︒D .130︒5.(3分)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1012GB MB =,1012MB KB =,1012KB B =.某视频文件的大小约为1GB ,1GB 等于( )A .302B B .308BC .10810B ⨯D .30210B ⨯6.(3分)若点1(1,)A y -,2(2,)B y ,3(3,)C y 在反比例函数6y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .231y y y >>C .132y y y >>D .321y y y >>7.(3分)定义运算:m ☆21n mn mn =--.例如:4☆22424217=⨯-⨯-=.则方程1☆0x =的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(12)7500x += B .50002(1)7500x ⨯+=C .25000(1)7500x +=D .250005000(1)5000(1)7500x x ++++=9.(3分)如图,在ABC ∆中,90ACB ∠=︒,边BC 在x 轴上,顶点A ,B 的坐标分别为(2,6)-和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .3(2,2)B .(2,2)C .11(4,2)D .(4,2)10.(3分)如图,在ABC ∆中,AB BC ==,30BAC ∠=︒,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .B .9C .6D .二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 .12.(3分)已知关于x 的不等式组,,x a x b >⎧⎨>⎩其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .14.(3分)如图,在边长为ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 .15.(3分)如图,在扇形BOC 中,60BOC ∠=︒,OD 平分BOC ∠交BC 于点D ,点E 为半径OB 上一动点.若2OB =,则阴影部分周长的最小值为 . 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:21(1)11aa a -÷+-,其中1a +. 17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:)g 如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题: (1)表格中的a = ,b = ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22︒,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45︒.测角仪的高度为1.6m .(1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈ 1.41)≈;(2)“景点简介”显示,观星台的高度为12.6m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具--三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长. 使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把MEN ∠三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A ,B ,O ,C 在同一直线上,EB AC ⊥,垂足为点B , . 求证: .21.(10分)如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点A ,B ,且OA OB =,点G 为抛物线的顶点.(1)求抛物线的解析式及点G 的坐标;(2)点M ,N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点M ,N 之间(含点M ,)N 的一个动点,求点Q 的纵坐标Q y 的取值范围.22.(10分)小亮在学习中遇到这样一个问题:如图,点D 是BC 上一动点,线段8BC cm =,点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D 在BC 上的不同位置,画出相应的图形,测量线段BD ,CD ,FD 的长度,得到下表的几组对应值.操作中发现:①“当点D 为BC 的中点时, 5.0BD cm =”.则上表中a 的值是 ; ②“线段CF 的长度无需测量即可得到”.请简要说明理由.(2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α,连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE . (1)如图1,当60α=︒时,DEB ∆'的形状为 ,连接BD ,可求出BB CE'的值为 ; (2)当0360α︒<<︒且90α≠︒时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BEB E'的值. 2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)2的相反数是( ) A .2-B .12-C .12D .2【解答】解:2的相反数是2-. 故选:A .2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是( )A .B .C .D .【解答】解:A 、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B 、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C 、主视图和左视图都是圆,一定相同,故选项不符合题意;D 、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D .3.(3分)要调查下列问题,适合采用全面调查(普查)的是( ) A .中央电视台《开学第一课》的收视率 B .某城市居民6月份人均网上购物的次数 C .即将发射的气象卫星的零部件质量 D .某品牌新能源汽车的最大续航里程【解答】解:A 、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B 、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C 、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D 、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C .4.(3分)如图,12//l l ,34//l l ,若170∠=︒,则2∠的度数为( ) A .100︒B .110︒C .120︒D .130︒【解答】解:12//l l ,170∠=︒,3170∴∠=∠=︒, 34//l l ,2180318070110∴∠=︒-∠=︒-︒=︒,5.(3分)电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1012GB MB =,1012MB KB =,1012KB B =.某视频文件的大小约为1GB ,1GB 等于( )A .302B B .308BC .10810B ⨯D .30210B ⨯【解答】解:由题意得:1010101010103022222B B ++⨯⨯==, 故选:A .6.(3分)若点1(1,)A y -,2(2,)B y ,3(3,)C y 在反比例函数6y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .231y y y >>C .132y y y >>D .321y y y >>【解答】解:点1(1,)A y -、2(2,)B y 、3(3,)C y 在反比例函数6y x=-的图象上, 1661y ∴=-=-,2632y =-=-,3623y =-=-, 又326-<-<,132y y y ∴>>.故选:C .7.(3分)定义运算:m ☆21n mn mn =--.例如:4☆22424217=⨯-⨯-=.则方程1☆0x =的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆210x x x =--=,∴△141(1)50=-⨯⨯-=>,8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(12)7500x += B .50002(1)7500x ⨯+=C .25000(1)7500x +=D .250005000(1)5000(1)7500x x ++++=【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x ,由题意得:25000(1)7500x +=,故选:C .9.(3分)如图,在ABC ∆中,90ACB ∠=︒,边BC 在x 轴上,顶点A ,B 的坐标分别为(2,6)-和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .3(2,2)B .(2,2)C .11(4,2)D .(4,2)【解答】解:如图,设正方形D C O E ''''是正方形OCDE 沿x 轴向右平移后的正方形, 顶点A ,B 的坐标分别为(2,6)-和(7,0),6AC ∴=,2OC =,7OB =, 9BC ∴=,四边形OCDE 是正方形,2DE OC OE ∴===, 2O E O C ∴''=''=,E O BC ''⊥,90BO E BCA ∴∠''=∠=︒,//E O AC ∴'',∴△BO E BCA ''∆∽, ∴E O BO AC BC'''=, ∴269BO '=, 3BO ∴'=,7232OC ∴'=--=,∴当点E 落在AB 边上时,点D 的坐标为(2,2),故选:B .10.(3分)如图,在ABC ∆中,AB BC ==,30BAC ∠=︒,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .B .9C .6D .【解答】解:连接BD 交AC 于O ,AD CD =,AB BC =,BD ∴垂直平分AC ,BD AC ∴⊥,AO CO =,AB BC =,30ACB BAC ∴∠=∠=︒,AC AD CD ==,ACD ∴∆是等边三角形,60DAC DCA ∴∠=∠=︒,90BAD BCD ∴∠=∠=︒,30ADB CDB ∠=∠=︒,AB BC ==3AD CD ∴==,∴四边形ABCD 的面积1232=⨯⨯, 故选:D .二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2【解答】解:大于1且小于212.(3分)已知关于x 的不等式组,,x a x b >⎧⎨>⎩其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 x a > .【解答】解:0b a <<,∴关于x 的不等式组,,x a x b >⎧⎨>⎩的解集为:x a >, 故答案为:x a >.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,P∴(两次颜色相同)41 164==,故答案为:14.14.(3分)如图,在边长为ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【解答】解:设DF,CE交于O,四边形ABCD是正方形,90B DCF∴∠=∠=︒,BC CD AB==,点E,F分别是边AB,BC的中点,BE CF∴=,()CBE DCF SAS∴∆≅∆,CE DF∴=,BCE CDF∠=∠,90CDF CFD∠+∠=︒,90BCE CFD∴∠+∠=︒,90COF∴∠=︒,DF CE∴⊥,CE DF∴==,点G,H分别是EC,FD的中点,CG FH∴==,90DCF ∠=︒,CO DF ⊥,2CF OF DF ∴=,2CF OF DF ∴===,OH ∴,OD , 2OC OF OD =,OC ∴=,OG CG OC ∴=-==,1HG ∴===, 故答案为:1.15.(3分)如图,在扇形BOC 中,60BOC ∠=︒,OD 平分BOC ∠交BC 于点D ,点E 为半径OB 上一动点.若2OB =,则阴影部分周长的最小值为 3π . 【解答】解:如图,作点D 关于OB 的对称点D ',连接D C '交OB 于点E ',连接E D '、OD ', 此时E C E C '+'最小,即:E C E C CD '+'=',由题意得,30COD DOB BOD ∠=∠=∠'=︒,90COD ∴∠'=︒,CD ∴'==CD 的长3021803l ππ⨯==,∴阴影部分周长的最小值为3π.. 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:21(1)11a a a -÷+-,其中1a +. 【解答】解:21(1)11a a a -÷+- 1a =-,把1a =代入111a -=-=17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:)g 如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)表格中的a=501,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b==,3?2015%故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22︒,然后沿MP方向前进16m到达点N处,测得点A的仰角为45︒.测角仪的高度为1.6m.(1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈ 1.41)≈;(2)“景点简介”显示,观星台的高度为12.6m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A 作AD PM ⊥于D ,延长BC 交AD 于E ,则四边形BMNC ,四边形BMDE 是矩形,16BC MN m ∴==, 1.6DE CN BM m ===,90AED ∠=︒,45ACE ∠=︒,ACE ∴∆是等腰直角三角形,CE AE ∴=,设AE CE x ==,16BE x ∴=+,22ABE ∠=︒,tan 220.4016AE x BE x∴︒===+, 10.7()x m ∴≈,10.7 1.612.3()AD m ∴=+=,答:观星台最高点A 距离地面的高度约为12.3m ;(2) “景点简介”显示,观星台的高度为12.6m ,∴本次测量结果的误差为12.612.30.3m -=,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩,解得11530k b =⎧⎨=⎩, 115k =表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, 30b =表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为150.625÷=(元),则2250.820k =⨯=;(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),150160<,∴选择方案一所需费用更少.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具--三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长. 使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把MEN ∠三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A ,B ,O ,C 在同一直线上,EB AC ⊥,垂足为点B , AB OB =,EN 切半圆O 于F .求证: .【解答】解:已知:如图2,点A ,B ,O ,C 在同一直线上,EB AC ⊥,垂足为点B ,AB OB =,EN 切半圆O 于F .求证:EB ,EO 就把MEN ∠三等分,证明:EB AC ⊥,90ABE OBE ∴∠=∠=︒,AB OB =,BE BE =,()ABE OBE SAS ∴∆≅∆,12∴∠=∠,BE OB ⊥,BE ∴是E 的切线, EN 切半圆O 于F ,23∴∠=∠,123∴∠=∠=∠,EB ∴,EO 就把MEN ∠三等分. 故答案为:AB OB =,EN 切半圆O 于F ;EB ,EO 就把MEN ∠三等分.21.(10分)如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点A ,B ,且OA OB =,点G 为抛物线的顶点.(1)求抛物线的解析式及点G 的坐标;(2)点M ,N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点M ,N 之间(含点M ,)N 的一个动点,求点Q 的纵坐标Q y 的取值范围.【解答】解:(1)抛物线22y x x c =-++与y 轴正半轴分别交于点B ,∴点(0,)B c ,OA OB c ==,∴点(,0)A c ,202c c c ∴=-++,3c ∴=或0(舍去), ∴抛物线解析式为:223y x x =-++, 2223(1)4y x x x =-++=--+,∴顶点G 为(1,4);(2)2223(1)4y x x x =-++=--+,∴对称轴为直线1x =,点M ,N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M 的横坐标为2-或4,点N 的横坐标为6, ∴点M 坐标为(2,5)--或(4,5)-,点N 坐标(6,21)-,点Q 为抛物线上点M ,N 之间(含点M ,)N 的一个动点, 214Q y ∴-或215Q y --.22.(10分)小亮在学习中遇到这样一个问题:如图,点D 是BC 上一动点,线段8BC cm =,点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D 在BC 上的不同位置,画出相应的图形,测量线段BD ,CD ,FD 的长度,得到下表的几组对应值.操作中发现:①“当点D 为BC 的中点时, 5.0BD cm =”.则上表中a 的值是 5 ;②“线段CF 的长度无需测量即可得到”.请简要说明理由.(2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值(结果保留一位小数).【解答】解:(1)点D 为BC 的中点,∴BD CD =,5BD CD a cm ∴===,故答案为:5;(2)点A 是线段BC 的中点,AB AC ∴=,//CF BD , F BDA ∴∠=∠,又BAD CAF ∠=∠, ()BAD CAF AAS ∴∆≅∆,BD CF ∴=,∴线段CF 的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数CF y 的图象;由图象可得: 3.8BD cm =或5cm 或6.2cm 时,DCF ∆为等腰三角形.23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α,连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE .(1)如图1,当60α=︒时,DEB ∆'的形状为 等腰直角三角形 ,连接BD ,可求出BB CE'的值为 ;(2)当0360α︒<<︒且90α≠︒时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BEB E'的值. 【解答】解:(1)AB 绕点A 逆时针旋转至AB ',AB AB '∴=,60BAB '∠=︒, ABB '∴∆是等边三角形,60BB A '∴∠=︒,906030DAB BAD BAB ''∴∠=∠-∠=︒-︒=︒, AB AB AD '==, AB D ADB ''∴∠=∠, 18030752AB D ︒-︒'∴∠==︒, 180607545DB E '∴∠=︒-︒-︒=︒, DE B E '⊥,904545B DE '∴∠=︒-︒=︒, DEB '∴∆是等腰直角三角形.四边形ABCD 是正方形,45BDC ∴∠=︒,∴BDDC同理B DDE'= ∴BD B DDC DE'=, 45BDB B DC ''∠+∠=︒,45EDC B DC '∠+∠=︒,BDB EDC '∴=∠, BDB CDE '∴∆∆∽,∴BB BDCE DC'=.故答案为:等腰直角三角形,BB CE'= (2)①两结论仍然成立. 证明:连接BD ,AB AB '=,BAB α'∠=, 902AB B α'∴∠=︒-,90B AD α'∠=-︒,AD AB '=, 1352AB D α'∴∠=︒-,135(90)4522EB D AB D AB B αα'''∴∠=∠-∠=︒--︒-=︒, DE BB '⊥,45EDB EB D ''∴∠=∠=︒,DEB '∴∆是等腰直角三角形,∴DB DE'= 四边形ABCD 是正方形,∴BDCD=45BDC ∠=︒, ∴BD DB CD DE'=, EDB BDC '∠=∠,EDB EDB BDC EDB '∴∠+∠=∠+∠,即B DB EDC '∠=∠,∴△B DB EDC '∆∽,∴BB BDCE CD '= ②3BEB E='或1. 若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交A 于点B ',过点D 作DE BB '⊥交BB '的延长线于点E , 由(1)可知△B ED '是等腰直角三角形,B D E ''∴=,由(2)①可知BDB CDE '∆∆∽,且BB '=.∴11113BE B B B E BB B E B E B E '''+==+=+==='''. 若CD 为平行四边形的一边,如图3,点E 与点A 重合,∴1BEB E='. 综合以上可得3BEB E='或1.。
备考2023年中考数学一轮复习-图形的性质_三角形_勾股定理-单选题专训及答案勾股定理单选题专训1、(2019景.中考模拟) 如图,点A在双曲线y= (x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D、E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A . 2B .C .D .2、(2016保定.中考模拟) 如图,在4×4的正方形网格图中有△ABC,则sin∠ABC=()A .B .C .D .3、(2018吴中.中考模拟) 如图,△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1, l2, l3上,且l1, l2之间的距离为2,l2, l3之间的距离为3,则AC的长是()A .B .C .D .4、(2019乐清.中考模拟) 如图,将Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),点C关于y轴的对称点C′,当点C′恰好落在直线y=2x+b上时,则b的值是( )A . 4B . 5C . 5.5D . 65、(2018杭州.中考模拟) 如图,点P是矩形ABCD的边上一动点,矩形两边长AB,BC长分别为3和4,那么P到矩形两条对角线AC和BD的距离之和是()A .B .C .D . 不确定6、(2020呼和浩特.中考模拟) 如图,线段是⊙ 的直径,弦,垂足为,点是上任意一点,,则的值为()A .B .C .D .7、(2017含山.中考模拟) 己知⊙O的半径为,弦AB=2,以AB为底边,在圆内画⊙0的内接等腰△ABC,则底边AB边上的高CD长为()A . +1B . ﹣1C . 或﹣1D . +1或+18、(2019滨城.中考模拟) 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A .B .C .D .9、(2017昌乐.中考模拟) 如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A . 2B . 3C . 4D . 510、(2016新泰.中考模拟) 如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC 交AD于E,则AE的长是()A . 1.6B . 2.5C . 3D . 3.411、(2019河南.中考模拟) 如图,在△ABC中,∠C=90°,AC=8,BC=6,按下列步骤作图:①以点A为圆心,适当长为半径画弧,分别交AC,AB于点D,E;②分别以D,E为圆心,DE的长为半径画弧,两弧相交于点F;③作射线AF,交BC 于点G,则CG=()A . 3B . 6C .D .12、(2019河南.中考模拟) 如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB= ,∠C=120°,则点B′的坐标为()A . (3,)B . (3,- )C . (,)D . (,- )13、(2020萧山.中考模拟) 如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF 交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2 ,则MF的长是()A .B .C . 1D .14、(2019广州.中考真卷) 如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A .B .C . 10D . 815、(2020绍兴.中考模拟) 将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A .B .C .D .16、(2019海口.中考模拟) 如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A . 2B . 3C . 4D . 517、(2016宜宾.中考真卷) 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A .B . 2C . 3D . 218、(2016攀枝花.中考真卷) 如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A .B .C .D .19、(2018安顺.中考模拟) 如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,则点D′到AB的距离为()A . 6B . 6或8C . 7或8D . 6或720、(2018遵义.中考模拟) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是( )A .B .C .D .21、(2018遵义.中考模拟) 如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4 ,则△EFC 的周长为()A . 11B . 10C . 9D . 822、(2017乌鲁木齐.中考模拟) 如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;② = ;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE其中正确的是()A . ①②④B . ③④⑤C . ①③④D . ①③⑤23、(2020遵化.中考模拟) 边长为5的菱形ABCD按如图所示放置在数轴上,其中A 点表示数﹣2,C点表示数6,则BD=()A . 4B . 6C . 8D . 1024、(2020遵化.中考模拟) 一次函数y=kx﹣1的图像经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A . (﹣5,3)B . (1,﹣3)C . (2,2)D . (5,﹣1)25、(2019邯郸.中考模拟) 欧几里得的《原本》记载,形如x2+ax=b2的方程的图,解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD =.则该方程的一个正根是( )A . AC的长B . AD的长C . BC的长D . CD的长26、(2020昌吉.中考模拟) 如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC 边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A . 3cmB . 4cmC . 5cmD . 6cm27、(2020安庆.中考模拟) 我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=3,BC=13,则正方形ADOF的面积是()A . 6B . 5C . 4D . 328、(2020重庆.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k >0,x>0)的图象经过点B,则k的值为()A .B . 8C . 10D .29、(2020重庆.中考真卷) 如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A .B .C .D .30、(2020荆州.中考真卷) 如图,在正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是()A .B .C .D .勾股定理单选题答案1.答案:B2.答案:A3.答案:B4.答案:D5.答案:B6.答案:D7.答案:C8.答案:A9.答案:D10.答案:D11.答案:D12.答案:D13.答案:D14.答案:A15.答案:B16.答案:B17.答案:A18.答案:D19.答案:B20.答案:C21.答案:D22.答案:C23.答案:B24.答案:C25.答案:B26.答案:A27.答案:C28.答案:29.答案:30.答案:。
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-的相反数是()A. B. - C. D. -2.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A. 1.03×109B. 10.3×109C. 1.03×1010D. 1.03×10113.下列运算正确的是()A. 3x-2x=xB. 3x+2x=5x2C. 3x•2x=6xD. 3x÷2x=4.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 左视图会发生改变B. 俯视图会发生改变C. 主视图会发生改变D. 三种视图都会发生改变5.如图,平行四边形ABCD中,AB=3,BC=5.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. C. 1 D. 26.郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A. -=100B. -=100C. -=100D. -=1007.2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A. B. C. D.8.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=-1,-1的差倒数是=,如果a1=-2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a2020的值是()A. -2B.C.D.9.用三个不等式a>b,ab>0,>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A. 0B. 1C. 2D. 310.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A. 33°B. 36°C. 42°D. 49°二、填空题(本大题共5小题,共15.0分)11.计算:(-1)0+()-2=______.12.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______°.13.如果一元二次方程9x2-6x+m=0有两个不相等的实数根,那么m的值可以为______.(写出一个值即可)14.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为______.15.如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为______.三、解答题(本大题共8小题,共75.0分)16.已知分式1-÷(1+).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第______段上.(填写序号即可)17.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.分组6.2≤x<6.66.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621.实心球成绩在<这一组的是:,,,,,,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为______;②一分钟仰卧起坐成绩的中位数为______;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的女生代码A B C D E F G H实心球8.17.77.57.57.37.27.06.5一分钟仰卧起坐*4247*4752*49其中有名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.18.在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=______°时,四边形ADCF为正方形;②连接DF,当∠ACB=______°时,四边形ABDF为菱形.19.某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx,组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m……任务一:两次测量A,B之间的距离的平均值=______m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)20.如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上.(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O'A'B'.当这个函数的图象经过△O'A'B'一边的中点时,求a的值.21.《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,购买数量购买数量少于100个购买数量不少于100个种类A原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买种垃圾桶个,种垃圾桶个,则共需付款元;若购买种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点(不与端点B,C重合),则线段BQ 和线段PC的数量关系是______;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.23.如图,在平面直角坐标系中,直线y=-x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(-2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:-的相反数是.故选A.根据相反数的定义解答即可.本题考查了实数的性质,主要利用了相反数的定义,熟记概念是解题的关键.2.【答案】C【解析】解:103亿=10300000000=1.03×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是,故本选项不符合题意;故选:A.先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.本题考查了合并同类项法则,单项式乘以单项式和单项式除以单项式,能正确求出每个式子的值是解此题的关键.4.【答案】C【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,掌握三视图的概念是关键.5.【答案】D【解析】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∴∠BCE=∠AEC,∴BE=BC=5,∵AB=3,∴AE=BE-AB=2,故选:D.只要证明BE=BC即可解决问题.本题考查的是作图-基本作图和平行四边形的性质,熟知角平分线的作法是解答此题的关键.6.【答案】D【解析】解:设科普类图书平均每本的价格是x元,则可列方程为:-=100.故选:D.直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.此题主要考查了由实际问题抽象出分式方程,正确得出等量关系是解题关键.7.【答案】D【解析】解:根据题意画图如下:共有12种等可能的结果数,其中同时选中小李和小张的有2种,则同时选中小李和小张的概率为=;故选:D.根据题意画出树状图得出所有等可能的结果数和同时选中小李和小张的情况数,然后根据概率公式即可得出答案.此题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】A【解析】解:∵a1=-2,∴a2==,a3==,a4==-2,……∴这个数列以-2,,依次循环,∵2020÷3=673……1,∴a2020=a1=-2.故选:A.求出数列的前4个数,从而得出这个数列以-2,,依次循环,用2020除以3,再根据余数可求a2020的值.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.【答案】A【解析】【分析】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.由题意得出3个命题,由不等式的性质逐个判断真假即可.【解答】解:①若a>b,ab>0,则>;假命题:理由:∵a>b,ab>0,∴在不等式a>b的两边同除以ab,得,即<;②若ab>0,>,则a>b,假命题;理由:∵ab>0,>,∴在不等式>的两边同乘ab,得,即a<b;③若a>b,>,则ab>0,假命题;理由:∵a>b,>,∴a、b异号,即ab<0.∴组成真命题的个数为0个.故选:A.10.【答案】C【解析】【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和二次函数的性质,可以确定出对称轴与横轴交点的横坐标x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,从(18,0.136)和(72,0.150)两个点可以看出对称轴与横轴交点的横坐标x<,得x<45,从(18,0.136)和(54,0.125)两个点可以看出对称轴与横轴交点的横坐标x>,得x>36,∴36<x<45,即对称轴位于直线x=36与直线x=45之间,分析各选项可得只有42°符合,故选:C.11.【答案】5【解析】解:原式=1+4=5.故答案为:5.首先计算零次幂和负整数指数幂,然后再计算加法即可.此题主要考查了实数运算,零次幂和负整数指数幂,关键是掌握零指数幂:a0=1(a≠0),负整数指数幂:a-p=(a≠0,p为正整数).12.【答案】72【解析】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°-∠1,∠4=∠2,∴180°-∠1+∠2=∠ABC=108°,∴∠1-∠2=72°.故答案为:72.过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1-∠2的度数.考查了多边形内角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.13.【答案】0(答案不唯一)【解析】解:根据题意得Δ=(-6)2-4×9m>0,解得m<1,所以m可取0.故答案为0(答案不唯一).先利用判别式的意义得到Δ=(-6)2-4×9m>0,再解不等式得到m的范围,然后在此范围内取一个值即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.【答案】【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.15.【答案】或【解析】解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵点C是MN的中点,∴CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB∥MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=.②如图2中,当△AEF是等边三角形时,EF⊥AC,此时AE=EF=.综上所述,满足条件的EF的值为或.首先证明∠CAB=∠CBA=30°.分两种情形画出图形分别求解即可.本题考查矩形的性质,解直角三角形,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】解:(1)原式=1-÷=1-•=1-==;(2)②【解析】【分析】本题考查了数轴和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.(1)先算减法,再把除法变成乘法,孙乘法,最后算减法即可;(2)根据化简的结果和数轴得出即可.【解答】解:(1)见答案;(2)∵原式=1-,m为正整数且m≠1,∴m≥2,∴该分式的值应落在数轴的②处,故答案为:②.17.【答案】解:(1)①9;②45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.【解析】【分析】本题考查频数分布表、条形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.【解答】解:(1)①m=30-2-10-6-2-1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩按从小到大排列,第15个数和第16个数都为45,所以其中位数为45,故答案为:45;(2)①②见答案.18.【答案】(1)证明:∵∠BAC=90°,AD是BC边上的中线,∵AD=CD=BD,∵点E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB(AAS),∴AF=BD,∴AD=AF;(2)①45;②30.【解析】【分析】本题考查了正方形的判定,菱形的性质和判定,直角三角形的性质,正确的识别图形是解题的关键.(1)根据直角三角形的性质得到AD=CD=BD,根据全等三角形的判定和性质即可得到结论;(2)①根据菱形的判定定理得到四边形ADCF是菱形,求得∠DCF=90°,于是得到结论;②根据菱形的性质得到CD=CF,推出△DCF是等边三角形,得到DF=BD,于是得到结论.【解答】(1)见答案;(2)解:①当∠ACB=45°时,四边形ADCF为正方形.理由如下:∵AD=AF,∴AF=CD,∵AF∥CD,∴四边形ADCF是菱形,∴∠ACD=∠ACF=45°,∴∠DCF=90°,∴四边形ADCF是正方形,故答案为:45;②当∠ACB=30°时,四边形ABDF为菱形.理由如下:如图,∵四边形ADCF是菱形,四边形ABDF是平行四边形,∴CD=CF,∵∠ACB=∠ACF=30°,∴∠DCF=60°,∴△DCF是等边三角形,∴DF=CD,∴DF=BD,又AF∥BD,AF=BD,∴四边形ABDF为菱形.故答案为:30.19.【答案】解:任务一:6;任务二:设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=33°,∵tan33°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=26.5°,∵tan26.5°=,CE=,∵CD=CE-DE,∴-=6,∴x=13,∴GH=EG+EH=13+1.5=14.5,答:旗杆GH的高度为14.5米;任务三:旗杆底部不可能到达(答案不唯一).【解析】【分析】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.任务一:根据两次测量结果直接求平均值就可以得到答案;任务二:设EG=xm,解直角三角形即可得到结论;任务三:根据题意得到,未被采纳的原因为没有太阳光,或旗杆底部不可能到达等,答案不唯一,写出其中一条即可.【解答】解:任务一:=(5.9+6.1)=6,故答案为:6;任务二:见答案;任务三:见答案.20.【答案】解:(1)∵点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上,∴点A的坐标为(2,2),∴2=,得k=4,即反比例函数的表达式是y=;(2)当反比例函数y=过边A′B′的中点时,∵边A′B′的中点是(,3+a),∴3+a=,得a=1;当反比例函数y=过边O′A′的中点时,∵边O′A′的中点是(,1+a),∴1+a=,得a=3;由上可得,a的值是1或3.【解析】本题考查反比例函数的图象、待定系数法求反比例函数解析式、等边三角形的性质,解答本题的关键是明确题意,利用反比例函数的性质和数形结合的思想解答.(1)根据题意,可以求得点A的坐标,从而可以求得该反比例函数的解析式;(2)根据题意,可分两种情况,求出a的值,本题得以解决.21.【答案】解:(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据题意得,解得,答:A种垃圾桶的单价为50元,B种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200-a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200-a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.【解析】(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据“购买A 种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200-a)个,根据“B种垃圾桶不多于A种垃圾桶数量的”列出不等式并求得a的取值范围,再根据一次函数的性质解答即可.本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.22.【答案】【发现】BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ-∠BAP=∠BAC-∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP.【应用】如图3,在DF上取一点H,使DH=DE=8,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,要使EQ最小,则有HP最小,而点H是定点,点P是EF上的动点,∴当HM⊥EF(点P和点M重合)时,HP最小,即:点P与点M重合,EQ最小,最小值为HM,过点E作EG⊥DF于G,在Rt△DEG中,DE=8,∠EDF=60°,∴∠DEG=30°,∴DG=DE=4,∴EG=DG=4,在Rt△EGF中,∠FEG=∠DEF-∠DEG=75°-30°=45°,∴∠F=90°-∠FEG=45°=∠FEG,∴FG=EG=4,∴DF=DG+FG=4+4,∴FH=DF-DH=4+4-8=4-4,在Rt△HMF中,∠F=45°,∴HM=FH=(4-4)=2-2,即:EQ的最小值为2-2.【解析】【分析】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,解直角三角形,找出点P和点M重合时,EQ最小,最小值为HM是解本题的关键.【发现】先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;【探究】结论BQ=PC仍然成立,理由同【发现】的方法;【应用】先构造出△DEQ≌△DHP,得出EQ=HP,进而判断出要使EQ最小,当HM⊥EF (点P和点M重合)时,EQ最小,最后用解直角三角形即可得出结论.【解答】解:【发现】由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ-∠BAP=∠BAC-∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】见答案;【应用】见答案.23.【答案】解:(1)在抛物线y=ax2+bx+中,令x=0,得y=,即点C(0,),因为点C在直线y=-x+n上,将点C坐标代入直线方程得n=,则直线方程为y=-x+,令y=0,得x=3,则点B(3,0),则抛物线的表达式为:y=a(x-3)(x+2)=a(x2-x-6),代入点C坐标得-6a=,解得:a=-,故抛物线的表达式为:y=-x2+x+;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,则∠HPG=∠CBA=α,因为OC=,则OB=3,由勾股定理得CB=,则cosα==,设点P(m,-m2+m+),则点G(m,-m+),则PH=PG cosα=(-m2+m++m-)=-m2+m;(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(1,);②当点Q在x轴下方时,(Ⅰ)当∠BAQ=∠CAB时,△QAB∽△BAC,则=,由勾股定理得:AC=,AQ===10,过点Q作QH⊥x轴于点H,由△HAQ∽△OAC得:==,∵OC=,AQ=10,∴QH=6,AH=8,则OH=8-2=6,∴Q(6,-6);根据点的对称性,当点Q在第三象限时,符合条件的点Q(-5,-6);经检验(6,-6)或(-5,-6)均在抛物线上,符合题意,故点Q的坐标为:(6,-6)或(-5,-6);(Ⅱ)当∠BAQ=∠CBA时,△QAB∽△ABC,则,由勾股定理得:BC=,AQ===,过点Q作QH⊥x轴于点H,由△HAQ∽△OBC得:==,∵OC=,AQ=,∴QH=,AH=,则OH=-2=,∴Q(,-),根据点的对称性,当点Q在第三象限时,符合条件的点Q(-,-),而当x=时,y==-≠-,即点Q不在抛物线上,不符合题意,同理可得点Q(-,-)不符合题意,都舍去;综上,点Q的坐标为:(1,)或(6,-6)或(-5,-6).【解析】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、三角形相似等,其中(3)要注意分类求解,避免遗漏.(1)由抛物线方程求出点C(0,),则可得直线y=-x+,得点B(3,0),则可设抛物线的表达式为:y=a(x-3)(x+2)=a(x2-x-6),即可求解;(2)则PH=PG cosα=(-m2+m++m-)=-m2+m;(3)分当点Q在x轴上方、点Q在x轴下方两种情况,分别求解即可.。
2020年河南中考数学模拟示范试卷(一)一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣B.C.0D.22.据统计,截止2019年12月2日,“学习强国”河南学习平台注册用户已达到906.3万人,日活跃用户达到586.6万人,将数据“906.3万”用科学记数法表示为9.063×10n,则n 为()A.7B.4C.8D.63.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图4.某部队一军人在一次射击训练时,连续10次的成绩为6次10环,1次9环,3次8环,则该军人这10次射击的平均成绩为()A.9.6环B.9.5环C.9.4环D.9.3环5.方程=的解为()A.x=﹣5B.x=5C.x=D.x=﹣6.某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是()A.B.C.D.7.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°8.如图,在四边形ABCD中,对角线AC,BD相交于点O,添加下列条件后仍不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AO=CO B.AD=BC,AO=OCC.AD=BC,CD=AB D.S△AOD=S△COD=S△BOC9.在平面直角坐标系中,抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度10.如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0)B.(3,1)C.(﹣1,3)D.(2,4)二.填空题(共5小题)11.计算:|﹣3|﹣=.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.13.不等式组的整数解的个数为.14.如图,在扇形ABO中,∠AOB=90°,C是弧AB的中点,若OD:OB=1:3,OA=3,则图中阴影部分的面积为.15.如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=.三.解答题(共8小题)16.先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中x=,y=﹣.17.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理,描述和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:八年级10名学生的成绩:99,80,99,86,99,96,90,100,89,82.九年级10名学生的成绩在C组的数据:94,90,94.八、九年级抽取学生成绩统计表年级八年级九年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)上面图表中的a=,b=,c=.(2)扇形统计图中“D组”所对应的圆心角的度数为.(3)根据以上信息,你认为哪个年级的学生对“不忘初心,牢记使命”的内容掌握较好?说明理由.(一条即可)(4)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有多少人?18.如图,从A城市到B城市要翻过一座大山,现需要打通隧道,修建高铁方便两地出行,已知在A城市的北偏东30°方向和B城市的北偏西67°方向有一C地,A,C相距230km,求A,B两个城市之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.7,结果精确到1km)19.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元.请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价各为多少元?(2)若全校20个班每班配4副乒乓球拍和40个乒乓球,则在甲商店购买的费用为元,在乙商店的买的费用为元.(3)若全校20个班每班配4副乒乓球拍和m(m>100)个乒乓球,且只在一家商店购买,你认为在哪家商店购买更划算?20.如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.AD=CD.(1)求证:AC=BC;(2)若⊙O的半径为1,求△ABC的面积.21.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.22.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为;②CF,DC,BC之间的数量关系为(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式.(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.①若△BPN是直角三角形,求点N的坐标.②当∠PBN=45°时,请直接写出m的值.(注:当k1•k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)参考答案与试题解析一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣B.C.0D.2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:A、﹣<﹣1,故A正确;B、﹣>﹣1,故B错误;C、0>﹣1,故C错误;D、2>﹣1,故D错误;故选:A.2.据统计,截止2019年12月2日,“学习强国”河南学习平台注册用户已达到906.3万人,日活跃用户达到586.6万人,将数据“906.3万”用科学记数法表示为9.063×10n,则n 为()A.7B.4C.8D.6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将906.3万用科学记数法表示为:906.3万=9063000=9.063×106,故n=6.故选:D.3.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据三视图的意义,可得答案.【解答】解:若把正方体A向右平移到正方体P前面,俯视图发生变化,故选:C.4.某部队一军人在一次射击训练时,连续10次的成绩为6次10环,1次9环,3次8环,则该军人这10次射击的平均成绩为()A.9.6环B.9.5环C.9.4环D.9.3环【分析】根据题目中的数据和加权平均数的计算方法,可以求得该军人这10次射击的平均成绩.【解答】解:===9.3(环),即该军人这10次射击的平均成绩为9.3环,故选:D.5.方程=的解为()A.x=﹣5B.x=5C.x=D.x=﹣【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2=x﹣3,解得:x=﹣5,经检验x=﹣5是分式方程的解,故选:A.6.某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是()A.B.C.D.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,∴两个组恰好抽到同一个单元的概率是=,故选:C.7.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°【分析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:如图所示,∵AB∥CD,∴∠1=∠BAC=85°,又∵∠BAC是△ABE的外角,∴∠2=∠BAC﹣∠E=85°﹣30°=55°,故选:C.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,添加下列条件后仍不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AO=CO B.AD=BC,AO=OCC.AD=BC,CD=AB D.S△AOD=S△COD=S△BOC【分析】利用平行四边形的判定进行推理,即可求解.【解答】解:若∵AD∥BC,∴∠ADO=∠CBO,且AO=CO,∠AOD=∠BOC,∴△AOD≌△COB(AAS)∴AD=BC,∴四边形ABCD是平行四边形,故A选项不合题意;若AD=BC,CD=AB,∴四边形ABCD是平行四边形,故C选项不合题意;若S△AOD=S△COD=S△BOC,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,故D选项不合题意;故选:B.9.在平面直角坐标系中,抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度【分析】直接利用抛物线解析式得出变化前后对称轴进而得出变化规律.【解答】解:∵抛物线y=(x﹣5)(x+3),∴当y=0时,x=5或﹣3,∴此抛物线与坐标轴一定相交于(5,0)和(﹣3,0),∴其对称轴为:直线x=1,∵抛物线y=(x﹣3)(x+5),∴当y=0时,x=﹣5或3,∴此抛物线与坐标轴一定相交于(﹣5,0)和(3,0),∴其对称轴为:直线x=﹣1,∴抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是向左平移2个单位长度.故选:A.10.如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0)B.(3,1)C.(﹣1,3)D.(2,4)【分析】依据线段PO绕点P按顺时针方向以每秒90°的速度旋转,即可得到19秒后点O旋转到点O'的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O'的坐标.【解答】解:如图所示,∵线段PO绕点P按顺时针方向以每秒90°的速度旋转,每4秒一个循环,19=4×4+3,∴3×90°=270°,∴19秒后点O旋转到点O'的位置,∠OPO'=90°,如图所示,过P作MN⊥y轴于点M,过O'作O'N⊥MN于点N,则∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,点O'离x轴的距离为2﹣1=1,∴点O'的坐标为(3,1),故选:B.二.填空题(共5小题)11.计算:|﹣3|﹣=﹣1.【分析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=3﹣4=﹣1.故答案为:﹣1.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.13.不等式组的整数解的个数为6.【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解的个数.【解答】解:解不等式x﹣4≤0,得x≤4,解不等式1<,得x>﹣2,∴﹣2<x≤4,∴整数x有﹣1,0,1,2,3,4共6个.故答案为6.14.如图,在扇形ABO中,∠AOB=90°,C是弧AB的中点,若OD:OB=1:3,OA=3,则图中阴影部分的面积为π﹣.【分析】连接OC,过C作CE⊥OB于E,根据已知条件得到∠AOC=∠BOC=45°,推出△OCE是等腰直角三角形,求得CE=×3=,OD=1,根据三角形和扇形的面积公式即可得到结论.【解答】解:连接OC,过C作CE⊥OB于E,∵∠AOB=90°,C是弧AB的中点,∴∠AOC=∠BOC=45°,∴△OCE是等腰直角三角形,∵OD:OB=1:3,OA=3,∴CE=×3=,OD=1,∴图中阴影部分的面积=S扇形COB﹣S△COD=﹣=π﹣,故答案为:π﹣.15.如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=或.【分析】根据矩形的性质得到AD=BC=6,∠BAD=∠D=∠B=90°,根据勾股定理得到AE===5,设PD′=PD=x,则AP=6﹣x,当△APD′是直角三角形时,①当∠AD′P=90°时,②当∠APD′=90°时,根据相似三角形的性质列出方程,解之即可得到结论.【解答】解:∵在矩形ABCD中,AB=4,BC=6,∴AD=BC=6,∠BAD=∠D=∠B=90°,∵E是BC的中点,∴BE=CE=3,∴AE===5,∵沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,∴PD′=PD,设PD′=PD=x,则AP=6﹣x,当△APD′是直角三角形时,①当∠AD′P=90°时,∴∠AD′P=∠B=90°,∵AD∥BC,∴∠P AD′=∠AEB,∴△ABE∽△PD′A,∴=,∴=,∴x=,∴PD=;②当∠APD′=90°时,∴∠APD′=∠B=90°,∵∠P AE=∠AEB,∴△APD′∽△EBA,∴,∴=,∴x=,∴PD=,综上所述,当△APD′是直角三角形时,PD=或,故答案为:或.三.解答题(共8小题)16.先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中x=,y=﹣.【分析】原式利用完全平方公式,以及平方差公式,去括号合并得到最简结果,把x与y 的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2﹣x2+y2﹣2y2=3y2﹣4xy,当x=,y=﹣时,原式=3×(﹣)2﹣4××(﹣)=3×3+4××=9+4=13.17.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理,描述和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:八年级10名学生的成绩:99,80,99,86,99,96,90,100,89,82.九年级10名学生的成绩在C组的数据:94,90,94.八、九年级抽取学生成绩统计表年级八年级九年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)上面图表中的a=40,b=94,c=99.(2)扇形统计图中“D组”所对应的圆心角的度数为144°.(3)根据以上信息,你认为哪个年级的学生对“不忘初心,牢记使命”的内容掌握较好?说明理由.(一条即可)(4)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有多少人?【分析】(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、b、c的值;(2)根据扇形统计图中的数据可以得到扇形统计图中“D组”所对应的圆心角的度数;(3)根据表格中的数据,可以解答本题,注意理由写出一条即可;(4)根据统计图中的数据可以计算出九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人.【解答】解:(1)∵九年级10名学生的成绩在C组的数据:94,90,94,∴C所占的百分比为:3÷10×100%=30%,∴a%=1﹣20%﹣10%﹣30%=40%,即a的值为40,b=94,c=99,故答案为:40,94,99;(2)扇形统计图中“D组”所对应的圆心角的度数为360°×40%=144°,故答案为:144°;(3)九年级的学生对“不忘初心,牢记使命”的内容掌握较好,理由:九年级的中位数大于八年级的中位数,说明九年级的成绩好于八年级;(4)840×30%=252(人),答:九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有252人.18.如图,从A城市到B城市要翻过一座大山,现需要打通隧道,修建高铁方便两地出行,已知在A城市的北偏东30°方向和B城市的北偏西67°方向有一C地,A,C相距230km,求A,B两个城市之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.7,结果精确到1km)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出AD及BD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,∵C在A城市的北偏东30°方向,距离A地230km,∴∠ACD=30°,∴AD==115(km),CD=115(km),∵B城市的北偏西67°方向有一C地,∴∠BCD=67°,∴BD=CD•tan67°≈115×≈469(km).∴AB=AD+BD=115+469=584(km).答:A,B两个城市之间的距离为584km.19.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元.请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价各为多少元?(2)若全校20个班每班配4副乒乓球拍和40个乒乓球,则在甲商店购买的费用为4000元,在乙商店的买的费用为4320元.(3)若全校20个班每班配4副乒乓球拍和m(m>100)个乒乓球,且只在一家商店购买,你认为在哪家商店购买更划算?【分析】(1)设每副乒乓球拍的单价为x元,每个乒乓球的单价为y元,根据“2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据两商店的优惠政策结合总价=单价×数量,即可分别求出在甲、乙两商店购买所需费用;(3)根据两商店的优惠政策结合总价=单价×数量,即可用含m的代数式表示出在甲、乙两商店购买所需费用,分20m+3200<18m+3600、20m+3200=18m+3600及20m+3200>18m+3600,找出m的值或取值范围,此题得解.【解答】解:(1)设每副乒乓球拍的单价为x元,每个乒乓球的单价为y元,根据题意得:,解得:.答:每副乒乓球拍的单价为50元,每个乒乓球的单价为1元.(2)在甲商店购买的费用为20×4×50=4000(元),在乙商店的买的费用为20×90%×(4×50+1×40)=4320(元).故答案为:4000;4320.(3)在甲商店购买的费用为20×[4×50+1×(m﹣40)]=20m+3200(元),在乙商店的买的费用为20×90%×(4×50+1×m)=18m+3600(元).当20m+3200<18m+3600时,m<200;当20m+3200=18m+3600时,m=200;当20m+3200>18m+3600时,m>200.∴当100<m<200时,在甲商店购买划算;当m=200时,在甲、乙两商店购买总钱数相等;当m>200时,在乙商店购买划算.20.如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.AD=CD.(1)求证:AC=BC;(2)若⊙O的半径为1,求△ABC的面积.【分析】(1)连接OC,证得∠1=∠2,可得∠A=∠B,则结论得证;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】(1)证明:连接OC,∵AC为切线,C为切点,∴∠ACO=90°,即∠DCO+∠2=90°,又∵BD是直径,∴∠BCD=90°,即∠DCO+∠1=90°,∴∠1=∠2,∵AD=CD,OB=OC,∴∠A=∠2∠B=∠1,∴∠A=∠B,∴AC=BC;(2)解:由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形,∴∠A=∠B=∠1=∠2=30°,CD=AD=1,∴BC===,在Rt△BCD中,作CE⊥AB于点E,在Rt△BEC中,∠B=30°,∴CE=,BE=,∴S△ABC==.21.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.【分析】(1)先把A点坐标代入y=可求出k2的值,从而确定反比例函数解析式;再把B(4,m)代入反比例函数解析式求出m的值,可确定点B的坐标,然后利用待定系数法求一次函数解析式;(2)先根据一次函数的解析式确定M和N的坐标,根据以P,M,N三点为顶点的三角形是等腰三角形分三种情况讨论:①NP=NM;②MP=MN;③PN=PM;前两种直接根据线段的长得出点P的坐标,第三种根据两点的距离列方程可得结论.【解答】解:(1)把A(﹣2,8),B(4,m)代入反比例函数y=得:k2=﹣2×8=4m,∴k2=﹣16,m=﹣4,所以反比例函数解析式为y=﹣,且B(4,﹣4),把A(﹣2,8),B(4,﹣4)代入y=k1x+b得:,解得,所以一次函数解析式为y=﹣2x+4;(2)y=﹣2x+4,当x=0时,y=4,当y=0时,﹣2x+4=0,x=2,∴N(0,4),ON=4,M(﹣2,0),OM=2,①当NP=NM时,如图1,∵ON⊥PM,∴OP=OM=2,∴P(﹣2,0);②当MP=MN时,如图2,由勾股定理得:MN==2,∴P(2+2,0)或(2﹣2,0);③当PN=PM时,如图3,∵P是x轴上一动点,∴设P(x,0),∵PM=PN,∴x2+42=(2﹣x)2,∴x=3,∴P(﹣3,0),综上,点P的坐标是(﹣2,0)或(2+2,0)或(2﹣2,0)或(﹣3,0).22.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为CF⊥BC;②CF,DC,BC之间的数量关系为BC=DC+CF(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.【分析】(1)①由∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△F AC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)由∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示,想办法证明△ADH≌△DEM(AAS),推出EM=DH=3,DM=AH=2,推出CM=EM=3,即可解决问题;【解答】解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△F AC中,,∴△DAB≌△F AC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△F AC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△F AC中,,∴△DAB≌△F AC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式.(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.①若△BPN是直角三角形,求点N的坐标.②当∠PBN=45°时,请直接写出m的值.(注:当k1•k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)【分析】(1)把A点坐标代入直线解析式可求得k,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①分∠NBP=90°和∠BNP=90°两种情况讨论,即可求解;②有两解,N点在AB的上方或下方,作辅助线,构建等腰直角三角形,由∠PBN=45°得∠GBP=45°,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=t,根据AB=AH+BH=t+t=,可得BG和BN的解析式,分别与抛物线联立方程组,可得结论.【解答】解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,∴k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣x2+x+2;(2)①当∠BNP=90°时,且∠AMN=90°,∴∠BNP=∠AMN,∴BN∥AO,∴点N的纵坐标为2,∴2=﹣x2+x+2,∴x=0(舍去),x=,∴点N坐标(,2);当∠NBP=90°时,直线BN的解析式为:y=x+2,∴x+2=﹣x2+x+2,∴x=0(舍去),x=,∴点N(,)②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,∴,得AH=t,GA=t,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0),由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.。
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E 为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.12.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为(结82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E 为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'E F=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,... ∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为(结82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x 1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x 1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m ﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。
2020年河南中考数学一轮模拟卷一、选择题(每小题3分,共30分.下列小题有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.下列各组数中,互为倒数的是( ). A .2和12-B .3和13C .|3|-和13-D .4-和42.地球的表面积约为2510000000km ,将510000000科学记数法表示为( ) A .90.5110⨯B .85.110⨯C .95.110⨯D .75110⨯3.下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .4.下列运算正确的是( ). A .23523m m m += B .236m m m ⋅=C .33()m m -=-D .33()mn mn =5.不等式组22314x x x -≥-⎧⎨->-⎩的最大整数解是( ).A .1-B .0C .1D .26.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学参加了此次竞赛,他们的得分情况如下表所示:则全班40名同学的成绩的中位数和众数分别是( ). A .75,70B .70,70C .80,80D .75,807.将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果1130∠=︒,那么2∠的度数是( ).A .105︒B .100︒C .110︒D .115︒8.如图,PAB △与PCD △均为等腰直角三角形,点C 在PB 上,若ABC △与BCD △的面积之和为10,则PAB △与PCD △的面积之差为( ).A .5B .10C .15D .209.如图,将抛物线25y x x =-++的图象x 轴上方的部分沿x 轴折到x 轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线5y =-的交点个数为( ).A .1B .2C .3D .410.如图1,四边形ABCD 中,AB CD ∥,90B ∠=︒,AC AD =.动点P 从点B 出发沿折线B A D C ---方向以1单位/秒的速度运动,在整个运动过程中,BCP △的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( ).A .10B C .8D 二、填空题(每小题3分,共15分)11.化简:0(2+= .12.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为 .13.关于x 的一元二次方程2(2)210a x x --+=有两个不相等的实数根,则整数a 的最小值是 .14.如图,在边长为2的正方形ABCD 中,以点D 为圆心、AD 的长为半径画弧,再以BC 为直径画平圆.若阴影部分①的面积为1S ,阴影部分②的面积为2S ,则21S S -的值为 .15.如图,已知直线l AB ∥,lAB 之间的距离为2,C 、D 是直线l 两个动点(点C 在D 点的左侧),且5AB CD ==.连接AC 、BC 、BD ,将ABC △沿BC 折叠得到A BC '△.若以A '、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为 .三、解答题(本大题共8小题,计75分)16.先化简,再求值222211111x x x x x x x -++⋅---+,其中x 是方程230x x +-=的解. 17.某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类):并将调查结果绘制成如下不完整的统计图:根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有 人,其中选择B 类的人数有 人; (2)在房形统计图中,求E 类对应的扇形圆心角α的度数,并补全条形统计图中C 对应的直条; (3)若将A ,C ,D ,E 这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数. 18.如图,已知AB 是O e 的直径,PC 切O e 于点P ,过A 作直线AC PC ⊥交O e 于另一点D ,连接PA 、PB .(1)求证:AP 平分CAB ∠;(2)若P 是直径AB 上方半圆弧上一动点,O e 的半径为2,则①当弦AP 的长是 时,以A ,O ,P ,C 为顶点的四边形是正方形;②当»AP 的长度是 时,以A ,D ,O ,P 为顶点的四边形是菱形.19.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE 的倾斜角EAD ∠为22︒,长为2米的真空管AB 与水平线AD 的夹角为37︒,安装热水器的铁架竖直管CE 的长度为0.5米. (1)真空管上端B 到水平线AD 的距离;(2)求安装热水器的铁架水平横管BC 的长度.(结果精确到0.1米) (参考数据:3sin375≈︒,4cos375≈︒,3tan374≈︒,3sin 228≈︒,15cos2216︒≈,tan 2225︒≈)20.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为(0,3),点B 的坐标为(0,4)-,反比例函数(0)ky k x=≠的图象经过点C . (1)求反比例函数的解析式;(2)点P 是反比例函数在第二象限的图象上的一点,若PBC △的面积等于正方形ABCD 的面积,求点P 的坐标.21.振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元;若购进60本甲种图书和20本乙种图书共需1800元. (1)求甲、乙两种图书每本进价各多少元;(2)该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?22.已知:ABC △是等边三角形,点D 是ABC △(包含边界)平面内一点,连接CD ,将线段CD 绕C 逆时针旋转60︒得到线段CE ,连接BE ,DE ,AD ,并延长AD 交BE 于点P . (1)观察填空:当点D 在图1所示的位置时,填空: ①与ACD △全等的三角形是 ; ②APB ∠的度数为 .(2)猜想证明:在图1中,猜想线段PD ,PE ,PC 之间有什么数量关系?并证明你的猜想; (3)拓展应用:如图2,当ABC △边长为4,2AD =时,请直接写出线段CE 的最大值.23.如图,已知抛物线24y ax x c =++与x 轴交于点M ,与y 轴交于点N ,抛物线的对称轴与x 轴交于点P ,1OM =,5ON =. (1)求抛物线的表达式;(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB 、AM 、BM ,且AB AM ⊥.①AO 为何值时,ABM OMN △∽△,请说明理由;②若Rt ABM △中有一边的长等于MP 时,请直接写出点A 的坐标.2020年河南中考数学一轮模拟卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.【解答】解:A .2和12-不是倒数关系,故此选项错误; B .3和13是倒数关系,故此选项正确; C .|3|3-=,3和13-不是倒数关系,故此选项错误; D .4-和4不是倒数关系,故此选项错误; 故选:B .2.【解答】解:8510000000 5.110=⨯, 故选:B .3.【解答】解:A .是三棱锥的展开图,故选项错误; B .是三棱柱的平面展开图,故选项正确; C .两底在同一侧,故选项错误; D .是四棱锥的展开图,故选项错误. 故选:B .4.【解答】解:A .2m 与32m 不是同类项,不能合并,此选项错误; B .235m m m ⋅=,此选项错误; C .33()m m -=-,此选项正确; D .333()mn m n =,此选项错误; 故选:C .5.【解答】解:22314x x x -≥-⎧⎨->-⎩①②解不等式①得:2x ≤, 解不等式②得:1x >-,所以不等式组的解集为12x -<≤. 最大整数解为2. 故选:D .6.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:7080752+=; 70出现了13次,出现的次数最多,则众数是70; 故选:A .7.【解答】解:如图所示,∵AB CD ∥, ∴1130BEG ∠=∠=︒, 由折叠可得,1652BEF GEF BEG ∠=∠=∠=︒, ∵BE DF ∥,∴2180115BEF ∠=-∠=︒︒, 故选:D .8.【解答】解:依题意∵PAB △与PCD △均为等腰直角三角形 ∴PB PB =,PC PD = ∴221122PAB PCD S S PD PA -=-△△ 1()()2PA PD PA PD =+- 1()()2PB PC PA PD =-+ 1()2BC PA PD =+, 又∵111()10222ABC BCD S S BC PA BC PD BC PA PD +=⋅+⋅=⋅+=△△ ∴10PAB PCD S S -=△△ 故选:B .9.【解答】解:如图,∵25y x x =-++中,当0x =时,5y =,∴抛物线25y x x =-++与y 轴的解得为(0,5),∵将抛物线25y x x =-++图象中x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分不变, ∴新图象与y 轴的交点坐标为(0,5)-, ∴新图象与直线5y =-的交点个数是4个, 故选:D .10.【解答】解:当5t =时,点P 到达A 处,即5AB =,过点A 作AE CD ⊥交CD 于点E ,则四边形ABCE 为矩形, ∵AC AD =,∴12DE CE CD ==, 当40s =时,点P 到达点D 处,则11(2)54022S CD BC AB BC BC =⋅=⋅=⨯=, 则8BC =,AD AC ===故选:B .二、填空题(每小题3分,共15分)11.【解答】解:原式11=+-=故答案为12.23【解答】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432; ∴排出的数是偶数的率为:4263=. 故答案为:23. 13.3【解答】解:根据题意得20a -≠且2(2)4(2)10a ∆=---⨯>, 解得1a >且2a ≠, 所以整数a 的最小值为3. 故答案为:3. 14.342π- 【解答】解:由图形可知,扇形ADC 的面积+半圆BC 的面积+阴影部分①的面积-正方形ABCD 的面积=阴影部分②的面积.∴21S S -=扇形ADC 的面积+半圆BC 的面积-正方形ABCD 的面积2229021123602ππ⨯=+⨯-342π=-, 故答案为:342π-.15.或7【解答】解:设矩形的边长分别为a 和b . ①当90CBD ∠=︒时,如图1所示,∵四边形ABDC 是平行四边形,∴90BCA ∠=︒. ∴12552AB A CB C S S '==⨯⨯=△△.∴S 矩形10A CBD '=,即10ab =.又5BA BA '==,∴2225a b +=.∴222()245a b a b ab +=++=,∴a b +=②当90BCD ∠=︒时,如图2所示,因为四边形ABDC 是平行四边形,所以90CBA ∠=︒,所以2BC =,而5CD =,∴7a b +=.故答案为7.三、解答题(本大题共8小题,计75分)16.【解答】解:222211111x x x x x x x -++⋅---+2(1)11(1)(1)(1)1x x x x x x x -+=⋅-+--+ 111x x =-+ 1(1)x x x x +-=+ 1(1)x x =+ 21x x=+, 由方程230x x +-=,得23x x +=, ∴原式13=. 17.【解答】解:(1)参与本次问卷调查的学生16236%450÷=(人),选择B 类的人数45014%63⨯=(人),故答案为450,63;(2)E 类对应的扇形圆心角α的度数:360(136%14%20%16%4%)36︒⨯-----=︒,C 对应人数:45020%90⨯=(人), 补全如下(3)估计该校每天“绿色出行”的学生人数:3000(114%4%)2460⨯--=(人),答:估计该校每天“绿色出行”的学生人数2460人.18.【解答】(1)证明:∵PC 切O e 于点P ,∴OP PC ⊥,∵AC PC ⊥,∴AC OP ∥,∴13∠=∠,∵OP OA =,∴23∠=∠,∴12∠=∠,∴AP 平分CAB ∠;(2)解:①当90AOP ∠=︒,四边形AOPC 为矩形,而OA OP =,此时矩形AOPC 为正方形,AP ==;②当AD AP OP OD ===时,四边形ADOP 为菱形,AOP △和AOD △为等边三角形,则60AOP ∠=︒,»AP 的长度60221803ππ⋅⋅==. 当AD DP PO OA ===时,四边形ADPO 为菱形,AOD △和DOP △为等边三角形,则120AOP ∠=︒,»AP 的长度120241803ππ⋅⋅==.故答案为23π或43π.19.【解答】解:(1)过B 作BF AD ⊥于F .在Rt ABF △中, ∵sin BF BAF AB∠=, ∴6sin 2sin37 1.25BF AB BAF ︒=∠=≈=. ∴真空管上端B 到AD 的距离约为12米.(2)在Rt ABF △中, ∵cos AF BAF AB∠=,∴cos 2cos37 1.6AF AB BAF =∠=≈︒,∵BF AD ⊥,CD AD ⊥,又BC FD ∥,∴四边形BFDC 是矩形.∴BF CD =,BC FD =,∵0.5EC =米,∴0.7DE CD CE =-=米,在Rt EAD △中, ∵tan EDEAD AD ∠=, ∴0.725AD =,∴ 1.75AD =米,∴ 1.75 1.60.150.2BC DF AD AF ==-=-=≈∴安装热水器的铁架水平横管BC 的长度约为0.2米.20.【解笞】解:(1)∵点A 的坐标为(0,3),点B 的坐标为(0,4)-,∴7AB =,∵四边形ABCD 为正方形,∴点C 的坐标为(7,4)-, 代入ky x =,得28k =-, ∴反比例函数的解析式为28y x =-;(2)设点P 到BC 的距离为h .∵PBC △的面积等于正方形ABCD 的面积,∴21772h ⨯⨯=,解得14h =,∵点P 在第二象限,410P y h =-=, 此时,2814105P x -=-=,∴点P 的坐标为14,105⎛⎫- ⎪⎝⎭.21.【解答】(1)解:设每本甲种图书的进价为x 元,每本乙种图书的进价为y 元根据题意得4030170060201800x y x y +=⎧⎨+=⎩.解得2030x y =⎧⎨=⎩.答:每本甲种图书的进价为20元,每本乙种图书的进价为30元.(2)解:设该书店购进乙种图书a 本,购进甲种图书(120)a -本,根据题意得(2520)(120)(4030)950a a --+-≥.解得70a ≥.答:该书店至少购进70本.22.【解答】解:(1)①如图1中,∵ABC △是等边三角形,∴AB AC BC ==,60BAC ACB ABC ∠=∠=∠=︒,∵将线段CD 绕C 顺时针旋转60︒得到线段CE ,∴CE CD =,60DCE ∠=︒,∴DCE △是等边三角形,∴60DCE ∠=︒,∵60ACD DCB ∠+∠=︒,60BCE DCB ∠+∠=︒,∴ACD BCE ∠=∠,∴()ACD BCE SAS △≌△.故答案为:BCE △.②如图1中,∵ACD BCE △≌△,∴EBC DAC ∠=∠,∵60DAC BAD BAC ∠+∠=∠=︒,∴60PBC BAD ∠+∠=︒,∴180180606060APB ABC PBC BAP ∠=-∠+∠+∠=--︒︒=︒︒︒; 故答案为60︒.(2)结论:PD PE PC +=.理由:如图1中在PC 上取一点H ,使得EP EH =,∵60APB ∠=︒,∴120DPE ∠=︒,∴180DPE DCE ∠+∠=︒,∴C ,D ,P ,E 四点共圆,∴60CPE CDE ∠=∠=︒,∵EP EH =,∴EPH △是等边三角形,∴PH EP EH ==,60PEH DEC ∠=∠=︒,∴PED HEC ∠=∠,∵EP EH =,ED EC =,∴()PED HEC SAS △≌△,∴PD CH =,∴PC PH CH PE PD =+=+.(3)如图2中,∵4AC =,2AD =,∴4242CD -≤≤+,∴26CD ≤≤.由(1)可知,EC CD =,∴EC 的最大值为6.即当点D 在CA 的延长线上时,CE 取最大值为6.23.【解答】解:(1)∵1OM =,5ON =, ∴(1,0)M -,(0,5)N ,将(1,0)M -,(0,5)N 代入24y ax x c =++, 405a c c -+=⎧⎨=⎩,1a =-,5c =,抛物线的表达式为245y x x =-++;(2)①AO 为10时,ABM OMN △∽△.理由如下:设(0,)A m ,则OA m =,AM = ∵AM k m =,AB AM ⊥, ∴1AB k m =-,∴直线AB 表达式:1y x m π=+,∵抛物线245y x x =-++对称轴:直线2x =, ∴22,B m π⎛⎫-+ ⎪⎝⎭,∴AB =∵ABM OMN △∽△,∴15ABOMAM ON ==,15=,化简,得42991000m m --=,()()2210010m m -+=,∵210m +≠,∴21000m -=,∴10m =或10-(舍去)10AO =,即AO 为10时,ABM OMN △∽△. ②A的坐标为0,5⎛ ⎝⎭或或.∵(1,0)M -,(2,0)P ,∴2(1)3MP =--=Ⅰ.当3AB MP ==时,3AB ==,解得5m =或5-(舍去)Ⅱ.当3AM MP ==时,3AM ==,解得m =-(舍去)Ⅲ.当3BM MP ==时,3BM ==m =,故求得符合条件的A的坐标为0,5⎛⎫⎪ ⎪⎝⎭或或.。