大片段DNA的克隆
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
PCR技术(八):扩增较大片段DNA的PCR方法一般PCR方法在扩增大片段DNA时的局限性:通常所用的PCR方法都在两个方面有局限,即目标产物精确程度和合成片段的大小。
Pfu(Pyrococcus furiosus)DNA聚合酶,具有完整的3'外切酶校读活性(3'-editing-exonuclease),可以将每个循环中碱基的错配率由10*-4降到10*-3,从而提高PCR产物的准确性。
但它在扩增1.5-2.0kb片段时,效率比Klentaq l(Taq DNA聚酶N-末端缺失突变体,类似于E.coli DNA聚合酶IKlenow片段)或Ampli Taq(全长的Taq DNA聚合酶)等聚合酶差;在扩增5.0-7.0kb片段时亦不比各种形式的Taq DNA聚合酶(如Ampli Taq、Klentaq 1、Klentaq 5等N-末端缺失的变异株)有明显优越之处。
因而以往的P CR反应产物限制在5.0kb以内。
超出这一范围,PCR扩增反应效率将明显下降,同时产物会降解。
即使将延伸时间定为30分钟(10倍于通常所需)亦无改进。
利用两种DNA聚合酶进行较大片段DNA的扩增美国华盛顿大学医学院的Barnes WM等对前述问题进行了深入系统的研究,认为:PCR反应效率低最主要的原因是由于错配的碱基阻碍了延伸反应的正常进行,Pfu DNA聚合酶虽然可以通过“校读”功能纠正错配的碱基,但亦可能降解引物,尤其是在较长反应时间下;酶浓度较高时,反应效果更差。
因此必需将Pfu DNA聚合酶的浓度控制在较低状态,同时配合使用Klentaq l等DNA聚合酶,这样既可以有效地去除错配,又可以使Klentaq l等催化的延伸反应顺畅进行。
实验证实,按15:1 的比例混合使用Klentaq l和Pfu DNA聚合酶,引物大小为27-33nt,即可使反应有效进行。
当然,对于各种不同条件的反应,两种类型酶的最佳配比需要具体考虑。
一、CDNA基因克隆的基本原理CDNAplementary DNA)是DNA的互补序列,通过反转录酶将mRNA作为模板合成的一种DNA。
CDNA基因克隆是利用逆转录酶将mRNA逆转录合成cDNA,并通过PCR或其他方法将cDNA插入到质粒载体中,实现对目标基因的克隆。
二、CDNA基因克隆的流程1. RNA提取:首先需要从细胞中提取出总RNA,可以使用TRIzol等试剂进行RNA的提取纯化工作。
2. 反转录合成cDNA:将提取得到的RNA作为模版,利用逆转录酶进行cDNA的合成。
反转录反应通常包括RNA模版、随机引物、dNTPs、逆转录酶和缓冲液,并经过一系列温度循环反应,将mRNA 逆转录成cDNA。
3. cDNA纯化:为了避免反转录反应中产生的非特异性产物和杂质,需要对反转录反应产物进行纯化。
4. cDNA扩增:对cDNA进行PCR扩增,以获得目标基因的cDNA 片段。
PCR反应体系包括cDNA模板、引物、dNTPs、Taq聚合酶和缓冲液,通过一系列温度循环反应,扩增目标基因cDNA片段。
5. 酶切与连接:将PCR扩增得到的cDNA片段与质粒载体进行酶切,并在两者的黏端上连接。
6. 转化:将连接得到的质粒转化入大肠杆菌等细菌中,使其进行复制。
7. 筛选与鉴定:通过筛选和鉴定,选出携带目标基因cDNA片段的质粒,进行测序和分析,最终确定目标基因序列。
三、CDNA基因克隆的应用CDNA基因克隆技术已广泛应用于基因克隆、基因表达等多个领域。
在科研领域中,通过CDNA基因克隆技术可以方便快捷地获得目标基因的cDNA,实现对目标基因的研究和功能分析;在医药领域,CDNA基因克隆技术也被应用于基因治疗、蛋白表达等方面。
总结:CDNA基因克隆是一种重要的基因工程技术,通过反转录酶合成cDNA并将其插入到质粒中,可以方便地获取目标基因序列,具有广泛的应用前景。
掌握CDNA基因克隆的基本原理和流程对于开展相关实验研究具有重要意义。
大片段DNA的克隆通常超过3Kb以上的片段不太容易构建到载体上,成功率也是非常的低,根据笔者多年的经验成功克隆过5kb左右的基因片段,先将一些心得与大家分享:第一:PCR产物确保正确,扩增长片段往往会出现点突变,缺失插入突变,甚至是并非自己想要的片段,此时就要要求所用的TAQ酶是高质量高保真高前进能力的酶--推荐primerstar,并且保证所设计的引物的特异性,如果有错配的可以尝试不加MCS 的巢式引物,拿第一次PCR产物再用加MCS的引物去扩,可保证起特异性和效率性。
第二:连接要求有效,通常大片段与载体相连接由于空间位阻的原因不太容易得到阳性克隆,所以一定要保证以下几点-目的基因绝对的大量保证在载体的10-15倍摩尔比值;载体最好不要太小,可以直接尝试表达载体;最好使用过夜16度连接(24h以上),快速连接的效果对于大片段来讲并不占优势;连接酶可适当多加。
第三:转化要高效,由于大片段克隆到载体上通常加上载体会比较大,有时甚至超过10-20kb,这时会严重影响转化效率和细菌的生长速度,可以考虑电转或者,300-400ul的感受态细胞,严格按要求转化,使用DH5a时,可能消耗能量的原因,细菌长得很慢,可以考虑用TOP10,或DH5a多培养一段时间第四:不轻易放弃,长出来的菌因为质粒很大,去做菌落PCR不一定能检测出来阳性菌,可以考虑照样接种,次日提质粒酶切鉴定。
也可以多对比几个不同的载体,相信一定能做出来的。
第五:实在是做不出来,将其肢解成多个小片段,每个片段构建到T载上,最后拼接到一起。
第六:克隆大片段真核基因,要保证高质量的RNA,以确保完整的片段,并且需要高质量的逆转录酶,可以将RNA的量加到说明书的上限,保证足够浓度的完整的cDNA片段。
如果大片段的外显子不是很多,还可以考虑用基因组或BAC/YAC来调取目的基因。
克隆技术介绍张勋学号:160820216摘要克隆技术是生命科学技术领域里非常重要的部分,随着新时代的到来,克隆技术在人类生产生活中将发挥更加重要的作用。
人们享受着克隆技术带来的巨大好处,但与此同时,克隆技术对人类的可持续发展也提出了问题和挑战。
本文是通过从实质、方法、应用价值等方面对克隆技术进行一些介绍。
一、克隆技术实质1963 年J.B.S.Haldane在题为“人类种族在未来二万年的生物可能性”的演讲上采用“克隆(Clone)”的术语。
学家把人工遗传操作动物繁殖的过程叫“克隆”,这门生物技术叫“克隆技术”,其本身的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。
早在1938年,德国胚胎学家Speman 最早提出克隆设想。
1962年,英国剑桥大学的Gurdon进行了青蛙胚胎核移植,获得成年蛙。
在经历半个多世纪的研究后,终于在1996年的7月5日,在苏格兰罗斯林研究所中,随着用体细胞克隆出来的小羊多莉的诞生,哺乳动物克隆技术真正的来到我们面前。
克隆技术作为人类在生物科学领域取得的一项重大技术突破,反映了细胞核分化技术、细胞培养和控制技术的进步,它对于扩大良种动物群体,提高畜群的遗传素质和生产能力,拯救濒危动物等的方面而言是迄今为止最为理想手段。
克隆也可以理解为复制,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同,但大多行为思想不同。
时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡是来自同一个祖先,无性繁殖出的一群个体,也叫“克隆”。
这种来自同一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。
简单讲就是一种人工诱导的无性繁殖方式。
但克隆与无性繁殖是不同的。
克隆是指人工操作动物繁殖的过程,无性繁殖是指:不经过两性生殖细胞的结合由母体直接产生新个体的生殖方式。
植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20 世纪70 年代初DNA 体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中去。
PCR技术克隆目的基因全过程PCR(聚合酶链式反应)是一种体外的DNA合成技术,可以通过放大目的基因序列来克隆和检测DNA。
以下是PCR技术克隆目的基因全过程的详细解释。
1.设计引物:引物是用于扩增目的基因的短DNA片段。
引物分为前向引物和反向引物,其序列分别与目的基因的5’和3’末端相互匹配。
引物的设计应该尽量避免互相形成二聚体或发生引物间杂交。
一般情况下,前向引物和反向引物的长度约为18-30个碱基。
2.DNA模板的准备:DNA模板是PCR反应中的起始材料,可以是从细胞中提取的基因组DNA、cDNA或合成的DNA片段等。
DNA模板需要经过特定的处理步骤,如酶切或热变性,以解开DNA双链结构,使得引物能够与目的基因序列起始材料结合。
3.PCR反应体系的制备:PCR反应体系通常包含DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)、聚合酶、缓冲液和稀释的镁离子。
这些成分需要以特定的量和浓度配制在一起。
在反应体系中加入适量的聚合酶,可以保证PCR反应能够进行。
4.PCR扩增条件设定:PCR反应需要经历一系列的温度变化,这些温度的设定旨在创造一个适宜扩增引物的环境。
PCR反应通常包含三个主要的步骤:变性、退火和延伸。
变性步骤中,DNA模板的双链结构被加热到95°C,使其变性为两条单链DNA。
退火步骤中,反应体系温度降至碱基互补序列的温度,使引物能够与DNA模板结合。
延伸步骤中,反应体系温度升至适合聚合酶的工作温度,引物被复制形成两条新的双链DNA。
这三个步骤的温度和时间根据目的基因的特性和引物的设计来设定。
5.PCR扩增循环:PCR反应通常包含20-40个循环,每个循环包括变性、退火和延伸三个步骤。
每个循环都会使目的DNA序列扩增一倍。
PCR反应的循环数取决于目的基因的起始材料的丰度和所需扩增的DNA数量。
6.PCR产物检测:PCR扩增产物可以通过凝胶电泳等方法进行检测。
凝胶电泳可以将PCR扩增产物按照大小分离。
DNA的克隆过程概述DNA的克隆是指在体外将含有目的基因或其它有意义的DNA片段同能够自我复制的载体DNA连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究的分子操作的过程,因此DNA克隆又称分子克隆,基因操作或重组DNA技术。
DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。
一目的DNA片段的获得DNA克隆的第一步是获得包含目的基因在内的一群DNA分子,这些DNA分子或来自于目的生物基因组DNA或来自目的细胞mRNA逆转录合成的双链 cDNA分子。
由于基因组DNA较大,不利于克隆,因此有必要将其处理成适合克隆的DNA小片段,常用的方法有机械切割和核酸限制性内切酶消化。
若是基因序列已知而且比较小就可用人工化学直接合成。
如果基因的两端部分序列已知,根据已知序列设计引物,从基因组DN A 或cDNA中通过PCR技术可以获得目的基因。
二载体的选择基因工程的载体应具有一些基本的性质:1)在宿主细胞中有独立的复制和表达的能力,这样才能使外源重组的DNA片段得以扩增。
2)分子量尽可能小,以利于在宿主细胞中有较多的拷贝,便于结合更大的外源DNA片段。
同时在实验操作中也不易被机械剪切而破坏。
3)载体分子中最好具有两个以上的容易检测的遗传标记(如抗药性标记基因),以赋予宿主细胞的不同表型特征(如对抗生素的抗性)。
4)载体本身最好具有尽可能多的限制酶单一切点,为避开外源DNA片段中限制酶位点的干扰提供更大的选择范围。
若载体上的单一酶切位点是位于检测表型的标记基因之内可造成插入失活效应,则更有利于重组子的筛选。
DNA克隆常用的载体有:质粒载体(plasmid),噬菌体载体(phage),柯斯质粒载体(cosimid),单链DNA噬菌体载体(ssDNA phage ),噬粒载体(phagemid)及酵母人工染色体(YAC)等。
dna片段大小筛选方法
DNA片段大小筛选是分子生物学和遗传学研究中常见的实验步骤,用于分离和纯化特定大小的DNA片段。
以下是几种常见的DNA
片段大小筛选方法:
1. 凝胶电泳,这是最常见的DNA片段大小筛选方法之一。
DNA
样品在凝胶中移动,根据片段大小不同而分别迁移,从而实现分离。
琼脂糖凝胶电泳适用于较小的DNA片段(几百至几千碱基对),而
琼脂糖琼脂糖凝胶电泳适用于较大的DNA片段(几千至数十万碱基对)。
2. 聚丙烯酰胺凝胶电泳(PAGE),这种凝胶电泳方法适用于较
小的DNA片段(几十至几百碱基对),能够更精细地分离不同大小
的DNA片段。
3. 聚合酶链式反应(PCR)产物纯化,当需要纯化PCR扩增产
物中的特定大小DNA片段时,可以使用凝胶电泳分离后切割目标片段,然后进行凝胶回收或商业化学法纯化。
4. 质粒DNA纯化,在分子克隆实验中,需要纯化特定大小的质
粒DNA片段时,可以使用凝胶电泳或商业化学法进行纯化。
5. 尺寸排除色谱(SEC),这是一种高效液相色谱技术,可以用于分离不同大小的DNA片段。
SEC适用于较大的DNA片段(数千至数十万碱基对)的分离。
6. 磁珠分选法,利用磁珠悬浮液中的特异性结合,可以选择性地富集特定大小的DNA片段,适用于较小的DNA片段(几百至几千碱基对)的筛选。
以上是常见的DNA片段大小筛选方法,实验者可以根据实验需要和样品特性选择合适的方法进行操作。
在进行实验操作时,需要严格按照操作规程进行,并注意安全操作。
基因克隆的几种常用方法DNA实验 2009-11-18 12:03:11 阅读119 评论0字号:大中小订阅基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。
不论要揭示某个基因的功能,还是要改变某个基因的功能,都必须首先将所要研究的基因克隆出来。
特定基因的克隆是整个基因工程或分子生物学的起点。
本文就基因克隆的几种常用方法介绍如下。
1根据已知序列克隆基因对已知序列的基因克隆是基因克隆方法中最为简便的一种。
获取基因序列多从文献中查取,即将别人报道的基因序列直接作为自己克隆的依据。
现在国际上公开发行的杂志一般都不登载整个基因序列,而要求作者在投稿之前将文章中所涉及的基因序列在基因库中注册,拟发表的文章中仅提供该基因在基因库中的注册号(accession number),以便别人参考和查询。
目前,世界上主要的基因库有1)EMBL,为设在欧洲分子生物学实验室的基因库,其网上地址为/ebi-home.html;(2)Genbank,为设在美国国家卫生研究院(NIH)的基因库,其网上地址为/web/search/index.html;(3)Swissport和TREMBL,Swissport是一蛋白质序列库,其所含序列的准确度比较高,而TREMBL只含有从EMBL库中翻译过来的序列。
目前,以Genbank的应用最频繁。
这些基因库是相互联系的,在Genbank注册的基因序列,也可能在Swissport注册。
要克隆某个基因可首先通过Internet查询一下该基因或相关基因是否已经在基因库中注存。
查询所有基因文库都是免费的,因而极易将所感兴趣的基因从库中拿出来,根据整个基因序列设计特异的引物,通过PCR从基因组中克隆该基因,也可以通过RT-PCR克隆cDNA。
值得注意的是,由于物种和分离株之间的差异,为了保证PCR 扩增的准确性,有必要采用两步扩增法,即nested PCR。
根据蛋白质序列也可以将编码该蛋白质的基因扩增出来。
●实验操作■ Control DNA片段的克隆实验A)操作方法■一般DNA片段的克隆实验1)在微量离心管中配制下列DNA溶液,全量为5 μl。
1)在微量离心管中配制下列DNA溶液,全量为5 μl pGala-T Vector1 1μl pGala-T Vector1 1 μl Control Insert2 1μl Insert DNA3 0.1 pmol~0.3 pmol dH2O 3μl dH2O up to 5 μl 2)加入5 μl(等量)的Solution I。
2)加入5 μl(等量)的Solution I。
3)16℃反应30分钟。
3)16℃反应30分钟。
注:①室温(25℃)也能正常进行连接反应,但反应效率稍微降低。
注)①室温(25℃)也能正常进行连接反应,但反应效率稍微降低。
②5分钟也能正常进行连接反应,但反应效率稍微降低。
②5分钟也能正常进行连接反应,但反应效率稍微降低。
4)全量(10 μl)加入至100 μl JM109或其他感受态细胞中,冰中放置30分钟。
③长片段PCR产物(2 kbp以上)进行DNA克隆时,连接反应时间请延长5)42℃加热45秒钟后,再在冰中放置1分钟。
至数小时。
6)加入890 μl SOC或LB培养基,37℃振荡培养60分钟。
4)全量(10 μl)加入至100 μl JM109或其他感受态细胞中,冰中放置30分钟。
7)在含有X-Gal、IPTG、Amp的L-琼脂平板培养基上培养,形成单菌落。
计数白5)42℃加热90秒钟后,再在冰中放置1分钟。
色、蓝色菌落。
6)加入890 μl SOC培养基,37℃振荡培养60分钟。
8)挑选白色菌落,使用PCR法确认载体中插入片段的长度大小。
7)在含有X-Gal、IPTG、Amp 的L-琼脂平板培养基上培养,形成单菌落。
计数白B)结果色、蓝色菌落。
使用Control Insert时的连接/转化结果如下,使用的感受态细胞的转化效率为:8)挑选白色菌落,使用PCR法确认载体中插入片段的长度大小。
通常超过3Kb以上的片段不太容易构建到载体上,成功率也是非常的低,根据笔者多年的经验成功克隆过5kb左右的基因片段,先将一些心得与大家分享:
第一、PCR产物确保正确,扩增长片段往往会出现点突变,缺失插入突变,甚至是并非自己想要的片段,此时就要要求所用的TAQ酶是高质量高保真高前进能力的酶——推荐primerstar,并且保证所设计的引物的特异性,如果有错配的可以尝试不加MCS的巢式引物,拿第一次PCR产物再用加MCS的引物去扩,可保证起特异性和效率性。
第二、连接要求有效,通常大片段与载体相连接由于空间位阻的原因不太容易得到阳性克隆,所以一定要保证以下几点-目的基因绝对的大量保证在载体的10-15倍摩尔比值;载体最好不要太小,可以直接尝试表达载体;最好使用过夜16度连接(24h以上),快速连接的效果对于大片段来讲并不占优势;连接酶可适当多加。
第三、转化要高效,由于大片段克隆到载体上通常加上载体会比较大,有时甚至超过10-20kb,这时会严重影响转化效率和细菌的生长速度,可以考虑电转或者,300-400ul的感受态细胞,严格按要求转化,使用DH5a时,可能消耗能量的原因,细菌长得很慢,可以考虑用TOP10,或DH5a多培养一段时间
第四、不轻易放弃,长出来的菌因为质粒很大,去做菌落PCR不一定能检测出来阳性菌,可以考虑照样接种,次日提质粒酶切鉴定。
也可以多对比几个不同的载体,相信一定能做出来的。
第五、实在是做不出来,将其肢解成多个小片段,每个片段构建到T载上,最后拼接到一起。
第六、克隆大片段真核基因,要保证高质量的RNA,以确保完整的片段,并且需要高质量的逆转录酶,可以将RNA的量加到说明书的上限,保证足够浓度的完整的cDNA片段。
如果大片段的外显子不是很多,还可以考虑用基因组或BAC/Y AC来调取目的基因。
原文地址:/biotech/exp/molbio/DNA/2010/a818444974.html。