氢原子光谱规律性巴尔末公式33页PPT
- 格式:ppt
- 大小:5.66 MB
- 文档页数:33
一、巴尔末发现氢光谱规律1.背景:杨的干涉实验提供了测定波长的方法。
1814——>夫琅禾费对太阳光谱也进行了细心的检验。
1859——>基尔霍夫在研究碱金属光谱发现了铯和铷。
1868——>埃格斯特朗首先找到氢光谱的谱系。
2.瑞士科学家巴尔末(1825-1898)的贡献如何从浩繁的光谱资料中找出其中的规律?根据他当年的手稿和旁人的回忆,他可能是这样建立巴耳末公式的:①开始,巴耳末采用在谱线间寻找谐和关系的办法,后来感到这个不符合谱线的实际情况,随即放弃;②借助几何图形领悟到谱线波长趋近于某一极值,又从几何图形推测出平方关系,经反复校合,确定埃格斯特朗的数据最为精确,并找到了这个因子。
③后来在哈根拜希教授的帮助下,将建立的公式与紫外区的第五根氢谱线核对,证明也是正确的,才有把握公之于众。
巴尔末,瑞士的一位中学数学教师,在物理学教授哈根拜希教授的指点下将氢光谱的规律总结出来,于1884年6月25日正式发表:422-=n n B λ,n =3,4,5,……次年发表了论文。
1)由于埃氏对氢谱线的精确测量,提供了氢的可见光部分的四条谱线的精确波长,从中巴尔末提出了一个共同因子:B =3645.6×107毫米。
2)氢的前四根谱线的波长可以从这一基数,相继乘以系数9/5,4/3,25/21,9/8。
初看起来,这四个系数,没有构成规则数列,但如果将第二项与第四项分子、分母分别乘以4,则分子为3×3,4×4,5×5,6×6,而分母的完全平方相应的差4,这样就出现了422-n n 的规律。
由于巴尔末公式的发现,光谱成因的神秘大门被打开了,人们研究原子内部结构,又有了一个新的依据,此后光谱规律不断被揭示, 一门新的系统的科学——原子光谱形成了。
二、广义巴尔末公式巴尔末公式发表以后,不少科学家受到进一步的启发和鼓舞。
又有人从恒星的光中拍摄到氢光谱,在紫外区的一些光也可从巴尔末公式中将n 取7,8……等得到。
氢原子光谱课件引言氢原子光谱是量子力学和原子物理学领域的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。
本课件旨在介绍氢原子光谱的基本原理、实验观测和理论解释,帮助读者深入理解氢原子的能级结构和光谱特性。
一、氢原子的基本结构1.1电子轨道和量子数氢原子由一个质子和一个电子组成,电子围绕质子旋转。
根据量子力学的原理,电子在氢原子中只能存在于特定的轨道上,这些轨道被称为能级。
每个能级由主量子数n来描述,n的取值为正整数。
1.2能级和能级跃迁氢原子的能级可以用公式E_n=-13.6eV/n^2来表示,其中E_n 是第n能级的能量,单位为电子伏特(eV)。
当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,这个频率与能级之间的能量差有关。
二、氢原子光谱的实验观测2.1光谱仪和光谱图氢原子光谱可以通过光谱仪进行观测。
光谱仪将入射光分解成不同频率的光谱线,并将这些光谱线投射到感光材料上,形成光谱图。
通过观察光谱图,可以得知氢原子的能级结构和光谱特性。
2.2巴尔末公式实验观测到的氢原子光谱线可以通过巴尔末公式来描述,公式为1/λ=R_H(1/n1^21/n2^2),其中λ是光谱线的波长,R_H是里德伯常数,n1和n2是两个能级的主量子数。
巴尔末公式可以准确地预测氢原子光谱线的位置。
三、氢原子光谱的理论解释3.1玻尔模型1913年,尼尔斯·玻尔提出了氢原子的量子理论模型,即玻尔模型。
该模型假设电子在氢原子中只能存在于特定的轨道上,每个轨道对应一个能级。
当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子。
3.2量子力学解释1925年,海森堡、薛定谔和狄拉克等人发展了量子力学理论,为氢原子光谱提供了更为精确的解释。
量子力学认为,电子在氢原子中的状态可以用波函数来描述,波函数的平方表示电子在空间中的概率分布。
通过解薛定谔方程,可以得到氢原子的能级和波函数。
四、结论氢原子光谱是量子力学和原子物理学的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。