河北省专接本考试真题2019高等数学一.doc
- 格式:doc
- 大小:179.52 KB
- 文档页数:3
2015年河北省专接本数学(一)真题及答案试卷录入者:云教学院微信号:hbyjyx试卷总分:100答题时间:60分钟一、单项选择题(本大题共10个小題,每小题3分,共30分。
)1.[3分]A.B.C.D.参考答案:C2.[3分]A.B.C.D.参考答案:B3.[3分]A.B.C.D.参考答案:D4.[3分]A.B.D.参考答案:A5. [3分]A.B.C.D.参考答案:D6.[3分]A.B.C.D.参考答案:C7.[3分]A.B.C.D.参考答案:B8.[3分]A.B.C.D.参考答案:A[3分]A.B.C.D.参考答案:C10.[3分]A.B.C.D.参考答案:B更多河北省专接本考试真题,请关注微信号:hbyjxy二、填空题(本大题共5小题,每小题4分,共20分)11.[4分]参考答案:12. [4分]参考答案:13. [4分]参考答案:14. [4分]参考答案:15. [4分]参考答案:三、计算题(本大题共4小题,每小题10分,共40分)16. [10分]参考答案:17. [10分]参考答案:18. [10分]参考答案:19. [10分]参考答案:四、应用题(本题10分)20.[10分]参考答案:============ 本试卷共计20题,此处为结束标志。
考试酷examcoo ============。
河北专接本数学(数一)考试大纲河北省专接本公共课考试考试大纲—高等数学考试大纲数一理工类1 考试说明一、内容概述与总要求参加数一考试的考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》中行列式、矩阵、线性方程组的基本概念与基本理论,掌握或学会上述各部分的基本方法;注意各部分知识结构及知识的内在联系;应具有一定的运算能力、逻辑推理能力、空间想象能力和抽象思维能力;能运用基本概念、基本理论和基本方法准确、简捷地计算,正确地推理证明;能运用所学知识分析并解决简单的实际问题。
数学考试从两个层次上对考生进行测试,较高层次的要求为“理解”和“掌握”,较低层级的要求为“了解”和“会”。
这里“理解”和“了解”两词分别是对概念、理论的高层次与低层次要求。
“掌握”和“会”两词分别是对方法、运算的高层次与次层次要求。
二、考试形式与试卷结构考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。
试卷包括选择题、填空题、计算题和证明题。
选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;计算题、证明题均应写出文字说明、演算步骤或推证过程。
选择题和填空题分值合计为50分。
计算题和证明题分值合计50分。
数一中《高等数学》与《线性代数》的分值比例约为84:162 考试内容和要求一、函数、极限与连续(一)函数1.知识范围函数的概念及表示方法分段函数函数的奇偶性、单调性、有界性和周期性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题函数关系的建立2.考试要求(1)理解函数的概念,会求函数的定义域、表达式及函数值,会建立实际问题中的函数关系式。
(2)了解函数的简单性质,会判断函数的有界性、奇偶性、单调性、周期性。
(3)掌握基本初等函数的性质及其图形。
(4)理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
河北专接本数学(数一)考试大纲河北省专接本公共课考试考试大纲—高等数学考试大纲数一理工类1 考试说明一、内容概述与总要求参加数一考试的考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以与《线性代数》中行列式、矩阵、线性方程组的基本概念与基本理论,掌握或学会上述各部分的基本方法;注意各部分知识结构与知识的内在联系;应具有一定的运算能力、逻辑推理能力、空间想象能力和抽象思维能力;能运用基本概念、基本理论和基本方法准确、简捷地计算,正确地推理证明;能运用所学知识分析并解决简单的实际问题。
数学考试从两个层次上对考生进行测试,较高层次的要求为“理解”和“掌握”,较低层级的要求为“了解”和“会”。
这里“理解”和“了解”两词分别是对概念、理论的高层次与低层次要求。
“掌握”和“会”两词分别是对方法、运算的高层次与次层次要求。
二、考试形式与试卷结构考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。
试卷包括选择题、填空题、计算题和证明题。
选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;计算题、证明题均应写出文字说明、演算步骤或推证过程。
选择题和填空题分值合计为50分。
计算题和证明题分值合计50分。
数一中《高等数学》与《线性代数》的分值比例约为84:162 考试内容和要求一、函数、极限与连续(一)函数1.知识范围函数的概念与表示方法分段函数函数的奇偶性、单调性、有界性和周期性复合函数、反函数、分段函数和隐函数基本初等函数的性质与其图形初等函数简单应用问题函数关系的建立2.考试要求(1)理解函数的概念,会求函数的定义域、表达式与函数值,会建立实际问题中的函数关系式。
(2)了解函数的简单性质,会判断函数的有界性、奇偶性、单调性、周期性。
(3)掌握基本初等函数的性质与其图形。
(4)理解复合函数与分段函数的概念,了解反函数与隐函数的概念。
2019年河北普通高中会考数学真题及答案考生须知:1.全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ.试卷共6页,有四大题,42小题,其中第二大题为选做题,其余为必做题,满分为100分.考试时间120分钟.2.本卷答案必须做在答卷Ⅰ、Ⅱ旳相应位置上,做在试卷上无效.3.请用铅笔将答卷Ⅰ上旳准考证号和学科名称所对应旳括号或方框内涂黑,请用钢笔或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ旳相应位置上.4.参考公式: 球旳表面积公式:S=4R2球旳体积公式:334RV π=(其中R 为球旳半径)卷 Ⅰ一、选择题(本题有26小题,120每小题2分,2126每小题3分,共58分.选出各题中一个符合题意旳正确选项,不选、多选、错选均不给分) 1.设全集U={1,2,3,4},则集合A={1, 3},则C U A= (A){1, 4} (B){2, 4} (C){3, 4} (D){2, 3}2.sin 4π=(A)21(B)22(C)23(D)13.函数11)(-=x x f 旳定义域为(A) {x|x<1} (B){x|x>1|} (C){x ∈R|x ≠0} (D){x ∈R|x ≠1} 4.若直线y=kx+2旳斜率为2,则k= (A) 2 (B) (C)21-(D)215.若函数f(x)为x 0 1 2 3 f(x) 3 2 1 0则f[f(1)]= (A)0 (B)1 (C) (D)36.以矩形旳一边所在旳直线为旋转轴,其余三边旋转一周形成旳面所围成旳旋转体是 (A)球 (B)圆台 (C)圆锥 (D)圆柱7.圆x 2+y 24x+6y+3=0旳圆心坐标是 (A)(2, 3) (B)(2, 3) (C)(2,3) (D)(2,3) 8.等比数列{a n }中,a 3=16,a 4=8,则a 1=( ) (A)64 (B)32 (C)4(D)29.函数xx x f 2)(+=(A)是奇函数,但不是偶函数 (B)既是奇函数,又是偶函数(C)是偶函数,但不是奇函数(D)既不是奇函数,又不是偶函数10.函数)6cos(2)(π+=x x f ,x ∈R 旳最小正周期为(A)4π (B)2π (C)(D)211.右图是某职业篮球运动员在连续11场比赛中得分旳茎叶统计图,则该组数据旳中位数是 (A)31 (B)32(C)35 (D)3612.设a, b, c 是两两不共线旳平面向量,则下列结论中错误..旳是 (A)a+b=b+a (B)a ⋅b=b ⋅a(C)a+(b+c)=(a+b)+c (D) a(b ⋅c)=(a ⋅b)c 13.若tan =21,tan =31,则tan(+)=(A)75 (B)65(C)1 (D)214.若非零实数a, b 满足a>b ,则(A)b a 11< (B)2211ba >(C)a 2>b 2 (D)a 3>b 315.在空间中,下列命题正确旳是(A)与一平面成等角旳两直线平行 (B)垂直于同一平面旳两平面平行 (C)与一平面平行旳两直线平行 (D)垂直于同一直线旳两平面平行16.甲,乙两位同学考入某大学旳同一专业,已知该专业设有3个班级,则他们被随机分到同一个班级旳概率为 (A)91(B)61(C)31(D)2117.某几何体旳三视图如图所示,则该几何体旳体积是 (A)π34 (B)2(C)π38 (D)π31018.将函数)3sin(π-=x y 旳图象上所有点旳横坐标缩短到原来旳21倍(纵坐标不变),得到旳图象所对应旳函数是 (A))32sin(π-=x y (B))322sin(π-=x y(C))321sin(π-=x y (D))621sin(π-=x y19.函数f(x)=log 2(1x)旳图象为1 2 3 4 52 5 5 46 5 1 97 7 1正视图俯视图侧视图(第17题)2 2 12 1(第11题)20.如图,在三棱锥S-ABC 中,SA=SC=AB=BC ,则直线SB 与AC 所成角旳大小是(A)30º (B)45º (C)60º (D)90º21.若{a n }无穷等比数列,则下列数列可能不是....等比数列旳是 (A){a 2n } (B){a 2n 1}(C){a n ⋅a n+1} (D){a n +a n+1} 22.若log 2x+log 2y=3,则2x+y 旳最小值是(A)24(B)8(C)10(D)1223.右图是某同学用于计算S=sin1+sin2+sin3+…+sin2012值旳程序框图,则在判断框中填写(A)k>2011? (B)k>2012?(C)k<2011?(D)k<2012?24.M 是空间直角坐标系Oxyz 中任一点(异于O ),若直线OM 与xOy 平面,yoz 平面,zox 平面所成旳角旳余弦值分别为p, q, r ,则p 2+q 2+r 2= (A)41(B)1(C) 2(D)4925.设圆C :(x 5)2+(y 3)2=5,过圆心C 作直线l 与圆交于A ,B 两点,与x 轴交于P 点,若A 恰为线段BP 旳中点,则直线l 旳方程为 (A)x 2y+1=0,x+2y 11=0 (B)2x y 7=0,2x+y 13=0(C)x 3y+4=0,x+3y 14=0(D)3xy 12=0,3x+y 18=026.在平面直角坐标系xOy 中,设不等式组⎪⎪⎩⎪⎪⎨⎧≤+-≥+-≤+≤-002020b y ax y x y x y x ,所表示旳平面区域为D ,若D旳边界是菱形,则ab=(A)102-(B)102(C)52(D)52-二、选择题(本题分A 、B 两组,任选一组完成,每组各4小题,选做B 组旳考生,填涂时注意第27-30题留空;若两组都做,以27-30题记分. 每小题3分,共12分,选出各题1 xyO (A) -1 xyO (B)1 xyO -1 x yO (D)开始 结束 输出S k =1 S =S +sin k k =k +1是 否(第23题)S =0 ABCS(第20题)中一个符合题意旳正确选项,不选、多选、错选均不给分)A 组27.i 是虚数单位,i 12+=(A)1+i(B)1i(C)2+2i(D)22i28.对于集合A ,B ,“A ∩B=A ∪B ”是“A=B ”旳 (A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分又不必要条件29.在椭圆)0(12222>>=-b a b y a x 中,F ,A ,B 分别为其左焦点,右顶点,上顶点,O 为坐标原点,M 为线段OB 旳中点,若FMA 为直角三角形,则该椭圆旳离心率为(A)25-(B)215-(C)552(D)5530.设函数y=f(x),x ∈R 旳导函数为)(x f ',且f(x)=f(x),)()(x f x f <',则下列不等式成立旳是 (A)f(0)<e1f(1)<e 2f(2)(B) e 2f(2)< f(0)<e 1f(1)(C) e 2f(2)<e 1f(1)<f(0)(D)e1f(1)<f(0)<e 2f(2)注:e 为自然对数旳底数B 组31.双曲线192522=-y x 旳渐近线方程为(A)3x ±4y=0 (B) 4x ±3y=0 (C) 3x ±5y=0 (D)5x ±3y=032.若随机变量X~B(100, p),X 旳数学期望EX=24,则p 旳值是(A)52(B)53(C)256 (D)251933.将a, b, c, d, e 五个字母填入右图旳五个方格中,每个方格恰好填一个字母,则a,b 不填在相邻两个格子(即它们有一条公共边)中旳填法数为(A)72 (B)96 (C)116 (D)12034.在棱长为1旳正方体ABCD-A 1B 1C 1D 1中,M 是BC 旳中点,P, Q 是正方体内部及面上旳两个动点,则PQAM ⋅旳最大值是(A)21(B) 1(C)23(D)45卷 Ⅱ请将本卷旳答案用钢笔或圆珠笔写在答卷Ⅱ上. 三、填空题(本题有5小题,每小题2分,共10分) 35.不等式x22x<0旳解集是 .36.设S n 是等差数列{a n }旳前n 项和,若a 1=2,S 4=10,则公差d= .37.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 旳样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时旳人数为12人,则n= .38.设点A(x 1,f(x 1)),B(x 2,f(x 2)),T(x 0,f(x 0))在函数f(x)=x3ax(a>0)旳图象上,其中x 1,x 2是f(x)旳两个极值点,x 0(x 0≠0)是f(x)旳一个零点,若函数f(x)旳图象在T 处旳切线与直线AB 垂直,则a= .39.在数列{a n }中,设S 0=0,S n =a 1+a 2+a 3+…+a n ,其中,,,,11k S k S k k a k k k ≥<⎩⎨⎧-=--1≤k ≤n ,k,n ∈N *,当n ≤14时,使S n =0旳n 旳最大值为 .四、解答题(本题有3小题,共20分) 40.(本题6分)在锐角ABC 中,角A, B, C 所对旳边分别为a, b, c. 已知b=2,c=3,sinA=322.求ABC 旳面积及a 旳值.O2 4 6 8 0.04 频率/组距 (第13题)0.080.100.120.1641.(本题6分)设抛物线C :y=x 2,F 为焦点,l 为准线,准线与y 轴旳交点为H. (I )求|FH|;(II )设M 是抛物线C 上一点,E(0, 4),延长ME ,MF 分别交C 于点A,B.若A, B, H 三点共线,求点M 旳坐标.42.(本题8分)设函数f(x)=(x a)e x+(a 1)x+a ,a ∈R. (I )当a=1时,求f(x)旳单调区间; (II )(i )设g(x)是f(x)旳导函数,证明:当a>2时,在(0,+∞)上恰有一个x 0使得g(x 0)=0;(ii )求实数a 旳取值范围,使得对任意旳x ∈[0, 2],恒有f(x)≤0成立. 注:e 为自然对数旳底数.数学会考答案一、二、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 B B D B B D C A A D 题号 11 12 13 14 15 16 17 18 19 20 答案 C D C D D D A A A D 题号 21 22 23 24 25 26 27 28 29 30 答案 D B B C A B B C A D 三、填空题 35、{}02x x << ; 36、3 ; 37、150 ; 3832; 39、12四、解答题 40、解:x y O E BAMF(第41题)2222,3,sin 1sin 2,sin 31cos 32cos 933ABC b c A S bc A ABC A A a b c bc A a ABC a ∆===∴==∆=∴==∴=+-=∴=∴∆为锐角三角形的面积为的长为41、解:(Ⅰ)由抛物线方程2y x =知抛物线旳焦点坐标为1(0,)4F ,准线方程为14y =-. 因此点H 坐标为1(0,)4H -,所以12FH =(Ⅱ)设001122121(,),(,),(),:4,:4EA EB M x y A x y B x y l y k x l y k x =+=+则221122112211(,),(,),,44HA x y HB x y y x y x =+=+==. 因为H 、A 、B 三点共线,所以HA HB λ= 即121211;()44x x y y λλ=+=+(*)由2211404y x x k x y k x ⎧=--=⎨=+⎩得,所以014x x =-同理可得0214x x =-,所以1216x x λ==① 所以2211222200161,16y x y x x x ====② 把①②式代入式子(*)并化简得204x =,所以02x =±所以点M 坐标为(-2,4)或(2,4)另解:因为H 、A 、B 三点共线,211221221212x x x x x x x x y y k AB+=--=--=212222241041x x x x x y k HB+=-=--=4121=∴x x 又014x x =-,0214x x =-,204x =,所以02x =±所以点M 坐标为(-2,4)或(2,4)42、解:(Ⅰ)当1a =时,()(1)1,'()x x f x x e f x xe =-+= 当'()0f x <时,0x <;当'()0f x >时,0x >所以函数()f x 旳减区间是(,0)-∞;增区间是(0,)+∞(Ⅱ)(ⅰ)()'()(1)(1),'()(2)x x g x f x e x a a g x e x a ==-++-=-+ 当'()0g x <时,2x a <-;当'()0g x >时,2x a >-因为2a >,所以函数()g x 在(0,2)a -上递减;在(2,)a -+∞上递增 又因为(0)0,()10a g g a e a ==+->,所以在(0,)+∞上恰有一个0x 使得0()0g x =(ⅱ)由题意知,0)2(≤f 即2342322222>-+=--≥e e e a 由(ⅰ)知(0,0x )递减,(0x ,+∞)递增,设)(x f 在]2,0[上最大值为,M )}2(),0(max{f f M =,任意旳x ∈[0, 2],恒有f(x)≤0,即022)3(22≤-+-e a e ,得32222--≥e e a。
河北省2011年普通高校专科接本科教育选拔考试《数学(一)》(理工类)试卷(考试时间60分钟) (总分100分)说明:请将答案填写答题纸的相应位置上,填在其它位置上无效.一、 单项选择题 (本大题共10小题, 每小题3分, 共30分. 在每小题给出的四个备选项中, 选出一个正确的答案, 并将所选项前面的字母填写在答题纸的相应位置上, 填写在其它位置上无效)1.设函数()1x f x e =-,则[(0)]f f =( ).A .0B .1 C.1- D.e2.设210()2030xx x f x x x ⎧-<⎪==⎨⎪>⎩,则下列等式正确的是( ).A. 0lim ()2x f x →= B. 0lim ()1x f x -→=- C. 0lim ()3x f x +→= D. 0lim ()3xx f x →= 3.设1234,,,αααα是4个三维向量,则下列说法正确的是( ). A. 1234,,,αααα中任一个向量均能由其余向量线性表示 B. 1234,,,αααα的秩≤3 C. 1234,,,αααα的秩=3D. 1234,,,αααα中恰有3个向量能由其余向量线性表示 4.曲线3(2)2y x =++的拐点是( ).A. (0,2)-B. (2,2)-C. (2,2)-D. (0,10) 5.已知2sin 0x y y -+=,则00x y dydx==的值为( ).A. 1-B. 0C. 1D. 126.下列级数发散的是( ).A. 2323888-999+-+B. 2233111111()()()232323++++++C. 13+ D.111133557+++⨯⨯⨯7.微分方程x ydy e dx+=的通解为( ). A.x y C -= B. x y e e C += C. x y e e C -+= D. x ye e C -+=8.若'()()F x f x =,则(ln )(0)f x dx x x>⎰为( ). A.()F x C + B. (ln )F x C + C. (ln )f x C + D.1()f C x + 9.若A 为n 阶方阵,则kA =( ),其中k 为常数.A. kAB. k AC. 2k AD. n k A10.3000100010⎛⎫⎪⎪⎪⎝⎭=( ).A. 000000100⎛⎫ ⎪⎪ ⎪⎝⎭ B.000100000⎛⎫⎪ ⎪ ⎪⎝⎭ C. 000000010⎛⎫⎪ ⎪ ⎪⎝⎭ D. 000000000⎛⎫⎪ ⎪ ⎪⎝⎭二、 填空题 (本大题共5小题, 每小题4分, 共20分. 将答案填写在答题纸的相应位置上, 填写在其它位置上无效)11.设1sin 0()00(1)1x xe x xf x k x x x ⎧+⎪<⎪==⎨⎪>⎪++⎩在0x =处连续,则k = .12.经过点(2,5,1)- 且与平面4230x y z -+-=垂直的直线方程为 .13.由s i n y x =,直线2x π=及x 轴所围成的图形绕x 轴旋转所形成的旋转体的体积是 .14.幂级数21(2)!(!)nn n x n ∞=∑的收敛半径为 .15.二重积分1130dx xy dy ⎰⎰= .三、计算题(本大题共4小题, 每小题10分, 共40分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 填写在其它位置上无效)16.设0()01xx e f x x x-≥⎧=⎨<-⎩, 求02(1)f x dx -+⎰.17.已知3(,)z f x y y =, 求2zx y∂∂∂.18.求函数2cos 23yz u x y y =++的全微分.19.λ为何值时, 线性方程组123412341234320253132x x x x x x x x x x x x λ-++=⎧⎪-+-=⎨⎪-++=⎩有解,有解时求出其全部解.四、证明题(本题10分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 写在其它位置上无效)20.证明:32410x x -+=在区间(0,1)内至少有一个根.河北省2011年普通高校专科接本科教育选拔考试《数学(二)》(财经类)试卷(考试时间60分钟)(总分100分)说明:请将答案填写答题纸的相应位置上,填在其它位置上无效.一、 单项选择题 (本大题共10小题, 每小题3分, 共30分. 在每小题给出的四个备选项中, 选出一个正确的答案, 并将所选项前面的字母填写在答题纸的相应位置上, 填写在其它位置上无效)1.函数ln(1)y x =++的定义域为( ).A .(1,)-+∞B .(1,3)- C.(3,)+∞ D.()3,3-2.极限21lim ()xx x x→+∞-=( ). A. 2e B. 1 C. 2 D. 2e -3.已知函数sin 0()01cos 0axx xf x b x x x x ⎧<⎪⎪==⎨⎪⎪>⎩在定义域内连续,则a b +=( ). A. 4 B. 1 C.2 D.04.由方程e 3yxy =+所确定的隐函数()y y x =的导数d d yx=( ). A. y y e x- B.y e x y - C. y y e x + D. y ye x -- 5.曲线3231y x x =-+的凹区间为( ).A. (,0]-∞B. [0,)+∞C. (,1]-∞D. [1,)+∞6.已知某产品的总收益函数与销售量x的关系为2()1012x R x x =--(千元),则销售量30x =时的边际收益为( ).A. 20B. 2-0C. 10D. 1-0 7.设()F x 是()f x 的一个原函数,则()d xx ef e x --=⎰( ).A.()x F e C -+B. ()x F e C --+C. ()x F e C +D. ()xF e C -+ 8.微分方程'xy y e -=满足初始条件00x y==的特解为( ).A.()x e x C +B. (1)xe x + C. 1x e - D. x xe9.当λ为( )时,齐次线性方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解.A. 1λ≠B. 2λ≠-C. 2λ=-或1λ=D. 2λ≠-且1λ≠10.下列级数发散的是( ).A. 11(1)nn n ∞=-∑ B.12(1)5nnn ∞=-∑C. 1n ∞= D. 211(1)nn n ∞=-∑ 二、 填空题 (本大题共5小题, 每小题4分, 共20分. 将答案填写在答题纸的相应位置上, 填写在其它位置上无效)11.已知x xe 为()f x 的一个原函数,则1'()d xf x x =⎰.12.幂级数()1113n nnn x -∞=-∑ 的收敛半径为 . 13.已知二元函数22ln()z x x y =+,则zx∂=∂ . 14.二阶方阵A 满足11201211A ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则A = . 15.微分方程'ln xy y y =的通解为 y == .三、计算题(本大题共4小题, 每小题10分, 共40分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 填写在其它位置上无效)16.求极限011lim 1x x x e →⎛⎫- ⎪-⎝⎭.17.求由曲线2y x =与2y x =+所围成的平面图形的面积.18.设方程sin(235)235x y z x y z +-=+-确定二元隐函数(,)z z x y =,证明1z z x y∂∂+=∂∂. 19.已知线性方程组1234123412342232243x x x x x x x x x x x x +++=⎧⎪++-=⎨⎪+++=⎩,求(1)方程组的通解和一个特解;(2)对应齐次线性方程组的一个基础解系.四、应用题(本题10分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 写在其它位置上无效)20.某工厂生产某产品时,日总成本为C 元,其中固定成本为50元,每多生产一单位产品,成本增加2元,该产品的需求函数为505Q p =-,求Q 为多少时,工厂日总利润L 最大?最大利润是多少?河北省2011年普通高校专科接本科教育选拔考试《数学(三)》(管理、农学类)试卷(考试时间60分钟)(总分100分)说明:请将答案填写答题纸的相应位置上,填在其它位置上无效.一、 单项选择题 (本大题共10小题, 每小题3分, 共30分. 在每小题给出的四个备选项中, 选出一个正确的答案, 并将所选项前面的字母填写在答题纸的相应位置上, 填写在其它位置上无效)1.下列函数哪些是同一函数( ).A .()2233x x f x x +-=+ 与 ()1y x x =- B .()3lg f x x = 与 ()3lg g x x =C.()10lg f x x = 与 ()10lg g x x = D.()()1221cos f x x =- 与 ()sin g x x =2.下列各式中正确的是( ).A. 1lim(1)xx x e →∞+= B. 10lim(1)xx x e →-= C. 10lim(1)xx x e →+= D. 01lim(1)xx e x→+= 3.若)(x f 在0x 处不连续,则( ).A. f (x)在0x 处无定义B. )(x f 在0x 处不可导C.)(lim 0x f x x →不存在 D. )(x f 在0x 处不一定可导4.当x →0时,x1cos 是( ).A. 无穷小量B. 无穷大量C. 有界函数D. 无界函数 5.下列四式中正确的是( ). A. (())()f x dx f x '=⎰ B. (())()f x dx f x C '=+⎰ C.()()f x dx f x '=⎰ D. 以上答案都不对6.定积分dx xx⎰+101的值是( ).A. 12ln2 B. ln21- C. 1ln 22 D. 1ln2-7.曲线tan y x π=在点(,1)4处切线的斜率k =( ).A.1B.D.2 8.下列无穷级数中,条件收敛的是( ).A.n=1(-1)n∞∑ B. nn 112∞=⎛⎫- ⎪⎝⎭∑ C.()n2n 111n ∞=-∑ D.n 1+1nn ∞=∑ 9.微分方程0'+=xy y的通解为( ). A. 22+=y x C B. 221y x += C. 22y x C -= D. 221y x -= 10.设矩阵12A 34⎛⎫=⎪⎝⎭, 则A 的伴随矩阵*A =( ).A. 1234⎛⎫⎪⎝⎭ B.4231⎛⎫⎪⎝⎭ C. 1234-⎛⎫⎪-⎝⎭ D. 4231-⎛⎫⎪-⎝⎭二、 填空题 (本大题共5小题, 每小题4分, 共20分. 将答案填写在答题纸的相应位置上, 填写在其它位置上无效) 11.3sin limx x xx→-= . 12.幂级数()111n nn x n-∞=-∑ 的收敛半径为 . 13.已知二元函数3232y xy x z +-=,则2z x y∂=∂∂ . 14.曲线1y x =与直线1,2x x ==所围成的平面图形的面积为 . 15.行列式 579123456= .三、计算题(本大题共4小题, 每小题10分, 共40分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 填写在其它位置上无效)16.设函数()0x e x f x a x x ⎧<=⎨+≥⎩,,,a 为何值时,()f x 在0x =点连续.17.计算定积分21arctan1-+xdxx.18.求由方程x yxy e e=-所确定的函数y在0x=处的导数.19.已知线性方程组123412342341323263x x x xx x x xx x xλ+++=⎧⎪++-=⎨⎪++=⎩,求λ为何值时,方程组有解,并求出它的解.四、应用题(本题10分. 将解答的主要过程、步骤和答案填写在答题纸的相应位置上, 写在其它位置上无效)20.用32cm长的一根铁丝围成一个矩形小框,试问:当矩形的长和宽各为多少时,围成的矩形面积最大?。
2019年普通高中学业水平考试数学(样卷) 2019年河北省普通高中学业水平考试数学(样卷)注意事项:1.本试卷共4页,包括两道大题,33道小题,共100分,考试时间120分钟。
2.所有答案在答题卡上作答,在本试卷和草稿纸上作答无效。
答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
3.做选择题时,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮将原选涂答案擦干净,再选涂其他答案。
4.考试结束后,将本试卷和答题卡一并交回。
参考公式:柱体的体积公式:V=Sh(其中S为柱体的底面面积,h为高)锥体的体积公式:V=1/3Sh(其中S为锥体的底面面积,h为高)台体的体积公式:V=(S1+S2+√(S1S2))h/3(其中S1、S2分别为台体上、下底面面积,h为高)球的表面积公式:S=4πR²(其中R为球的半径)球的体积公式:V=4/3πR³(其中R为球的半径)一、选择题(本题共30道小题,1~10题,每题2分,11~30题每题3分,共80分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.Sin(2π/3)=()A。
-√3/2 B。
√3/2 C。
-1/2 D。
1/22.已知集合A={-2,-1,0,1,2},B={x| (x-1)(x+2)<0},则A∩B =()A。
{-1,0} B。
{0,1} C。
{-1,1} D。
{0,1,2}3.已知直线l过点(1,1)和(3,1),则直线l的斜率为()A。
0 B。
1/3 C。
-1/3 D。
-34.已知a=(5,-2),b=(-4,-3),c=(x,y),若a-2b+3c=0,则c=()A。
(1,-2) B。
(4,8) C。
(-1,-2) D。
(3,6)5.函数f(x)=log3(x²-x-2)的定义域为()A。
{x|x>2或x1或x<-2}6.在区间[0,5]上随机取一个数,则此数小于1的概率为()A。
河北省 2006 年专科接本科教育考试数学(一)(理工类)试题(考试时间: 60 分钟总分: 100 分 )说明:请将答案填写在答题纸相应位置上,填写在其它位置上无效。
一、单项选择题(本大题共10 个小题,每小题 2 分,共 20 分。
在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上,填写在其它位置上无效。
)1 函数 yarcsin( 2x 1)1 )的定义域是(ln xA (0,1)B (0,1]C (0,2)D (0,2]2lim ( 3x2) 2 x ()x3x 28A e 3B e 2C e 3D e 41 x23 曲线在 y e ( 1,1) 处的切线方程是() A 2x y 3 0B 2x y 3 0C 2x y 3 0D 2x y 3 04 函数 y2 x3 x 24x 5 的单调减少区间为()3A ( 2, )B( , 1) C (0,3)D ( 1,2)5 已知 f (x)Csin xdx ,则 f ( ) ()2sin xD cos xA 0B 1C611 sin xdx ()112xA2BC4D247 下列等式正确的是( )dbf (b)Af (x)dx Bdx aC dtf (t )Df ( x)dxdx a82与 b n2a nb n 为(设级数a n都收敛,则n 1n 1n 1d af (x) dxf ( x)dxxdcos xf (cos x)dx f (t) dt)A 条件收敛B 绝对收敛C 发散D 敛散性不确定9 微分方程 y 8y16 y xe 4 x 的特解形式可设为 y*()A( Ax B)e 4xBAxe 4 xC Ax 3e 4xD ( Ax 3 Bx 2 )e 4 x10 设四阶矩阵 A ( ,2 , 3,4 ) , B ( , 2 ,3,4 ) ,其中 , , 2 , 3 , 4 均为 4 维列向量,且已知行列式 A 4 , B1 ,则行列式 A B( )A 20B 30C 40D 50二填空题(本大题共 5 个小题,每小题 3 分,共 15 分。
2019年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题.共40分)一、选择题(1-10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的()为时,当x x x x x x 4320+++→A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小2.()=+∞→x x x )21(lim A.2e -B.-eC.eD.e ²3.设函数y=cos2x , 则()='yA.2sin2xB.-2sin2xC. sin2xD.-sin2x4.设函数()x f 在[a,b]上连续.在(a.b)可导,()()(),0,0<>'b f a f x f 则()x f 在(a,b)内零点的个数为 ( ) A.3 B.2 C.1 D.05.设2x 为f(x)的一个原函数.则f(x)=A.0B.2C.x ²D.x ²十C6.设函数(),arctan x x f =则()()='⎰dx x fA. -arctanx+CB.C x ++-211C.arctanx+CD.C x ++2117.设dx x I dx x I dx x I ⎰⎰⎰===143132121,,.则( )A.321I I I >>.B.132I I I >>C.123I I I >>D.231I I I >>8.设函数y e x z 2=,则()()=∂∂0,1x zA.0B.21C.1D.29.平面x 十2y-3z+4=0的一个法向量为( ) A.{1,-3,4} B.{1,2,4}C.{1,2,-3}D.{2,-3,4}10.微分方程()x y y y y =+'+'43的阶数为( )A.1B.2C.3D.4第Ⅱ卷(非选择题,共110分)二、填空题(11-20小题,每小题4分,共40分)11.=→x xx 2tan lim 0 。
高等数学一第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 当时,为的 ( )0x →234x x x x +++x A.等价无穷小 B.2阶无穷小 C.3阶无穷小D.4阶无穷小2. ( )2lim 1xx x →∞⎛⎫+= ⎪⎝⎭A. B. C. D.2e -e-e 2e 3. 设函数,则= ( )cos 2y x =y 'A. B. C. D.2sin 2x2sin 2x-sin 2xsin 2x -4. 设函数在上连续,在可导,>0,f (a ) f (b )<0,则在内()f x [,]a b (,)a b ()f x '()f x (,)a b 零点的个数为 ( )A.3B.2C.1D.05. 设为的一个原函数,则= ( )2x ()f x ()f x A.0B.2C. D.2x 2x C+6. 设函数,则 ( )()arctan f x x =()d f x x '=⎰A. B.arctan x C -+211C x -++C. D.arctan x C+211C x ++7. 设,,,则( )1210d I x x =⎰1320d I x x =⎰1430d I x x =⎰A. I 1>I 2>I 3 B. I 2>I 3>I 1C. I 3>I 2>I 1D. I 1>I 3>I 28. 设函数,则=( )2e y z x =(1,0)z x∂∂A.0B.C.1D.2129. 平面的一个法向量为 ( )2340x y z +-+=A. B. C. D.{1,3,4}-{1,2,4}{1,2,3}-{2,3,4}-10. 微分方程的阶数为 ( )34()yy y y x ''++=A.1B.2C.3D.4第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11..0tan 2limx xx→=12.若函数在点处连续,则a =.0x =13. 设函数,则d y =.2e x y =14.函数的极小值点x = .3()12f x x x =-15.= .x 16..121tan d x x x -=⎰17.设函数,d z =.32z x y =+18.设函数,则=.arcsin z x y =22zx ∂∂19.幂级数的收敛半径为.1n n nx ∞=∑20.微分方程的通解y =.2y x '=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)若,求k .0sin 2lim2x x kxx→+=22.(本题满分8分)设函数,求.sin(21)y x =-y '23.(本题满分8分)设函数,求.ln y x x =y ''24.(本题满分8分)计算.13(e ) d x x x +⎰25.(本题满分8分)设函数,求.11z x y =-22z z x y x y ∂∂+∂∂26.(本题满分10分)设D 是由曲线与x 轴、y 轴,在第一象限围成的有界区域.求:21x y =-(1)D 的面积S ;(2)D 绕x 轴旋转所得旋转体的体积V .27.(本题满分10分)求微分方程的通解.560y y y '''--=28.(本题满分10分)计算,其中D 是由曲线,,轴在第一象限围成的有界区22()d d Dx y x y +⎰⎰221x y +=y x =x 域.参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了等价无穷小的知识点.【应试指导】,故是的等价无穷2342300limlim(1)1x x x x x x x x x x→→+++=+++=234x x x x +++x 小.2.【答案】D【考情点拨】本题考查了两个重要极限的知识点.【应试指导】.22222222lim(1)lim(1)[lim(1)]e x x x x x x x x x→∞→∞→∞+=+=+=3.【答案】B【考情点拨】本题考查了复合函数的导数的知识点.【应试指导】·.(cos 2)sin 2y x x ''==-(2)2sin 2x x '=-4.【答案】C【考情点拨】本题考查了零点存在定理的知识点.【应试指导】由零点存在定理可知,在上必有零点,且函数是单调函数,故其()f x (,)a b 在上只有一个零点.(,)a b 5.【答案】B【考情点拨】本题考查了函数的原函数的知识点.【应试指导】由题可知,故.()d 2f x x x C =+⎰()(()d )(2)2f x f x x x C ''==+=⎰6.【答案】C【考情点拨】本题考查了不定积分的性质的知识点.【应试指导】.()d ()arctan f x x f x C x C '=+=+⎰7.【答案】A【考情点拨】本题考查了定积分的性质的知识点.【应试指导】在区间内,有x 2>x 3>x 4,由积分的性质可知(0,1)>>,即I 1>I 2>I 3.120d x x ⎰130d x x ⎰140d x x ⎰8.【答案】D【考情点拨】本题考查了二元函数的偏导数的知识点.【应试指导】,故2×1×1=2.2e y zx x∂=∂(1,0)z x ∂=∂9.【答案】C【考情点拨】本题考查了平面的法向量的知识点.【应试指导】平面的法向量即平面方程的系数{1,2,}.3-10.【答案】B【考情点拨】本题考查了微分方程的阶的知识点.【应试指导】微分方程中导数的最高阶数称为微分方程的阶,本题最高是2阶导数,故本题阶数为2.二、填空题11.【答案】2【考情点拨】本题考查了等价无穷小的代换定理的知识点.【应试指导】.00tan 22limlim 2x x x xxx →→==12.【答案】0【考情点拨】本题考查了函数的连续性的知识点.【应试指导】由于在处连续,故有.()f x 0x =0lim ()lim 50(0)x x f x x f a --→→====13.【答案】22e d x x【考情点拨】本题考查了复合函数的微分的知识点.【应试指导】d y = d(e 2x ) = e 2x ·(2x )′d x = 2 e 2x d x.14.【答案】2【考情点拨】本题考查了函数的极值的知识点.【应试指导】,当或时,,当x <2()3123(2)(2)f x x x x '=-=-+2x =2x =-()0f x '=时,>0;当<x <2时,<0;当x >2时,>0,因此x =2是极小值2-()f x '2-()f x '()f x '点.15.【答案】arcsin x C+【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】.arcsin x x C =+16.【答案】0【考情点拨】本题考查了定积分的性质的知识点.【应试指导】被积函数x tan 2x 在对称区间上是奇函数,故.[1,1]-121tan d 0x x y -=⎰17.【答案】23d 2d x x y y+【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】,,所以.23z x x ∂=∂2z y y ∂=∂2d d d 3d 2d z z z x y x x y y x y∂∂==+=+∂∂18.【答案】0【考情点拨】本题考查了二阶偏导数的知识点.【应试指导】,.arcsin z y x ∂=∂220zx ∂=∂19.【答案】1【考情点拨】本题考查了收敛半径的知识点.【应试指导】,设,则有,故其收敛半径1nn n n nx nx ∞∞===∑∑n a n =11limlim(1)1x x n n nρ→∞→∞+==+=为.11R ρ==20.【答案】2x C+【考情点拨】本题考查了可分离变量的微分方程的通解的知识点.【应试指导】微分方程是可分离变量的微分方程,两边同时积分得2y x '=.2d 2d y x x x y xC '=⇒=+⎰⎰三、解答题21.,故.00sin 2sin limlim 2122x x x kx x k k x x →→+=+=+=12k =22.[sin(21)]y x ''=-·cos(21)x =-(21)x '- .2cos(21)x =-23.()ln (ln )y x x x x '''=+,ln 1x +故.1(ln )y x x'''==24.1133(e )d d e d xx x x x x x +=+⎰⎰⎰1131e 113x xC+=+++ .433e 4x x C =++25.,,故21z x x ∂=-∂21z y y ∂=∂··2221z z x y x y x∂∂+=-∂∂22x y +21y .110=-+=26.(1)积分区域D 可表示为:0≤y ≤1,0≤x ≤1y 2,-120(1)d S y y=-⎰3101()3y y =-.23(2)120πd V y x=⎰ 10π(1)d x x =-⎰.π2=27.特征方程,解得或,故微分方程的通解为2560r r --=11r =-26r =(C 1,C 2为任意常数).1261212e e e e r x r x x x y C C C C -=+=+28.积分区域用极坐标可表示为:0≤≤,0≤r ≤1,θπ4所以22()d d DI x y x y=+⎰⎰ ·r d rπ12400d r θ=⎰⎰ ·π4=41014r.π16=。
河北省 2019 年普通高校专科接本科教育选拔考试
《高等数学(一)》(考试时间 60 分钟)(总分 100 分)
一、 单项选择题
(本大题共 10 小题 , 每小题 3 分 , 共 30 分 . 在每小题给出的四个备选项中 ,
选出一个正确的答案 , 并将所选项前面的字母填写在答题纸的相应位置上 )
1.函数 f (x) 4 x 2 ln(e x 1) 的定义域为(
) .
A .
2,2
B. 0,2
C. 0,2
D.
2,2
2.
lim 1 x 2
x 0
3
A. e 2
3 x
(
)
3
C. e 6
D. e 6
B. e 2
3. 设 f ( x) 在 x 0 处可导,若 lim
f (x 0 2h)
f ( x 0 h) 3
,则 f ( x 0 ) (
)
h 0
h
A . 1
B. 0
C. 1
D. 3
4. 广义积分
2 x 4 dx (
)
1
1 x
A .0
B.
4
C.
D.
2
5. 设矩阵 A
3 2
, B 1
0 , E
1 0 ,若 A
B X
E ,则 X=(
).
1 5 4 1 0
1
3
1 3 1
3 1 3 1 A . 5
1
B.
5 1
C.
5
1
D. 5
1
2
2
2
2
6. 已知
f (x)
的一个原函数为
e x ,则 x
f ( x)dx (
)
A. xe
C. xe
x
x
e
e
x
x
c
B. xe x e x c
c
D. xe x
e x c
7.过点 P 0 (2,3,1) 且与向量 a ( 1,1,2) 和 b (0,1, 1) 垂直的直线方程为(
) .
x 2 y 3 z 1
x 2 y 3 z 1 A .
1
1
B.
1
1
3
3
x 2 y 3 z 1 x 2 y 3 z 1 C.
1
1
D.
1
1
3
3
8.下列所给级数中发散的是(
)
A .
n
1
B.
sin
1
C.
1 1
1
D.
n 1
n 1
n 1
n
n 1 n 2 n
n 1 n(n 2)
1 1
2 , B 2 1
9.设 A
1 0 ,则 AB 1 (
)
1 3
3
2
1 1 5
B. 1 1 5
1
1 5
D.
1 1 5 A .
5
5
5
5
C.
5
5
30
5
5
30
30
30 10. 微分方程
dy
y e x 的通解为(
)
dx
x
A. y 1
(xe x e x
c) B. y
1 ( xe x e x c)
x
x C. y 1
( xe x e x c) D. y
1 ( xe x e x c) x
x
二、 填空题 (本大题共 5 小题 , 每小题 4 分, 共 20 分 . 将答案填写在答题纸的相应位置 上)
2x a, x 0
11. 设函数
f ( x)
sin 2x
x 0 ,在
( , )
内连续 ,则 a=__________
,
x
12. 曲线 y
x 3 3x 2 5x
4 的拐点坐标为 _____________
13. 幂级数 ( 1)n
(x 1)n 的收敛域为 _________ n 1 4n
n
14. 设 y
( c 1 c 2 x)e 3x ( c 1 , c 2 为任意常数)为某个二阶常系数线性齐次微分方程的通解,
则该微分方程为
15. 曲线 x 2
2y 2 3z 2 21 在点 (1, 2,2) 的切平面方程为
.
三.计算题(本大题共 4 小题,每小题 10 分,共 40 分。
将解答的过程、步骤和答案填写
在答题纸的相应位置上,写在其他位置上无效)
16. 设 z f (u, x, y),u
xe y , 其中 f 具有连续的二阶偏导数,求
z , 2
z
x
x y
17. 利用格林公式计算曲线积分
x 2 ydx xy 2 dy ,其中 L 为正向圆周 x 2 y 2
a 2
L
18. 计算二重积分
xe y dxdy ,其中 D 为抛物线 y x 2 1,直线 y 2x 及 x
0 围成。
D
2x1x2x3x4 1
19.解线性方程组4x12x22x3x4 2
2x1x2x3x4 1
四、应用题(本题 10 分,将解答的主要过程,步骤和答案填写在答题纸的相应位置上,写在其他位置上无效)
20.欲做一个容积为 300 立方米的无盖圆柱形蓄水池,已知池底单位造价为周围单位造价的两倍,问蓄水池的尺寸怎样设计才能使总造价最低。