大学物理上海交通大学20章课后习题答案
- 格式:doc
- 大小:148.50 KB
- 文档页数:3
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v =v v,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++v v v ,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d r v dt=v v ,有速度:82v t i j =+v v v从0=t 到1=t 秒的位移为:110(82)42r v d t t i j d t i j ∆==+=+⎰⎰v v v v v v(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v =v v,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=21t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt==,利用222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
习题2020-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。
推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。
解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==,∴仰角9037i θ=-=。
光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。
20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使:(1)透射光强为入射光强的3/1;(2)透射光强为最大透射光强的3/1。
(均不计吸收)解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。
则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α20cos 21I I =,(1)由已知条件,透射光强为入射光强的13,得:20011cos 23I I α=,有: 235.263α==(2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos ()232I I α=,有: 3arccos 54.733α==。
20-3.设一部分偏振光由一自然光和一线偏振光混合构成。
现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过60时,透射光强减为一半,试求部分偏振光中自然光和线偏振光两光强各占的比例。
解:由题意知:max 012max 011211cos 6022I I I I I I =⎧⎪⎪⎨⎪+=+⎪⎩⇒max 01max 0112111224I I I I I I ⎧⎪⎪⎨=+=+⎪⎪⎩⇒01I I =, ∴即得0111I I =::。
20-4.由钠灯射出的波长为589.0nm 的平行光束以50角入射到方解石制成的晶片上,晶片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求:(1)在晶片内o 光与e 光的波长;(2)o 光与e 光两光束间的夹角。
解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λλ=∴589.0356.971.65c o o nm n λλ===,589.0396.371.486c e e nm n λλ===;(2)又∵sin sin i n γ=,有:sin 50arcsin 27.66o o n γ==,sin 50arcsin 31.03e e n γ==,∴o 光与e 光两光束间的夹角为: 3.37e o γγγ∆=-=。
上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。
容器与大气相通排出一部分气体后,气压下降了。
若温度不变,求排出气体的质量。
解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。
由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。
根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。
如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。
9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。
用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。
要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。
由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。
大学物理(下册)答案第十一章 静电场【例题精选】例11-1 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30x qa επ. (C) 302x qa επ. (D) 204x qεπ. [ B ]例11-2半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r的关系曲线为:[ B ]例11-3 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ B ]例11-4一半径为R 的带有一缺口的细圆环,缺口长度为 d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E = ;场强方向为 .()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点. 例11-5 均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为______。
带电直线的延长线与球面交点P 处的电场强度的大小为_____,方向________。
0/ελd ; ()2204d R d-πελ ;沿矢径OP例11-6 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,EO r(A) E ∝1/r有一电荷为q 的正点电荷,如图,则通过该平面的电场强度通量为 (A)03εq . (B) 04επq (C) 03επq . (D) 06εq [ D ] 例11-7 两块“无限大”的均匀带电平行平板,其电荷面密度分别 为σ( σ>0)及-2 σ,如图所示。
试写出各区域的电场强度E 。
Ⅰ区E 的大小__________________,方向____________。
)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。
解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。
已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。
解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ , ∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I I B R R μθμπ==,方向:;直导线在O 点的磁感应强度:000203[sin 60sin(60)]4cos602IIB R R μμππ=--=,方向:⊗;∴总场强:031)23IB Rμ=-,方向⊗。
14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B aR x μ=++, 右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x ,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:当0x =时,0d Bd x =,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:当0x =时,202x d B d x ==222072223[()]2a R I R a R μ-+,可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d B d x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d B d x ==,说明磁感应强度B在O 点附近的磁场是相当均匀的,可看成匀强磁场。
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:1质点的轨道;2速度和速率;解:1 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在0,0处,半径为R 的圆; 2由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=;1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s ;求:1质点的轨道;2从0=t 到1=t 秒的位移;30=t 和1=t 秒两时刻的速度;解:1由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线; 2由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰30=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ ; 1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:1任一时刻的速度和加速度;2任一时刻的切向加速度和法向加速度; 解:1由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; 2而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+;1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间;解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- 122012y v t at =+ 212y y d += 3注意到1y 为负值,有11y y =- 联立求解,有:2dt g a=+;解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:22'ddt g g a==+; 1-5.一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:1小球的运动方程;2小球在落地之前的轨迹方程;3落地前瞬时小球的d r d t ,d v d t ,d vd t; 解:1如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;2联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+为抛物线方程;3∵201()2r v t i h g t j =+-,∴0d r v i g t j d t =-, 即:0v v i g t j =-,d vg j d t=- 在落地瞬时,有:2ht g=,∴02d r v i gh j d t =- 又∵ v =2222()xyv v v gt +=+-,∴2122220022[()]g gh g t dvdt v gh v gt ==++ ; 1-6.路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走;试证明人影的顶端作匀速运动,并求其速度2v .证明:设人向路灯行走,t 时刻人影中头的坐标为1x ,足的坐标为2, 由相似三角形关系可得:12211x x h x h -=, ∴11212h x x h h =- 两边对时间求导有:11212d x h d x d t h h d t =- ,考虑到:21d x v d t=, 知人影中头的速度:21112d x hv v d t h h ==-影常数;1-7.一质点沿直线运动,其运动方程为2242t t x -+=m,在 t 从0秒到3秒的时间间隔内,则质点走过的路程为多少解:由于是求质点通过的路程,所以可考虑在0~3s 的时间间隔内,质点速度为0的位置:t dtdxv 44-==若0=v 解得 s t 1=, m x x x 1021=∆+∆=∆;1-8.一弹性球直落在一斜面上,下落高度cm 20=h ,斜面对水平的倾角 30=θ,问它第二次碰到斜面的xy 0v h O O1x 2x 1h 2h位置距原来的下落点多远假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角;解:小球落地时速度为gh v 20=,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示,00060cos v v x =→ 200060cos 2160cos t g t v x += 1 00060sin v v y =→ 200060sin 2160sin t g t v y -= 2第二次落地时:0=y ,代入2式得:g vt 02=,所以:2002002122cos 60cos 604802v gh x v t g t h cm g g ⋅=+====; 1-9.地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球已知现在赤道上物体的向心加速度约为2s /cm 4.3,设赤道上重力加速度为2m/s 80.9;解:由向心力公式:2F m R ω=向,赤道上的物体仍能保持在地球必须满足:F mg =向,而现在赤道上物体的向心力为:'F ma =向∴016.9817ωω====≈ 1-10.已知子弹的轨迹为抛物线,初速为0v ,并且0v 与水平面的夹角为θ;试分别求出抛物线顶点及落地点的曲率半径;解:1抛物线顶点处子弹的速度0cos x v v θ=,顶点处切向加速度为0,法向加速度为g ;因此有:22011(cos )v vg θρρ==, 2201cos v gθρ=; 2在落地点时子弹的0v ,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:cos n a g θ=,有:202cos v g θρ= 则: 22cos v g ρθ=;1-11.一飞行火箭的运动学方程为1()ln(1)=+--x ut u t bt b,其中b 是与燃料燃烧速率有关的量,u 为燃气相对火箭的喷射速度;求: 1火箭飞行速度与时间的关系;2火箭的加速度;解:一维运动,直接利用公式:dx v dt =,dva dt=有: 1)1ln(bt u dt dx v --== , 2btub dt dv a -==1 1-12.飞机以s /m 1000=v 的速度沿水平直线飞行,在离地面高m 98=h 时,驾驶员要y把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度此时目标距飞机下方地点多远 解:设此时飞机距目标水平距离为x 有:t v x 0=┄①,221gt h =┄② 联立方程解得:m x 447≈,∴05.77arctan ≈=hx θ;1-13.一物体和探测气球从同一高度竖直向上运动,物体初速为s /m 0.490=v ,而气球以速度s /m 6.19=v 匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少解:物体在任意时刻的速度表达式为:gt v v y -=0故气球中的观察者测得物体的速度v v v y -=∆代入时间t 可以得到第二秒末物体速度:29.8m v s ∆=,向上 第三秒末物体速度:30v ∆=第四秒末物体速度:49.8m v s ∆=-向下;思考题11-1.质点作曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速度为v ,平均速率为v ,则它们之间的下列四种关系中哪一种是正确的A v v ==v v ,;B v v =≠v v ,;C v v ≠=v v ,;D v v ≠≠v v ,答:C1-2.沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:A 与速度大小成正比;B 与速度大小平方成正比;C 与速度大小成反比;D 与速度大小平方成反比; 答:B1-3.如图所示为A,B 两个质点在同一直线上运动的-v t 图像,由图可知 A 两个质点一定从同一位置出发 B 两个质点都始终作匀加速运动 C 在2s t 末两个质点相遇D 在20s t 时间内质点B 可能领先质点A 答:D 1-4.质点的t x ~关系如图,图中a ,b ,c 三条线表示三个速度不同的运动.问它们属于什么类型的运动哪一个速度大哪一个速度小答:匀速直线运动;a b c v v v >>; 1-5.如图所示,两船A 和B 相距R ,分别以速度A v 和B v 匀速直线行驶,它们会不会相碰若不相碰,求两船相靠最近的距离.图中α和β为已知;答:方法一:如图,以A 船为参考系,在该参考系中船A 是静止的,而船B 的速度A v v v B -=';v '是船B 相对于船A 的速度,从船B 作一条平行于v '方向的直线BC,它不与船A 相交,这表明两船不会相碰.由A 作BC 垂线AC,其长度min r 就是两船相靠最近的距离 θsin min R r =作FDv v v A B '-=αβθsin sin sin )cos(222βα+++='B A B A v v v v v R v v v v v v r B A B A A B )cos(2sin sin 22min βααβ+++-=t 0)(=dt t dr Rv v v v v v r B A BA AB )cos(2sin sin 22min βααβ+++-=0d r d t =0d r d t ≠0d v d t =0d v d t ≠0d a d t =0d ad t==+x y v v i v j 0d d =⎰⎰ttxv t v t 0d d =⎰⎰ttyv t v td d =⎰⎰ttx v t v td d =⎰⎰tty v t v t 1t 111d ,d ,d t t t xyv t v t v t⎰⎰⎰A B⎰⎰⎰BABABAr d ,d ,d r r tv t xd 1⎰tvt yd 10⎰1d t v t⎰1t ⎰B Ar d d B A⎰r ⎰BAdr 16kg xOy6N x f =7N y f =0t =0x y ==2m /s x v =-0y v =2s t =x x f a m =x a 263m /168s ==27m /16y y f a s m -==2003522m /84x x x v v a dt s =+=-+⨯=-⎰200772m /168y y y v v a dt s -=+=⨯=-⎰2s 57m /s 48v i j =--22011()22x y r v t a t i a t j=++1317(224)()428216i j -=-⨯+⨯⨯+⨯2kg 2424=-F i t j 034=+v i jn F d v F m d t =24242d v i t j dt -=⋅0201(424)2v t v d v i t j dt =-⎰⎰3024v v t i t j =+-034v i j =+s t 1=15v i =t v v e =15v i =s t 1=s t 1=ij 2424F i t j =-s t 1=424424t n F i j e e =-=-24n F N=-45A a g=1m 2m μFmax 212222f mg f Fa m m m m m μ==<=+12()F m m g μ<+maxF max 12()F m m g μ=+12()F m m g μ<+θ)(θμtg <a θμμθtan 1tan 1+-=a g θμμθtan 1tan 2-+=a gtan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-'x 'y 'x sin cos 0mg ma f θθ-±='y cos sin 0N mg ma θθ--=f N μ=sin cos (cos sin )0mg ma mg ma θθμθθ-±+=sin cos tan cos sin 1tan a g g θμθθμθμθμθ±±==a tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-m 0v k f kv =-dv f mdt=•m AR B dv kv m dt -=dv k dt v m =-000t v dv k dt v m =-⎰⎰t m ke v v -=00v =dv dv dx dt dx dt =dx v dt =mdx dvk=-00max 0v m mx dv v k k=-=⎰2m 1m θ2m 1m 2'a 1m 1a 2m 2m g 1N 21m a 1m 1m g 1N 2N 2m 21222cos sin 'm a m g m a θθ+=1212sin cos N m a m g θθ+=1m 111sin N m a θ=11212sin cos sin m a m a m g θθθ+=21212sin cos sin m a g m m θθθ=+122212()sin 'sin m m a g m m θθ+=+2'a 122212sin cos 'sin x x m a a a g m m θθθ=-=-+111sin m a N θ==g m m m m θθ22121sin cos +R μ0=t 0v 2v N m R =f Nμ=dtdvmf =-2dv v dt Rμ=-0201vt v dv dt v R μ-=⎰⎰t μv R R v v 00+=20R m =0.6F i =F R -R2020B A r r r i j∆=-=-+A F r =⋅∆0.6(2020)12A i i j =⋅-+=-0.5kg A F r=⋅∆250.5r t i j =+24(4)(2)60r r r i →∆=-=220.5105d rF m i i d t==⋅=560300A i i J =⋅=m2()F at i bt j =+t P F v =⋅P F v =⋅2232325111111()()()2323ati bt j at i bt j a t b t m m =+⋅+=+2(52.838.4)F x x i =--F x N m m 522.01=x m 34.12=x ()()F x F x i =f A 2v N G mR-=R G N mv )(21212-=2102f mgR A mv +=-11()(3)22f A N G R mgR N mg R =--=-1ρl 2ρAB B1212ρρρ<<max v H G F =浮hsg lsg 12ρρ=l h 12ρρ=212mgh mv A =+浮22max21012h slv sglh gsydy ρρρ=-⎰2max 1v gl ρρ=H 'H l h =+2110'l lsgH ysgdy lsgh ρρρ=+⎰2110()l lsgH ysgdy lsg H l ρρρ=+-⎰1122()lH ρρρ=-L m A A B A m B m k l B 0x A B A A B A B A22011()22A B m m v k x +=0x m m k v B A +=x l =A 221122A A m v kx =0AA A Bm x x m m =+m3e Gm m F r r =-e e ,R m e e 211e e P R R eE F dr Gm m dr Gm m r R ∞∞=⋅=-⋅=-⎰⎰I T I τ12v v =I mv =∆0I =cos T mgθ=2mgπωm Oxy cos sin r a t i b t j ωω=+0=t ωπ/2=t P mv =d r v dt ==2m 1m θθ1N2m 2m g21m a 1m θ1m g 2N 1N θy xOB AFθωl mg Tsin cosa t ib t jωωωω-+()(sin cos )P t m a t i b t jωωω=--2()(0)0I mv P P m b j m b j πωωω=∆=-=-= 2.0kg1.0m20g 0v 600m v 30m 01mv mv M v =+01 5.7mv mv v M-==/m s21v T Mg M l -=2184.6v T Mg M Nl=+=00.0257011.4I mv mv N s =-=-⨯=-⋅m /skg 102.122⋅⨯-236.410kg m/s -⨯⋅kg 108.526-⨯2222221.20.6410P P P -=+=+⨯核电子中微子0.64tan 1.2P P α==中微子电子028.1α=221.410/P kgm s -=⨯核9.151=-=απθ2180.17102k P E J m -==⨯核核m 2c x c x 112212c m x m x x m m +=+12m m m ==12c x x =2223,42c c c mx mx x x x m +== 30=α 1.0M kg =30x cm =0.01m kg=200/v m s =25/k N m =22111sin 22Mv kx Mgx α+=10.83/v m s ⇒=1cos Mv mv m M v α'-=+()0.89/v m s '⇒=-θM L 0cos M r F mg v t kθ=⨯=-200cos 2t mg v L r mv M dt t k θ=⨯==-⎰1v 2v 1122r mv r mv =122v v =0P MmE G r=-R Mm G mv R Mm G mv 421221022021-=-mg R Mm G =20321Rg v =62Rg v =ρρ220v m Mm G =R 38=ρ22v Rg =0E =24sin A mv R mv R θ=⋅22v Rg =030θ⇒=m r m 2m 2/2mr m2m ma T mg 222=-ma mg T =-12()T T r J β-=βJ r T T =-)(1βr a =2/2J mr =ga 41=mg T 811=l m μ0ωO l m =λdm d x λ=d f dmg gd x μμλ==d M g xd xμλ=20124lM g xd x mgl μλμ==⎰d M J J dt ωβ==000t Mdt Jd ωω-=⎰⎰2011412mglt m l μω-=-03l t g ωμ=0M t J J ωω-=-0ω=2112J ml =03l t g ωμ=2m kg 01.0⋅cm 7kg 5N/m 200=k x maxx 2max max 12k x mg x =max 20.49mg x m k ==222111222k x mv J mg x ω++=v Rω=2222111222k x m R J mg x ωω++=x0d d x ω=21()22d k x m R J mg d x ωω++⋅=0d d x ω=αP 中微子P 电子P 核cx /2c x xyO x y 0v vOz•θT)(245.0m k mg x ==0.245x =22max 2121()2mgx kx v J m r -=+max 1.31v =m 2l 31l 32m 0v m 021v 22004221()9933l l v l v l ω+=+032v l ω=mg N =αsin 212cos N N α=α1N 1F kx m gμ=+2kx m g μ=11A m a kx m g μ=+121A m m a g m μ+=22B m a kx m g μ=-0B a =F GF G F 2321μ+≤1322F F μ<33μ>Rv m mg N 2sin +=θA B F s F A F r =⋅∆F s k m m mg k x =k mg x =212mg x k x =kmgx 2=αx v x 120αI 21I m v m v =-21v v =αm Δ1v 2v m Δm Δf 'f 'm 1e 212e 222121r m Gm mv r m Gm mv -=-1122sin sin θθmv mv =2e 2rm Gm r mv =当两小孩质量相等时,M =0;则系统角动量守恒,两人的实际的速度相同,将同时到达滑轮处,与谁在用力,谁不在用力无关;选择C; 2-13.一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化 答:增大2-14.一个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的: A 机械能守恒,角动量守恒;B 机械能守恒,角动量不守恒; C 机械能不守恒,角动量守恒;D 机械能不守恒,角动量不守恒; 答:C习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式;g 取解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ 9.8980.1k m ω===; 取竖直向下为x 正向,弹簧伸长为时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =,mg 1N 2N α1mv 2mv I风风'f //'f 'f ⊥当t =0时,x =-A ,那么就可以知道物体的初相位为π;所以:0.1cos x π=+)即:)x =-;3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ=向平衡位置运动;设小球的运动可看作简谐振动,试求:1角频率、频率、周期;2用余弦函数形式写出小球的振动式;g 取解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了;1角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===;2振动方程可表示为:cos3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+() 根据初始条件,0t =时:cos Aθϕ=,0(12sin 0(34 3.13A θϕ>=-<,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,,所以得到振动方程:28.810cos3.13 2.32t m θ-=⨯-() ; 3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2;当0=t 时,位移为cm 6,且向x 轴正方向运动;求:1振动表达式;2s 5.0=t 时,质点的位置、速度和加速度;3如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间;解:1由题已知 A =,T =2 s ,∴ 2Tπωπ==又∵t =0时,06x cm =,00v >,由旋转矢量图,可知:3πϕ=-故振动方程为:0.12cos3x t m ππ=-(); 2将t = s 代入得:0.12cos 0.12cos 0.10436x t m πππ=-==(),0.12sin 0.12cos 0.188/36v t m s ππππ=--==-(),2220.12cos 0.12cos 1.03/36a t m s πππππ=--=-=-(),方向指向坐标原点,即沿x 轴负向;3由题知,某时刻质点位于6cm 2Ax =-=-, 且向x 轴负方向运动,如图示,质点从P 位置回到平衡位置Q 处需要走32ππϕ∆=+,建立比例式:2tTϕπ∆∆=,有:56t s ∆= ;3-4.两质点作同方向、同频率的简谐振动,振幅相等;当质点1在 2/1A x =处,且x向左运动时,另一个质点2在 2/2A x -= 处,且向右运动;求这两个质点的位相差; 解:由旋转矢量图可知:当质点1在 2/1A x =处,且向左运动时,相位为3π,而质点2在 2/2A x -= 处,且向右运动,相位为43π;所以它们的相位差为π;3-5.当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少物体在什么位置时其动能和势能各占总能量的一半解:由212P E k x =,212k E mv =,有:221cos ()2P E k A t ωϕ=+,2222211sin ()sin ()22k E m A t k A t ωωϕωϕ=+=+, 1当2Ax =时,由cos()x A t ωϕ=+,有:1cos()2t ωϕ+=,3sin()t ωϕ+=,∴14P E E =,34k E E =; 2当12P k E E E ==时,有:22cos ()sin ()t t ωϕωϕ+=+ ∴cos()2t ωϕ+=20.7072x A A ==±; 3-6.两个同方向的简谐振动曲线如图所示1求合振动的振幅;2求合振动的振动表达式; 解:通过旋转矢量图做最为简单; 由图可知,两个振动同频率,且1A 初相:12πϕ=,2A 初相:22πϕ=-,表明两者处于反相状态,反相21(21)k ϕϕϕπ∆=-=±+,012k =,,,∵12A A <,∴合成振动的振幅:21A A A =- ;合成振动的相位:22πϕϕ==- ;合成振动的方程:)()(22cos 12ππ--=t T A A x ;3-7.两个同方向,同频率的简谐振动,其合振动的振幅为cm 20,与第一个振动的位相差为6π;若第一个振动的振幅为cm 310;则1第二个振动的振幅为多少2两简谐振动的位相差为多少解:如图,可利用余弦定理:由图知 ︒-+=30cos 2122122A A A A A = m ∴A 2=0.1 m ,再利用正弦定理:02sin sin 30AA θ=,有: 2sin 12A A θ==,∴2πθ=;说明A 1与A 2间夹角为π/2,即两振动的位相差为π/2 ; 3-8. 质点分别参与下列三组互相垂直的谐振动:1 4cos 864cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩ ;2 4cos 8654cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩;3 4cos 8624cos 83x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩;试判别质点运动的轨迹;解:质点参与的运动是频率相同,振幅相同的垂直运动的叠加;对于cos()x x A t ωϕ=+,4cos()y y t ωϕ=+的叠加,可推得:1将6x πϕ=,6y πϕ=-代入有:2222cos 16sin 33x y x y ππ+-=,则方程化为:2212x y x y +-=,轨迹为一般的椭圆;2将6x πϕ=,56y πϕ=-代入有:2222cos 16sin x y x y ππ+-=则方程化为:2220x y x y +-=,即0x y +=,轨迹为一直线;3将6x πϕ=,23y πϕ=代入有:2222cos 16sin 22x y x y ππ+-=则方程化为:2224x y +=,轨迹为圆心在原点,半径为4m 的圆;3-9.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为2.0s ,求波长和波速;解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ,而相位和波长之间满足关系:πλπλϕϕϕ221212xx x ∆-=--=-=∆,代入数据,可得:波长λ=24m;又∵T =2s ,所以波速12/u m s Tλ==;3-10.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:1平面波的波动式;2若波沿x 轴负向传播,波动式又如何 解:1设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为:10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+;2若波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]xy A t u ωϕ=++(),则P 点的振动式为:10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++;3-11.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 1该平面简谐波的表达式;2B 点的振动表达式B 点位于A 点右方d 处; 解:1仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]xy A t u πνϕ=++(),则A 点的振动式:0cos[2]A ly A t uπνϕ-=++()题设A 点的振动式cos(2)y A t πνϕ=+比较,有:02lu πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(uxu l t A y2B 点的振动表达式可直接将坐标x d l =-,代入波动方程:3-12.已知一沿x 正方向传播的平面余弦波,s 31=t 时的波形如图所示,且周期T 为s 2;1写出O 点的振动表达式;2写出该波的波动表达式; 3写出A 点的振动表达式; 4写出A 点离O 点的距离;解:由图可知:0.1A m =,0.4m λ=,而2T s =,则:/0.2/u T m s λ==,2T πωπ==,25k ππλ==,∴波动方程为:00.1cos(5)y t x ππϕ=-+O 点的振动方程可写成:00.1cos()O y t πϕ=+由图形可知:s 31=t 时:0.05O y =,有:00.050.1cos()3πϕ=+考虑到此时0O d y d t <,∴03πϕ=,53π舍去 那么:1O 点的振动表达式:0.1cos()3O y t ππ=+;2波动方程为:0.1cos(5)3y t x πππ=-+;3设A 点的振动表达式为:0.1cos()A A y t πϕ=+由图形可知:s 31=t 时:0A y =,有:cos()03A πϕ+=考虑到此时0A d y d t >,∴56A πϕ=-或76A πϕ=∴A 点的振动表达式:50.1cos()6A y t ππ=-,或70.1cos()6A y t ππ=+;4将A 点的坐标代入波动方程,可得到A 的振动方程为:0.1cos(5)3A A y t x πππ=-+,与3求得的A 点的振动表达式比较,有:5563A t t x πππππ-=-+,所以:m x A 233.0307== ; 3-13.一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播;已知原点的振动曲线如图所示;试写出:1原点的振动表达式; 2波动表达式;3同一时刻相距m 1的两点之间的位相差; 解:这是一个振动 图像由图可知A =0.5cm ,设原点处的振动方程为:30510cos()O y t ωϕ-=⨯+;1当0t =时,30 2.510O t y -==⨯,考虑到:00O t d y d t=>,有:03πϕ=-,当1t =时,10O t y ==,考虑到:10O t d y d t =<,有:32ππω-=,56πω=,∴原点的振动表达式:35510cos()63O y t ππ-=⨯-;2沿x 轴负方向传播,设波动表达式:35510cos()63y t k x ππ-=⨯+-而512460.825k u ωππ==⨯=,∴3524510cos()6253y t x πππ-=⨯+-; 3位相差:252 3.2724x k x rad ϕππλ∆∆==∆== ; 3-14.一正弦形式空气波沿直径为cm 14的圆柱形管行进,波的平均强度为39.010-⨯/()J s m ⋅,频率为Hz 300,波速为m/s 300;问波中的平均能量密度和最大能量密度各是多少每两个相邻同相面间的波段中含有多少能量解:1已知波的平均强度为:39.010I -=⨯/()J s m ⋅,由I w u =⋅ 有:53max 2610/w w J m -==⨯;2由W w V =⋅,∴221144uW w d w d πλπν=⋅=5327310/(0.14)1 4.62104J m m m J π--=⨯⨯⋅⋅=⨯ ;3-15.一弹性波在媒质中传播的速度310/u m s =,振幅41.010A m -=⨯,频率310Hz ν=;若该媒质的密度为3800/kg m ,求:1该波的平均能流密度;21分钟内垂直通过面积24m 100.4-⨯=S 的总能量; 解:1由:2212I u A ρω=,有:34232110800102102I π-=⨯⨯⨯⨯()()521.5810/W m =⨯; 21分钟为60秒,通过面积24m 100.4-⨯=S 的总能量为:W I S t =5431.581041060 3.7910J -=⨯⨯⨯⨯=⨯ ;3-16.设1S 与2S 为两个相干波源,相距41波长,1S 比2S 的位相超前2π;若两波在在1S 、2S 连线方向上的强度相同且不随距离变化,问1S 、2S 连线上在1S 外侧各点的合成波的强度如何又在2S 外侧各点的强度如何解:1如图,1S 、2S 连线上在1S 外侧,∵212122()24r r πππλϕϕϕπλλ∆=---=--⋅=-, ∴两波反相,合成波强度为0; 2如图,1S 、2S 连线上在2S 外侧,∵212122('')()024r r πππλϕϕϕλλ∆=---=---=, ∴两波同相,合成波的振幅为2A ,合成波的强度为:220(2)44I A A I === ;3-17.图中所示为声音干涉仪,用以演示声波的干涉;S 为声源,D 为声音探测器,如耳或话筒;路径SB D 的长度可以变化,但路径SAD 是固定的;干涉仪内有空气,且知声音强度在B 的第一位置时为极小值100单位,而渐增至B 距第一位置为cm65.1的第二位置时,有极大值900单位;求:1声源发出的声波频率;2抵达探测器的两波的振幅之比;解:根据驻波的定义,相邻两波节腹间距:2x λ∆=,相邻波节与波腹的间距:4x λ∆=,可得:4 6.6x cm λ=∆=;1声音的速度在空气中约为340m/s ,所以:234051516.610u Hz νλ-===⨯()。
习题20
20-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。
推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。
解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==o
,
∴仰角9037i θ=-=o o 。
光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。
20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使:
(1)透射光强为入射光强的3/1;
(2)透射光强为最大透射光强的3/1。
(均不计吸收)
解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。
则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α20cos 21I I =,
(1)由已知条件,透射光强为入射光强的13,得:20011cos 2
3I I α=,有: (2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos ()232I I α=,有:
arccos 54.733α==o。
20-3.设一部分偏振光由一自然光和一线偏振光混合构成。
现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过ο60时,透射光强减为一半,试求部分偏振光中自
然光和线偏振光两光强各占的比例。
解:由题意知:
max 012max 011211cos 6022I I I I I I =⎧⎪⎪⎨⎪+=+⎪⎩o ⇒max 01
max 0112111224I I I I I I ⎧⎪⎪⎨=+=+⎪⎪⎩⇒01I I =, ∴即得0111I I =::。
20-4.由钠灯射出的波长为589.0nm 的平行光束以ο
50角入射到方解石制成的晶片上,晶片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求:
(1)在晶片内o 光与e 光的波长;
(2)o 光与e 光两光束间的夹角。
解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λλ= ∴589.0356.971.65c o o nm n λλ===,589.0396.371.486c e e nm n λλ===;
(2)又∵sin sin i n γ=,有:sin 50arcsin 27.66o o n γ==o o ,sin 50arcsin 31.03e e n γ==o o ,
∴o 光与e 光两光束间的夹角为: 3.37e o γγγ∆=-=o 。
20-5.在偏振化方向正交的两偏振片
1P ,2P 之间,插入一晶片,其光轴平行于表面且与起
偏器的偏振化方向成ο35,求:
(1)由晶片分成的o 光和e 光强度之比;
(2)经检偏器2P 后上述两光的强度之比。
解:(1)由晶片分成的o 光振幅:θsin A A O =,e 光的振幅:θcos A A e =, 其强度之比为振幅的平方比,所以:22222sin sin35()0.49cos cos35o e I A I A θθ===o
o ;
(2)经检偏器后,上述两光中o 光的振幅:
'sin cos o A A θθ=, e 光的振幅:'cos sin e A A θθ=, 可见振幅相同,所以两光强度之比为1:1。
20-6.把一个楔角为ο33.0的石英劈尖(光轴平行于棱)放在偏振化方向正交的两偏振片之间。
用654.3nm λ=的红光垂直照射,并将透射光的干涉条纹显示在屏上。
已知石英的折射率
1.5419, 1.5509o e n n ==,计算相邻干涉条纹的间距。
解:选择劈尖的暗条纹,则条纹位置为:
e o n n d k λ-=(),
sin d l θ∆∆=
∴劈尖的相邻干涉条纹的间距: 654.312.6sin 1.5509 1.54190.33180e o nm l mm n n λ
π
θ∆===--⨯⨯o o ()()。
思考题20
20-1.用偏振片怎样来区分自然光、部分偏振光和线偏振光?
答:将光通过偏振片,光强无变化的为自然光;光强有变化但不会出现完全消光的为部分偏振光;光强有变化且在某个方向为零的为线偏振光。
20-2.如图所示,玻璃片堆A 的折射率为n ,二分之一波片C 的光轴与y 轴夹角为0
30,偏振片P 的偏振化方向沿y 轴方向,自然光沿水平方向入射。
(1)欲使反射光为完全偏振光,玻璃片堆A 的倾角θ应为多少?在图中画出反射光的偏振态;
(2)若将部分偏振光看作自然光与线偏振光两部分的叠
加,则经过C 后线偏振光的振动面有何变化?说明理由;
(3)若透射光中自然光的光强为I ,偏振光的光强为I 3,
计算透过P 后的光强。
答:(1)根据马吕斯定律:
arctan 2i n i πθ==-,。
(2)椭圆偏振光
(3)可用相干叠加公式计算。
(略)
20-3.在图示的装置中,1P 、2P 为两个正交的偏振片,C 为四分之一波片,其光轴与1P 的偏振化方向间夹角为060,强度为I 的单色自然光垂直入射于1P 。
(1)试述①、②、③各区光的偏振态;
(2)计算①、②、③各区的光强。
答:(1)①区:为线偏振光;②区为椭圆偏振光;③区为椭圆偏振光。
(2)①区光强:021I ,
②区的光强:O 光的光强:
02083sin 21I I I O ==
θ, e 光的光强:02081cos 21I I I e ==θ ③区的光强:
022323cos sin 21I I O ==θθ 022323cos sin 21I I e ==θθ 两者发生干涉现象,并且干涉加强:0163I I I I e O =+=。
20-4.如图所示的偏振光干涉装置中,C 是劈尖角很小的双折射晶片,折射率0e n n >,1P 、2P 的偏振化方向相互正交,与光轴方向皆成045角。
若以波长为λ的单色自然光垂直照射,试讨论:
(1)通过晶片C 不同厚度处出射光的偏振态;
(2)经过偏振片2P 的出射光干涉相长及相消位置与劈尖厚度d 之间的关系,并求干涉相长的光强与入射光光强之比;
(3)若转动2P 到与1P 平行时,干涉条纹如何变化?为什么?
答:(1)通过晶片C 不同厚度处出射光的偏振态为圆偏振光。
(2)这是一个劈尖干涉的情况,所以列式:
ππλπk d n n O e 22=+-)(,(明条纹)
ππλπ)()(122+=+-k d n n O e ,(暗条纹) 干涉相长时的光强:
0222241cos sin 21cos sin 21I I I I e O =+=+=θθθθ
干涉相长的光强与入射光光强之比为:1:4; (3)若转动2P 到与1P 平行时,相位差中的π就没有了,所以干涉条纹中明暗条纹互换位置。