量子物理基础--习题资料讲解
- 格式:doc
- 大小:597.50 KB
- 文档页数:14
第六部分 量子物理基础 习题:1.从普朗克公式推导斯特藩玻尔兹曼定律。
(提示:15143π=-⎰∞dx e xx)解:λλπλλλd e hc d T M T M T k hc⎰⎰∞-∞-==52000112),()(令x Tk hc =λ,则dx kTxhc d 2-=λ,所以442545034234025252015212)(11)(2112)(TTch kdxexTc h k dxkTxhc e hckTx hc d e hc T M xxT k hcσπππλλπλ=⋅⋅=-=--=-=⎰⎰⎰∞∞∞-证毕。
2.实验测得太阳辐射波谱中峰值波长nm m 490=λ,试估算太阳的表面温度。
解:由维恩位移定律b T m =λ得到K bT m3931091.51049010897.2⨯⨯⨯==--=λ3.波长为450nm 的单色光射到纯钠的表面上(钠的逸出功A =2.29eV ),求: (1)这种光的光子能量和动量; (2)光电子逸出钠表面时的动能。
解:(1) 2.76eV J 1042.4104501031063.6199834==--⨯⨯⨯⨯⨯===-λhchv Es m /kg 1047.1104501063.6hp 27934⋅⨯⨯⨯---===λ(2)由爱因斯坦光电效应方程,得光电子的初动能为eV A hv E k 47.029.276.2=-=-=4.铝的逸出功是4.2eV ,现用波长nm 200=λ的紫外光照射铝表面。
试求: (1)发射的光电子的最大动能; (2)截止电压; (3)铝的红限频率。
解:(1)由光电效应方程得光电子的最大动能为J 102.3106.12.4102001031063.619199834----=⨯⨯⨯-⨯⨯⨯⨯=-=-=A hcA hv E k λ(2)截止电压V 0.2106.1102.319190=--⨯⨯==eE V k(3)红限频率Hz 1001.11063.6106.12.41534190⨯=⨯⨯⨯==--hA v5.在一次康普顿散射中,传递给电子的最大能量为MeV E 045.0=∆,试求入射光子的波长。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。
已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。
22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。
量⼦物理基础习题解量⼦物理基础17.1 夜间地⾯降温主要是由于地⾯的热辐射。
如果晴天夜⾥地⾯温度为-5°C ,按⿊体辐射计算,每平⽅⽶地⾯失去热量的速率多⼤?解:每平⽅⽶地⾯失去热量的速率即地⾯的辐射出射度2484W /m2922681067.5=??==-TM σ17.2 在地球表⾯,太阳光的强度是1.0?103W/m 2。
地球轨道半径以1.5?108km 计,太阳半径以7.0?108 m 计,并视太阳为⿊体,试估算太阳表⾯的温度。
解:42244TR I R M SE σππ==K103.51067.5)107.6(100.1)105.1(348283211422==S E R I R T 17.3宇宙⼤爆炸遗留在宇宙空间的均匀背景辐射相当于3K ⿊体辐射.求:(1)此辐射的单⾊辐射强度在什么波长下有极⼤值?(2)地球表⾯接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表⾯积为 S = 4πR 2.根据公式:⿊体表⾯在单位时间,单位⾯积上辐射的能量为 M = σT 4,因此地球表⾯接收此辐射的功率是 P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表⾯,求:(1)光电⼦的最⼤动能;(2)截⽌电压;(3)铝的红限波长。
解:(1) A chA h E k -=-=λνeV 0.22.4106.1102001031063.6199834=-=---(2)V 0.21/0.2/===e E U k c (3)Ahc c==0νλnm6.12.41031063.6719834=?==---17.5 康普顿散射中⼊射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与⼊射的X 射线垂直.求:(1)反冲电⼦的动能E K ;(2)散射X 射线的波长;(3)反冲电⼦的运动⽅向与⼊射X 射线间的夹⾓θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin2 2.42610sin24πλΛ-?==??= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电⼦的动能为`k hchcE λλ=810106.63103106.63103100.7100.7242610----=-= 9.52×10-17(J).(3)由于/`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹⾓为θ = 44°1`.17.6 求波长分别为71100.7-?=λm 的红光和波长1021025.0-?=λm 的X 射线光⼦的能量、动量和质量。
17-1 在加热黑体过程中,其单色辐出度的峰值波长是由μm 69.0变化到μm 50.0,求总辐出度改变为原来的多少倍?解:由 4)(T T M B σ=,b T m =λ 得 63.3)5.069.0()()()(442112===m m B B T M T M λλ17-2解:(1)m 10898.21010898.21073--⨯=⨯==T b m λ (2)J 1086.610898.21031063.61610834---⨯=⨯⨯⨯⨯===λνch h E 17-3解:(1)4)(T T M B σ=,K 17001067.5001.0/6.473)(484=⨯==-σT M T B(2)m 1070.1170010898.263--⨯=⨯==T b m λ (3)162)()()(441212===T T T M T M B B ,2612W/m 10578.7001.06.47316)(16)(⨯=⨯==T M T M B B17-4 钾的光电效应红限波长为μm 62.00=λ。
求:(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的截止电压。
解:(1)eV 2J 1021.31062.01031063.61968340=⨯=⨯⨯⨯⨯===---λνch h A (2)A h mv eU a -==ν221 V 76.11060.11021.3103301031063.619199834=⨯⨯-⨯⨯⨯⨯=-=-=----eA ch eA h U a λν17-5 铝的逸出功为eV 2.4。
今用波长为nm 200的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?截止电压为多大?铝的红限波长是多大?解:(1)eV 2J 1023.3106.12.4102001031063.621191998342≈⨯=⨯⨯-⨯⨯⨯⨯=-=-=----A c h A h mv λν (2)221mv eU a =,V 2eV2==eU a (3)Hz 10014.11063.6106.12.41534190⨯=⨯⨯⨯==--h A νnm 296m 1096.210014.1103715800=⨯=⨯⨯==-νλc17-6 在光电效应实验中,对某金属,当入射光频率为Hz 102.215⨯时,截止电压为V 6.6,入射光频率为Hz 106.415⨯时,截止电压为V 5.16。
精心整理量子物理习题解答习题17—1用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。
那么[ ](A)1ν一定大于2ν。
(B)1ν一定小于2ν。
(C)1ν一定等于2ν。
(D)1ν可能大于也可能小于2ν。
解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判习题 所以L (A)。
习题所以习题(A)1/4。
(B)1/8。
(C)1/16。
(D)1/32。
解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n = 所以电子的动能与量子数n 2成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。
习题17—5在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A)2。
(B)3。
(C)4。
(D)5。
解:由康普顿效应的能量守恒公式可得所以,应该选择答案(D)。
习题17—6设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ](A)mkT h 3=λ。
(B)mkT h 5=λ。
(C)h mkT 3=λ。
(D)h mkT 5=λ。
把此式代入德布罗意公式有所以因此,应该选择答案(D)。
习题17—10氩(Z =18)原子基态的电子组态是:[ ] (A)1S 22S 83P 8(B)1S 22S 22P 63d 8 (C)1S 22S 22P 63S 23P 6(D)1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。
第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。
· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。
2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。
3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。
对于一般的物体4T M εσ=e 称发射率。
4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。
黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
· 一个光子具有的能量为νh E =。
5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
与实物粒子相联系的波称为物质波或德布罗意波。
· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。
其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。
思考题18-1 把一块表面的一半涂了烟煤的白瓷砖放到火炉内烧,高温下瓷砖的哪一半显得更亮些?参考答案实验表明:一个良好的吸收体也是一个良好的发射体。
也就是说,一个物体吸收辐射的能量越强,那么它的热辐射能力也越强。
辐射本领越强的物体,单位时间内从表面辐射出来的能力越多,它的表面就显得越亮。
瓷砖涂了烟煤的一半在正常情况下更黑,说明比起未涂烟煤的一半,它吸收辐射的能力也更强,相应地,它的辐出度更高,所以在火炉内烧热后应该显得更亮一些。
18-2 刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么?参考答案从窗口进入的光线在屋里经过多次反射后极少能再从窗口反射出来,所以看起来窗口总是黑的。
这样的窗口就可看作是一个黑体。
18-3 为什么几乎没有黑色的花?参考答案如果花是黑颜色的,表明花对于可见光没有反射,也就是花将可见光波段的能力都吸收了,与其他颜色的花相比,黑色花的温度将更高,这样的花很可能会由于没有及时将能量从其他途径释放掉的机制而枯死。
另外,对于虫媒花来说,黑色是昆虫的视觉盲点,因而无法授粉。
18-4 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?参考答案光电效应方程为2012m c mv eU h A h eU νν==-=- (1)入射光强度的概念:单位时间内单位面积上的光子数乘以每个光子的能量。
如果频率不变,每个光子的能量就不变。
入射光强度增加一倍,意味着入射的光子数增加一倍,从而饱和电流强度将增加一倍。
截止电压不变(设频率不变)。
(2)入射光的频率增加一倍,h ν就增加一倍,每个光子的能量从h ν增加到2h ν。
从光电效应方程可以看出截止电压c U 相应地增加h e ν。
饱和电流的数值不变(因为单位时间入射的光子数密度未变)。
18-5 用一定波长的光照射金属表面产生光电效应时,为什么逸出金属表面的光电子的速度大小不同?参考答案金属中的电子是运动着的,它与金属中的离子有相互作用,不断与离子发生碰撞,导致它的动量发生变化。
量子物理习题解答习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。
那么[ ](A) 1ν一定大于2ν。
(B) 1ν一定小于2ν。
(C) 1ν一定等于2ν。
(D) 1ν可能大于也可能小于2ν。
解:根据光电效应方程,光电子的最大初动能为 A h E k -=ν由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。
习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ](A) 5/2。
(B) 5/3。
(C) 5/4。
(D) 5。
解:根据玻尔的理论,氢原子中电子的轨道上角动量满足n L = n =1,2,3……所以L 与量子数n 成正比。
又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A )。
习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ](A) 5/9。
(B) 4/9。
(C) 7/9。
(D) 2/9。
解:由巴耳末系的里德佰公式⎪⎭⎫⎝⎛-==221211~n R H λν n =3,4,5,…… 可知对应于最大波长m ax λ,n =3;对应于最小波长min λ,n =∞。
因此有 H H R R 53631211122max =⎪⎭⎫ ⎝⎛-=-λ; HH R R 421112min =⎪⎭⎫⎝⎛=-λ 所以953654max min =⨯=λ最后我们选择答案(A)。
习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为[ ](A) 1/4。
(B) 1/8。
(C) 1/16。
(D) 1/32。
第⼗⼋章量⼦物理基础-思考题和习题解答思考题18-1 把⼀块表⾯的⼀半涂了烟煤的⽩瓷砖放到⽕炉内烧,⾼温下瓷砖的哪⼀半显得更亮些?参考答案实验表明:⼀个良好的吸收体也是⼀个良好的发射体。
也就是说,⼀个物体吸收辐射的能量越强,那么它的热辐射能⼒也越强。
辐射本领越强的物体,单位时间内从表⾯辐射出来的能⼒越多,它的表⾯就显得越亮。
瓷砖涂了烟煤的⼀半在正常情况下更⿊,说明⽐起未涂烟煤的⼀半,它吸收辐射的能⼒也更强,相应地,它的辐出度更⾼,所以在⽕炉内烧热后应该显得更亮⼀些。
18-2 刚粉刷完的房间从房外远处看,即使在⽩天,它的开着的窗⼝也是⿊的。
为什么?参考答案从窗⼝进⼊的光线在屋⾥经过多次反射后极少能再从窗⼝反射出来,所以看起来窗⼝总是⿊的。
这样的窗⼝就可看作是⼀个⿊体。
18-3 为什么⼏乎没有⿊⾊的花?参考答案如果花是⿊颜⾊的,表明花对于可见光没有反射,也就是花将可见光波段的能⼒都吸收了,与其他颜⾊的花相⽐,⿊⾊花的温度将更⾼,这样的花很可能会由于没有及时将能量从其他途径释放掉的机制⽽枯死。
另外,对于⾍媒花来说,⿊⾊是昆⾍的视觉盲点,因⽽⽆法授粉。
18-4 在光电效应实验中,如果(1)⼊射光强度增加⼀倍;(2)⼊射光频率增加⼀倍,各对实验结果有什么影响?参考答案光电效应⽅程为2012m c mv eU h A h eU νν==-=- (1)⼊射光强度的概念:单位时间内单位⾯积上的光⼦数乘以每个光⼦的能量。
如果频率不变,每个光⼦的能量就不变。
⼊射光强度增加⼀倍,意味着⼊射的光⼦数增加⼀倍,从⽽饱和电流强度将增加⼀倍。
截⽌电压不变(设频率不变)。
(2)⼊射光的频率增加⼀倍,h ν就增加⼀倍,每个光⼦的能量从h ν增加到2h ν。
从光电效应⽅程可以看出截⽌电压c U 相应地增加h e ν。
饱和电流的数值不变(因为单位时间⼊射的光⼦数密度未变)。
18-5 ⽤⼀定波长的光照射⾦属表⾯产⽣光电效应时,为什么逸出⾦属表⾯的光电⼦的速度⼤⼩不同?参考答案⾦属中的电⼦是运动着的,它与⾦属中的离⼦有相互作⽤,不断与离⼦发⽣碰撞,导致它的动量发⽣变化。
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
一 选择题 (共30分)1. (本题 3分)(4387) 光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]2. (本题 3分)(4503) 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ]3. (本题 3分)(4739) 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量∆λ与入射光波长λ0之比值为 (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ ]4. (本题 3分)(4185) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是 (A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. [ ]5. (本题 3分)(4206) 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系:(A) v ∝λ . (B) v /1∝λ.(C) 2211c−∝v λ. (D) 22v −∝c λ. [ ]6. (本题 3分)(4242) 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4Å ,则U 约为 (A) 150 V . (B) 330 V .(C) 630 V . (D) 940 V . [ ](普朗克常量h =6.63×10-34J ·s)7. (本题 3分)(4770) 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同. (B) 能量相同.(C) 速度相同. (D) 动能相同. [ ]不确定关系式h ≥⋅∆∆x p x 表示在x 方向上(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定.(C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]9. (本题 3分)(5234) 关于不确定关系h ≥∆∆x p x ()2/(π=h h ,有以下几种理解:(1) 粒子的动量不可能确定.(2) 粒子的坐标不可能确定.(3) 粒子的动量和坐标不可能同时准确地确定.(4)不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是:(A) (1),(2). (B) (2),(4).(C) (3),(4). (D) (4),(1). [ ]10. (本题 3分)(5619) 波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 25 cm . (B) 50 cm .(C) 250 cm . (D) 500 cm . [ ]二 填空题 (共39分)11. (本题 3分)(0475) 某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V .当入射光的波长为__________________Å时,其遏止电压变为1.43 V . ( e =1.60×10-19 C ,h =6.63×10-34 J ·s )12. (本题 5分)(4179) 光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .13. (本题 4分)(4187) 康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.波长为λ =1 Å的X 光光子的质量为_____________kg . (h =6.63×10-34 J ·s)15. (本题 3分)(4608) 钨的红限波长是230 nm (1 nm = 10-9m),用波长为180 nm 的紫外光照射时,从表面逸出的电子的最大动能为___________________eV .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)16. (本题 3分)(4742) 某金属产生光电效应的红限为ν0,当用频率为ν (ν >ν0 )的单色光照射该金属时,从金属中逸出的光电子(质量为m )的德布罗意波长为________________.17. (本题 3分)(4740) 在X 射线散射实验中,散射角为φ 1 = 45°和φ 2 =60°的散射光波长改变量之比∆λ1:∆λ2 =_________________.18. (本题 3分)(4611) 某一波长的X 光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.19. (本题 3分)(4207) 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ =________________λc .20. (本题 3分)(4524) 静止质量为m e 的电子,经电势差为U 12的静电场加速后,若不考虑相对论效应,电子的德布罗意波长λ=________________________________.21. (本题 3分)(4771) 为使电子的德布罗意波长为1 Å,需要的加速电压为_______________. (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C ,电子质量m e =9.11×10-31 kg)在电子单缝衍射实验中,若缝宽为a = 0.1 nm (1 nm = 10-9 m),电子束垂直=______________N·s.射在单缝面上,则衍射的电子横向动量的最小不确定量∆py(普朗克常量h =6.63×10-34 J·s)三计算题 (共33分)23. (本题 8分)(4505)用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少?(2) 反冲电子获得的动能有多大?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me24. (本题 5分)(4522)为粒子考虑到相对论效应,试求实物粒子的德布罗意波长的表达式,设EK 的动能,m为粒子的静止质量.25. (本题 5分)(4535)若不考虑相对论效应,则波长为 5500 Å的电子的动能是多少eV?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me26. (本题 5分)(4631)假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me27. (本题10分)(1813)若光子的波长和电子的德布罗意波长λ相等,试求光子的质量与电子的质量之比.一 选择题 (共30分)1. (本题 3分)(4387) (C)2. (本题 3分)(4503) (D)3. (本题 3分)(4739) (B)4. (本题 3分)(4185) (D)5. (本题 3分)(4206) (C)6. (本题 3分)(4242) (D)7. (本题 3分)(4770) (A)8. (本题 3分)(4211) (D)9. (本题 3分)(5234) (C)10. (本题 3分)(5619) (C)参考解:根据 p = h / λ则 22/λλ∆∆=h p x λλ∆∆≥/2x min x ∆λλ∆=/2=5000×10-10×5000×103= 2.5 m= 250 cm二 填空题 (共39分)11. (本题 3分)(0475) 3.82×103 3分12. (本题 5分)(4179) λ/hc 1分λ/h 2分 )/(λc h 2分13. (本题 4分)(4187) π 2分 0 2分14. (本题 3分)(4250) 2.21×10-32 3分1.5 3分16. (本题 3分)(4742))(20νν−m h3分17. (本题 3分)(4740) 0.586 3分18. (本题 3分)(4611) 不变 1分 变长 1分 波长变长 1分3分20. (本题 3分)(4524) 2/112)2/(eU m h e 3分21. (本题 3分)(4771) 150 V 3分22. (本题 3分)(5372) 1.06×10-24 (或 6.63×10-24或0.53×10-24 或 3.32×10-24) 3分参考解:根据 h ≥∆∆y p y ,或 h p y y ≥∆∆,或h 21≥∆∆y p y ,或h p y y 21≥∆∆,可得以上答案.三 计算题 (共33分)23. (本题 8分)(4505) 解:(1) 康普顿散射光子波长改变: =−=∆)cos 1)((φλc hm e 0.024×10-10 m=+=∆λλλ0 1.024×10-10 m 4分 (2) 设反冲电子获得动能2)(c m m E e K −=,根据能量守恒: K e E h c m m h h +=−+=ννν20)(即 KE hc hc ++=∆)]/([/00λλλ故 )](/[00λλλλ∆∆+=hc E K =4.66×10-17 J =291 eV 4分24. (本题 5分)(4522) 解:据 202c m mc E K −=20220))/(1/(c m c c m −−=v 1分得 220/)(c c m E m K += 1分)/(220202c m E c m E E c K K K++=v 1分将m ,v 代入德布罗意公式得2022/c m E E hc h/m K K+==v λ 2分解:非相对论动能 221v e K m E =而 v e m p = 故有 eK m p E 22= 2分又根据德布罗意关系有 λ/h p = 代入上式 1分则 ==)/(2122λe K m h E 4.98×10-6 eV 2分26. (本题 5分)(4631) 解:若电子的动能是它的静止能量的两倍,则:2222c m c m mc e e =− 1分故: e m m 3= 1分由相对论公式 22/1/c m m e v −= 有 22/1/3c m m e e v −= 解得 3/8c =v 1分德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8−×≈ m 2分27. (本题10分)(1813) 解:光子动量: p r = m r c = h /λ ① 2分 电子动量: p e = m e v = h /λ ② 2分两者波长相等,有 m r c = m e v得到 m r / m e = v / c ③电子质量 220/1c v m m e −=④ 2分式中m 0为电子的静止质量.由②、④两式解出)/(122220h c m cv λ+=2分代入③式得)/(1122220h c m m m e r λ+= 2分。
量子物理基础--习题习题十五15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ 对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ 对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ 15-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度.解:炉壁小孔视为绝对黑体,其辐出度 242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T B K 1042.110)67.58.22(3341⨯=⨯= 15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A据光电效应公式221m mv hv =A + 则光电子最大动能:A hc A h mv E m -=-==λυ2max k 21 eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=---- m 2max k 21)2(mv E eU a ==Θ∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U (3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==A hc λ m 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到达眼睛的功率为多大?解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcnnh E 功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hc E n λ 每秒进入人眼的光子数为11462192s 1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==d nN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υ ο12A 02.0m 104271.2=⨯==-υλc122831020122s m kg 1073.21031011.9s m kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h c m mc E kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc 2.110=υυ则52.0112.110==-=-υυυ 15-9 波长ο0A 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X 射线波长各是多大?解:在2πϕ=方向上:ο1283134200A0243.0m 1043.24sin 1031011.91063.622sin 2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλc m h 散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ 在πϕ=方向上ο120200A 0486.0m 1086.422sin 2Δ=⨯===-=-cm h c m h ϕλλλ散射波长 ο0A 756.00486.0708.0Δ=+=+=λλλ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc=∴=经散射后 000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE 15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01c m c m c m c m mc E =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο1210831341034000A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h 由康普顿散射公式2sin 0243.022sin 22200ϕϕλλλ∆⨯==-=c m h 可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV6.13eV 85.0eV 75.12eV 6.13n-=-=+- 解得 4=n或者 )111(22n Rhc E -=∆ 75.12)11.(1362=-=n解出4=n题15-12图题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV5.12能量后,最高能激发到第n个能级,则]11[6.135.12,eV6.13],111[2221nRhcnRhcEEn-==-=-即得5.3=n,只能取整数,∴最高激发到3=n,当然也能激发到2=n的能级.于是ο322ο222ο771221A6563536,3653121~:23A121634,432111~:12A1026m10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-RRRnRRRnRRRnλυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hc E E hc E E hch VE V E V E a mn m n βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ 15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n=-51.16.1309.12.1366.132=-=n , 3=n 12r n r n =,92=n ,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解: oo A1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mv E k φ 它的速度为31191011.9106.14.122--⨯⨯⨯⨯==m E v k -15s m 100.7⋅⨯= 其德布罗意波长为:o 953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mv h λ 15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp 光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m ∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mp KT E k 2232==德布罗意波长 o A 456.13===mkThp h λ 15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm hv x ∆≥∆ 这粒子最小动能应满足222222min22)(21)(21mL h x m h x m h m v m E x =∆=∆≥∆= 15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为:λλ∆=∆2hcE 由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c E h t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯= 15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o 962=⨯=====-λ∆λλ∆λ∆∆p h x15-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化? 解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.15-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能.解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,xhP P x x ∆≥∆≥ ∴222222)(22ma h x m h m P E x x =∆≥=,即零点能为222ma h . 15-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:axax 23cos1)(πψ=︒ )(a x a ≤≤- 那么,粒子在a x 65=处出现的概率密度为多少? 解: 22*)23cos1(ax aπψψψ== aa a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ15-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(ax n a x n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a 41区间发现粒子的概率是多少? 解:x ax a x w d sin 2d d 22πψ== ∴ 在4~0a区间发现粒子的概率为: ⎰⎰⎰===4020244)(d sin 2d sin 2a a ax aa x a a x a x a dw p ππππ091.0)(]2cos 1[2124/0=-=⎰x ad a x a πππ15-28 宽度为a 的一维无限深势阱中粒子的波函数为x an A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大? 解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x an x a n A n a x x a n A 00222)(d sin d sin ππππ ⎰-=a x a n x a n A n a 02)(d )2cos 1(2πππ12222===A an A n a ππ∴ =A a2粒子的波函数 x a n a x πψsin 2)(=(2)当2=n 时, x aa πψ2sin 22= 几率密度]4cos 1[12sin 2222x aa x a a w ππψ-=== 令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x aπ, Λ,2,1,0,4==k k x aππ∴ 4ak x =又因a x <<0,4<k ,∴当4a x =和a x 43=时w 有极大值,当2ax =时,0=w .∴极大值的地方为4a ,a 43处 15-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?解:(1)2 )21(±=s m Θ(2))12(2+l ,每个l 有12+l 个l m ,每个l m 可容纳21±=s m 的2个量子态. (3)22n15-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的s l m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:0=l m ,1±,2±,21±=s m 15-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解:ηηη20)14(4)1(=+=+=l l L题15-31图磁场为Z 方向,ηl Z m L =,0=l m ,1±,2±,3±,4±. ∴ )4,3,2,1,0,1,2,3,4(----=Z L η15-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态. 解: (1)0=L (2)1=l , ηη2)11(1=+=L(3)2=l ηη6)12(2=+=L(4)3=l ηη12)13(3=+=L15-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。