一元一次方程知识点小结
- 格式:doc
- 大小:55.50 KB
- 文档页数:1
一元一次方程知识点总结方程是数学中的重要概念,它描述了一个等式中未知数与已知数之间的关系。
在代数学中,一元一次方程是最简单的方程形式,它包含一个未知数及其系数和常数项。
学好一元一次方程,对于进一步学习代数以及解决实际问题都具有重要意义。
本文将总结一元一次方程的基本概念、解法和应用。
一、基本概念一元一次方程的一般形式为ax + b = 0,其中a和b分别为已知系数和常数项,x为未知数。
方程中的x是未知数,我们要找到一个解使得方程成立。
当x满足方程时,称x为方程的解。
一元一次方程的重要性在于它描述了直线上的点,这条直线称为解空间。
解空间是一个自变量和因变量之间的关系集合。
二、解法方法1. 移项法:通过移项将方程化简为x = c的形式,其中c为常数。
移项法是最常用也是最简单的解法方法。
通过逐步迭代将常数项和未知数项移到等式两侧,直到x的系数为1,就得到方程的解。
例如:2x + 3 = 7,可以先将3移到等式的右边,得到2x = 7 - 3,再将2移到等式的右边,得到x = (7 - 3) / 2,最终解得x = 2。
2. 因式分解法:如果方程可以进行因式分解,我们可以很快地求解方程。
例如:2x + 4 = 0,可以将方程两边都除以2,得到x + 2 = 0,然后通过因式分解得到(x + 2) = 0,进一步解得x = -2。
3. 消元法:当方程中存在多个未知数时,可以通过消元法将未知数相互抵消,留下只含一个未知数的方程。
例如:3x + 2y = 8,2x - 5y = -7,可以先将其中一条方程乘以适当的常数,使得两个方程中未知数的系数相等或相差一个整数倍,然后将两个方程相加或相减,得到只含一个未知数的方程,进而解得未知数。
三、应用一元一次方程在实际问题中有广泛应用。
举例如下:1. 速度问题:速度等于路程除以时间。
通过设定未知数的含义,可以建立一元一次方程求解速度。
例如:小明骑自行车以每小时10公里的速度向前行x小时后,骑行的总路程为100公里。
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
牛娃出品、必属精品一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式不变.若a b=那么a c b c+=+②等式两边同时乘以或除以同一个不为0的整式,等式不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.牛娃出品、必属精品二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了牛娃出品、必属精品要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax ba≠)的形式.=(0⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.牛娃出品、必属精品(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。
1、方程必须具备的两个条件(1)是等式。
(2)含有未知数。
(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。
符号语言:如果a=b,那么B土C=B土C。
(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。
三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。
(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。
依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。
依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。
(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。
4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。
依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。
依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。
(2)检验方程的解是否符合实际意义。
6、写出答案。
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
一元一次方程单元复习与巩固 一元一次方程单元复习与巩固一元一次方程单元复习与巩固一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a ≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数;(2) 未知数的次数是1次;(3) 整式方程.2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果b a =,那么c b c a ±=±;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果b a =,那么bc ac =;如果)0(≠=c b a ,那么cb c a =要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:mb ma bm amb a ÷÷==(其中m ≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:6.12.045.03=+--x x ,将其化为:6.1241053010=+--x x 。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤常用步骤 具体做法 依据 注意事项去分母 在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号 一般先去小括号,再去中括号,最后去大括号 去括号法则、分配律 注意变号,防止漏乘;移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1 移项要变号,不移不变号;合并同类项 把方程化成ax =b(a ≠0)的形式 合并同类项法则计算要仔细,不要出差错; 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解 a bx =等式基本性质2计算要仔细,分子分母勿颠倒 要点诠释: 理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:一元一次方程单元复习与巩固 一元一次方程单元复习与巩固①a ≠0时,方程有唯一解a b x =;②a=0,b=0时,方程有无数个解; ③a=0,b ≠0时,方程无解。
一元一次方程知识点总结一元一次方程是高中数学的基础内容,也是解决实际问题中常见的一种数学模型。
下面是我对一元一次方程的知识点的总结:一、一元一次方程的基本概念1. 方程的定义和基本性质:方程是由等号连接的两个代数式构成的等式,方程中含有一个未知数。
2. 一元一次方程的定义:一元一次方程是含有一个未知数,且未知数的最高次数为1的方程。
3. 方程的解:对于一元一次方程,其解就是使得方程成立的未知数的值,也即方程中满足等号两边相等的数值。
二、一元一次方程的解法1. 移项法:将方程中的项移到等号两侧,使等号两边只有未知数。
2. 合并同类项:将方程中同类项合并,使方程简化。
3. 消元法:通过加减乘除等运算来消去方程中的系数和常数,最终得到未知数的值。
三、解一元一次方程的常用方法1. 原方程法:直接将原方程逐步化简,最终解得未知数的值。
2. 换元法:引入一个新的未知数,通过替换的方式简化方程,使得方程能够更容易求解。
3. 系数比较法:将方程与其他已知的一元一次方程进行系数的比较,从而求得未知数的值。
四、解一元一次方程的步骤1. 观察方程:确定方程的类型和形式。
2. 移项:将方程中未知数的项移到等号两侧。
3. 合并同类项:对方程中的同类项进行合并。
4. 消元:通过加减乘除等运算,将方程化简为未知数的项和常数项。
5. 求解:根据简化后的方程,求得未知数的值。
6. 检验:将求得的未知数代入原方程,验证解的正确性。
7. 唯一解、无解和无数解:根据方程的求解结果,判断方程的解的情况。
五、一元一次方程的应用1. 简单的实际问题:例如,甲、乙两个数之和是10,甲比乙多2,求甲和乙分别是多少。
2. 代数表达式的求解:例如,求一个数的三倍加2等于11,求这个数是多少。
3. 几何问题的求解:例如,某直角三角形的两条直角边长度之和是10,求这两条直角边的长度。
综上所述,一元一次方程是高中数学中的重要内容,解一元一次方程是我们解决实际问题的常用方法。
一元一次方程知识点总结一、知识1.含有未知数的等式叫方程2.只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程二、知识1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y.2.若关于x 的方程3x3a+1-5=0是一元一次方程, 则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+___,这是根据等式的性质1,在等式两边同时______. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时________.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a, 利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨, 预计6月份产量是a 吨, 比5月份增长x%, 那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3, 求k2-1+k 的值9.利用等式性质解方程: - x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?三、直通中考[2008年山东中考]下列方程是一元一次方程的是( ).A. -5x+4=3y2B. 5(m2-1)=1-5m2C. 2-D. 5x-33.2-3.3解一元一次方程【一元一次方程合并同类项与移向】一、基础知识把等式一边的某项变号后移向等式的另一边, 叫做移向。
(移向要变号)二、知识题库1.在1,-2, 21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2.3.若代数式21-x +612x 与31-x +1的值相等,则x=____. 4.如果2x 5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____. 5.如果x =-2是方程3x +5= -m 的解, 那么m2=____.6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数, 三个数位上的和是17, 百位上的数比十位上的数大7, 个位上的数是十位上的3倍, 求这个三位数.10.某市居民生活用电基本价格为每度0.40元, 若每月用电量超过a 度, 超出部分按基本电价的70%收费.(1)某户五月份用电84度, 共交电费30.72元, 求a.(2)若该户六月份的电费平均为每度0.36元, 求六月份共用电多少度?应交电费多少元?三、直通中考[2010年辽宁中考]已知关于x的方程ax+2=2(a-x), 它的解满足|x+|=0, 则a=_。
初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。
2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。
3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。
4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。
5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。
6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。
7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。
8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。
9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。
10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。
一元一次方程知识点
一元一次方程是指形式为ax + b = 0的方程,其中a和b是已
知实数,x是未知数。
以下是一元一次方程的关键知识点:
1. 方程的解:一元一次方程的解是使方程成立的数值。
解是方
程的根,可以通过解方程找到使方程成立的x的值。
2. 方程的系数:方程中的参数a和b是方程的系数。
它们是已知实数,决定方程的形式和解的特性。
系数a不能为0,否则方程将不再是一元一次方程。
3. 等式性质:一元一次方程中的等式性质成立。
即,方程两边同时加减、乘除一个数,仍保持相等。
通过利用等式性质,可以进行方程的
化简、合并同类项等操作。
4. 方程求解方法:解一元一次方程的常用方法有逆运算法和代入法。
逆运算法指通过逆向运算将方程转化为x = 某个数的形式,得到唯一解。
代入法指先假设一个解,将其代入方程,验证是否满足等式,若
满足则是方程的解。
5. 图形表示:一元一次方程可以通过图形来表示。
由于一元一次方程
的图像是一条直线,所以方程的解对应于直线与x轴的交点。
掌握了一元一次方程的相关知识,可以解决与实际问题有关的线
性关系的计算和分析,如求未知数的值、确定两个变量之间的关系等。
一元一次方程知识点总结一元一次方程是由一个未知数和其系数构成的方程,其中未知数的最高次数为1。
它是初中数学的基础内容,也是解决实际问题的重要工具。
本文将对一元一次方程的定义、解法、性质以及应用进行总结。
一、一元一次方程的定义一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。
在方程中,a称为x的系数,b称为常数项。
1. 解的定义:对于一元一次方程ax + b = 0,满足这个方程的实数x 称为方程的解。
2. 解集表示:方程的解可以通过求解过程得到,解集用花括号{}表示。
二、一元一次方程的解法1. 移项法:对于一元一次方程ax + b = 0,我们可以通过移项的方式求解。
- 如果方程中未知数x的系数不为0,我们可以将常数项b移到等号的另一侧,即ax = -b,再通过除以系数a的操作得到x的值。
- 如果方程中未知数x的系数为0,方程变为0 = 0,这种情况下方程的解是任意实数。
2. 消元法:如果给定的一元一次方程有两个未知数和两个方程,我们可以利用消元法求解。
- 通过消元,将两个方程中的一个未知数消去,得到只含有一个未知数的一元一次方程,然后利用移项法求解。
三、一元一次方程的性质1. 唯一解:一元一次方程只有一个解或者无解。
如果方程的系数是非零实数,那么方程有且只有一个解;如果方程的系数为0,那么方程有无穷多个解。
2. 一次性质:一元一次方程的最高次数为1,即方程中未知数的指数为1,没有其他次数的项。
3. 等式性质:一元一次方程可以通过等式性质进行等式运算,即可以在等式两边同时加减相同的数、乘除相同的非零数,仍然保持等式成立。
四、一元一次方程的应用1. 解决实际问题:一元一次方程可以应用于各种实际问题的求解,如速度、距离、时间等之间的关系问题。
- 例如,已知某车以每小时60公里的速度行驶,行驶t小时后的总路程为100公里,可以通过建立一元一次方程来求解t的值,进而得到行驶的时间。
一元一次方程 知识点
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).
3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
(2)画图分析法: ………… 多用于“行程问题”
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 时间距离速度=
速度距离时间=; (2)工程问题: 工作量=工效·工时工时工作量工效=工效
工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率=比率
部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折·10
1 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,
S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=3
1πR 2h.。
一元一次方程知识点总结一、一元一次方程的概念1. 定义- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一元一次方程的一般形式是ax + b=0(a≠0),其中x是未知数,a是未知数的系数,b是常数项。
例如2x + 3 = 0就是一个一元一次方程,这里a = 2,b=3。
2. 方程的解- 使方程左右两边相等的未知数的值叫做方程的解。
例如方程x+1 = 3,当x = 2时,方程左边=2 + 1=3,方程右边=3,所以x = 2就是方程x + 1=3的解。
二、一元一次方程的解法1. 移项- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
例如在方程2x+3 = 5x - 1中,为了求解x,我们把5x移到左边变为-5x,把3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
2. 合并同类项- 在移项后,我们需要对同类项进行合并。
例如在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程就变为-3x=-4。
3. 系数化为1- 方程两边同时除以未知数的系数,将未知数的系数化为1,从而得到方程的解。
在方程-3x=-4中,两边同时除以-3,得到x=(4)/(3)。
这一步的依据是等式的基本性质2:等式两边同时乘(或除以)同一个不为0的整式,等式仍然成立。
三、一元一次方程的应用1. 列方程解应用题的一般步骤- 审:审题,理解题意,找出题目中的已知量、未知量以及它们之间的关系。
- 设:设未知数,一般有直接设元和间接设元两种方法。
例如,若要求某个数,可直接设这个数为x;若通过某个数与其他数的关系来求解,可间接设与这个数有关的量为x。
- 列:根据题目中的等量关系列出方程。
- 解:解这个方程,求出未知数的值。
- 验:检验方程的解是否符合题意,包括是否满足方程本身以及实际问题中的条件。
解方程的知识点总结一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
例如:2x + 3=5x - 1。
2. 一般形式。
- 一元一次方程的一般形式是ax + b = 0(a≠0),其中x是未知数,a是系数,b 是常数项。
3. 解法步骤。
- 移项:把含有未知数的项移到等号一边,常数项移到等号另一边。
注意移项要变号,例如方程3x+5 = 2x - 1,移项后变为3x - 2x=-1 - 5。
- 合并同类项:将等号两边的同类项进行合并,如上面移项后的方程合并同类项得到x=-6。
- 系数化为1:在方程ax = b(a≠0)的形式下,将x的系数a化为1,即x=(b)/(a)。
4. 实际应用。
- 步骤:审(审题,找出等量关系)、设(设未知数)、列(根据等量关系列出方程)、解(解方程)、答(检验并作答)。
例如:已知甲、乙两人相距100千米,甲的速度是20千米/小时,乙的速度是30千米/小时,两人同时相向而行,问多久后相遇?设x小时后相遇,根据路程 = 速度×时间,可列方程20x+30x = 100,解得x = 2小时。
二、二元一次方程组。
1. 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个二元一次方程联立在一起,就组成了二元一次方程组。
例如x + y=5 2x - y = 1。
2. 解法。
- 代入消元法:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如方程组x + y=5 2x - y = 1,由第一个方程x + y=5可得x = 5 - y。
- 将变形后的式子代入另一个方程,消去一个未知数,得到一个一元一次方程。
把x = 5 - y代入2x - y = 1,得到2(5 - y)-y = 1。
- 解这个一元一次方程,求出一个未知数的值。
一元一次方程知识点总结【知识点总结】1、定义:满足① ② ③ 的式子叫一元一次方程。
例题1:判断下列方程中属于一元一次方程的是( )(1)x-3 (2)x 2-1=0 (3)2x -3=0 (4)x -y=0 (5)x+=2 (6)2x 2-1=1-2(2x-x 2) 例题2:若方程3x 2m-1+1=6是关于x 的一元一次方程方程,则m 的值是 。
2、方程的解:知解则代入例题:已知5是关于x 的方程3x -2a=7的解,则a 的值为 。
3、等式的性质:(1)性质一: 。
(2)性质二: 。
【注意】性质二中等式两边同除时,除数不能 。
例题1:(2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为去分母,得3(3x+5)=2(2x-1). (__________________________)去括号,得9x+15=4x-2. (__________________________)(____________________),得9x-4x=-15-2. (___________________________) 合并,得5x=-17. (合并同类项)(____________________),得x=. (_________________________) 例题2下列说法正确的是 ( )(A )在等式两边除以a ,可得b c = (B )在等式b c a a=两边都乘以a ,可得b c = (C )在等式a b =两边都除以(21c +),可得2211a b c c =++ (D )在等式22x a b =-两边除以2,可得x a b =- 4、解方程:步骤与常见错误步骤一: 。
常见错误:① 。
② 。
二: 。
常见错误:① 。
② 。
三: 。
常见错误: 。
四: 。
五: 。
常见错误: 。
5、应用题类型类型一:销售利润问题(1) 与销售有关的量:进价(成本价)、标价(原价)、售价(现价)、利润、利润率、让利(2) 有销售有关的公式:① 利润=售价-进价=标价×打折数-进价=标价×打折数-让利-进价=进价×利润率② 售价=标价×打折数=标价×打折数-让利类型二:工程问题(1)若一件工程甲6天独自做完,则甲的工作效率为: 。
一元一次方程知识点归纳总结初一一、基本概念一元一次方程是指含有一个未知数且最高次数为一的方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b为已知数,a≠0。
二、解一元一次方程的方法1. 通过逆运算确定未知数的值:将方程中的常数项逐步移项,并利用逆运算逐步消去系数,最终求得未知数的值。
2. 使用图像法:将方程中的未知数表示在一个坐标系中,将方程化为y = ax + b的形式,通过绘制直线与x轴的交点确定未知数的值。
三、一元一次方程的性质与性质的应用1. 方程的根与方程的解:方程的根是使得方程成立的数值,方程的解是方程的根所形成的值。
2. 方程的解与方程的图像:一元一次方程的解是方程对应的直线与x轴的交点所确定的x值,该点在坐标系中的位置代表方程的解。
3. 方程的无穷多解:当方程的系数a和b同时为0时,方程将变为恒等式,即对于任意的x值方程都成立,此时方程有无穷多解。
4. 方程的无解:当方程的系数a为0,而b不为0时,方程无解。
四、一元一次方程的解题方法1. 利用逆运算解方程:根据题目条件将方程化简后,通过逆运算逐步求解未知数的值。
2. 利用图像法解方程:将方程转化为y = ax + b的形式,绘制方程对应的直线,并通过直线与x轴的交点确定未知数的值。
五、一元一次方程的应用1. 问题的建立:将实际问题转化为方程的形式,确定未知数和已知量。
2. 问题的求解:根据建立的方程,通过解方程找到未知数的值,从而得到问题的解。
六、例题解析1. 已知一元一次方程为3x + 5 = 8,求解x的值。
解:通过移项和逆运算,可得3x = 8 - 5,即3x = 3,进一步得x = 1。
2. 当x = 2时,方程2x + 3 = 7是否成立?解:将x = 2代入方程2x + 3 = 7,得到左边为2 * 2 + 3 = 7,右边为7,由此可知方程成立。
七、总结通过学习一元一次方程的基本概念、解法和应用,我们可以更好地理解和应用数学知识。
一元一次方程解题要点小结
1、列一元一次方程解应用题的一般步骤:
(1)审题:弄清题意,找出已知条件;
(2)找准等量关系;
(3)设未知数,列方程:利用找出的等量关系列方程;
(4)解方程:注意解方程的一般步骤(去分母、去括号、移项、合并同类项、
未知数系数化为1);
(5)检验,作答。
2、和差倍分问题:
增长量=原有量⨯增长率 现有量=原有量+增长量
3、等积变形问题:熟悉常见几何图形的周长、面积、体积公式
=圆柱V =圆锥V =长方体V =正方体V
=圆S
4、打折销售问题:
(1)进价售价利润-= %100-⨯==
进价
进价售价进价利润利润率 变式:进价利润率进价售价⨯=- (2)销量销售价商品销售额⨯= 销售量成本价)(销售价商品销售利润⨯=
- (3)商品打几折出售,就是按原价的百分之几十出售;
5、工程问题:
工作时间工作效率工作量⨯=
一般情况下:1==总工作量量的和完成某项任务的各工作
若完成全部工作的时间为t ,则工作效率为 t 1
6、调配或比例问题:
一般按照比例设未知数,列方程
7、储蓄问题:
期数利率本金利息⨯⨯= 利息本金本息和+=
注:利率一般对应年利率或月利率,期数须与之相对应
8、行程问题: vt S = t
S v = v S t = (1)相遇问题:原距慢行距快行距=+
(2)追及问题:原距慢行距快行距= -
(3)航行问题:水流(风)速度静水(风)速度顺水(风)速度+=
水流(风)速度静水(风)速度顺水(风)速度 -=
注:该类问题抓住两地间距离不变,水流速或风速静止不变的特点考虑等量关系。