耐热钢等力学性能数据 力学性能
- 格式:xls
- 大小:76.00 KB
- 文档页数:52
硫酸工业用XD系列特种合金材料介绍及与zecor等材料特性比较一.硫酸工业用系列金属合金材料1.耐热钢①XD-1奥氏体耐热钢XD-1是以铬镍为基础,以钨和钼辅助合金化并配以高碳的奥氏体耐热钢。
碳化物是主要强化相。
温度<700℃具有良好的热强性;温度<800℃具有良好的抗氧化性。
820~850℃退火后的室温和高温力学性能如表1所示,表2是该钢的抗氧化性能。
表1. 退火后的XD-1耐热钢力学性能温 度,℃ σb, Mpa σ0.2, Mpa δ, %20 706 314 20600 568 323 18700 363 206 33表2. XD-1耐热钢抗高温氧化性能试验温度,℃ 800 850 900氧 化 速 度g/m2·h 0.2165 1.0535 2.2928 0.3688 0.7019 2.1957尤其值得指出的是XD-1耐热钢尚具有一个独特的性能,即是在600~700℃温度范围内有强烈的时效倾向。
在这一温度范围内使用时合金强度和硬度非但不降低反而有所提高。
非常适於制造使用温度在700℃以下的阀门和坚固件,尤其是高温金属弹性硬密封蝶阀。
XD-1耐热钢是硫酸工业用610℃抗SO2腐蚀的高温金属硬密封蝶阀的阀板、阀座、阀杆及紧固螺栓的优良材料。
②XD-4奥氏体耐热钢XD-4是以高铬镍为基础,同时以硅、氮和稀土等元素补充合金化的奥氏体耐热钢。
具有较高的高温强度和组织稳定性以及耐急冷急热性。
尤其是具有良好的高温抗氧化性、抗渗碳性和抗硫化腐蚀能力。
最高使用温度为1200℃。
在900~1200℃其主要性能超过传统的Cr25Ni20(Si)耐热钢。
XD-4耐热钢高温力学性能如表3。
表4是XD-4高温强度与4Cr25NI20耐热钢的比较。
图1是XD-4耐热钢在温度1200℃抗氧化性能及其与4Cr25Ni20Si2等耐热钢的比较。
表3. XD-4耐热钢高温力学性能试验温度, ℃ σb, Mpa δ, % 500 559 30.4600 516 28.8700 432 20.2800 326 12.2900 220 13.01000 130 17.01100 65 37.01200 31 30.2表4. XD-4高温强度与4Cr25Ni20耐热钢比较(σb,Mpa)钢 种 900℃ 1000℃ 1100℃ 1200℃ XD-4 220 130 65 314Cr25Ni20 157 101 --- ---图1.XD-4高温抗氧化性能与25-20耐热钢的比较由表3、表4和图1可以看到,XD-4耐热钢具有比25-20传统耐热钢高的高温强度。
HII耐热钢板技术条件
一、HII钢板简介
HII属于耐热钢,耐热钢是指在较高温度下、局部温度可达到600℃、在长时间负荷情况下仍能显示出特性的钢种。
HII钢板应是镇静钢。
也就是说,不允许采用沸腾钢钢或半镇静钢。
HII交货状态,应用正火状态交货。
二、HII钢板执行标准
执行标准:DIN17155-1983
三、HII钢板应用
HII耐热钢,主要供制造蒸汽锅炉设备、压力容器、大型压力管道及类似构件用的热轧钢板。
主要用于制造50立方米以上的球型贮罐,也可用于制造单层卷焊容器、多层热套卷焊容器、多层包扎容器等二、三类容器及低温压力容器。
广泛应用于石油、化工、电站、锅炉等行业,用于制作反应器、换热器、分离器、球罐、油气罐、液化气罐、锅炉汽包、液化石油汽瓶、水电站高压水管、水轮机蜗壳等设备及构件。
四、HII钢板制造方法
HII钢板采用氧气顶吹转炉法、平炉法或在电炉中熔炼。
五、HII钢板化学成分
表1
2)Cr、Cu、Mo、和Ni各种元素含量之总和不得大于0.70%。
3)Al含量在熔炼时测定并记入证明书。
七、HII钢板力学性能
2.如屈服点不明显,此数值适用于0.2%屈服强度。
3.厚度≤10mm钢板,其最低值为285牛顿/毫米
表4高温下的0.2%屈服强度1)2)
1)表3中规定的室温中的屈服点值为50℃以下的计算数据,对于50℃到200℃的温度
范围,则按照室温和200℃时范围规定的数值用线性内插法计算;为此应以室温为出发点,即采用表3中每一钢板厚度所规定的屈服点值。
耐热钢棒标准主要涉及到以下方面:
1. 材质:耐热钢棒应采用优质的耐热钢材料制造,具有良好的高温强度、抗氧化性和耐腐蚀性。
2. 尺寸和外形:耐热钢棒应按照规定的尺寸和外形标准进行生产和加工,保证尺寸精确、外形规整。
3. 机械性能:耐热钢棒应具有良好的机械性能,包括高强度、高硬度、良好的韧性等,以适应高温环境下的使用要求。
4. 表面质量:耐热钢棒的表面应光滑、无裂纹、无夹杂、无氧化皮等缺陷,以保证其在使用过程中的耐腐蚀性和抗氧化性。
5. 热处理:耐热钢棒应进行适当的热处理,以改善其内部组织结构,提高其高温性能。
6. 检测和试验:耐热钢棒应进行严格的检测和试验,包括化学成分分析、力学性能测试、金相组织检验等,以确保其质量符合标准要求。
7. 包装和标识:耐热钢棒应进行适当的包装和标识,以方便运输和储存,同时保证产品信息的可追溯性。
耐热钢性能和耐腐蚀指标耐热钢基本信息简介耐热钢(heat-resisting steels)在高温条件下,具有抗氧化性和足够的高温强度以及良好的耐热性能的钢称作耐热钢。
类别耐热钢按其性能可分为抗氧化钢和热强钢两类。
抗氧化钢又简称不起皮钢。
热强钢是指在高温下具有良好的抗氧化性能并具有较高的高温强度的钢。
耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。
用途耐热钢常用于制造锅炉、汽轮机、动力机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。
这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊耐热钢分类珠光体钢马氏体钢含铬量一般为7~13%,在650℃以下有较高的高温强度、抗氧化性和耐水汽腐蚀的能力,但焊接性较差。
含铬12%左右的1Cr13、2Cr13,以及在此基础上发展出来的钢号如1Cr11MoV,1Cr12WMoV,2Cr12WMoNbVB等,通常用来制作汽轮机叶片、轮盘、轴、紧固件等。
此外,作为制造内燃机排气阀用的4Cr9Si2,4Cr10Si2Mo 等也属于马氏体耐热钢。
铁素体钢含有较多的铬、铝、硅等元素,形成单相铁素体组织,有良好的抗氧化性和耐高温气体腐蚀的能力,但高温强度较低,室温脆性较大,焊接性较差。
如1Cr13SiAl,1Cr25Si2等。
一般用于制作承受载荷较低而要求有高温抗氧化性的部件。
奥氏体钢含有较多的镍、锰、氮等奥氏体形成元素,在 600℃以上时,有较好的高温强度和组织稳定性,焊接性能良好。
通常用作在 600℃以上工作的热强材料。
典型钢种有1Cr18Ni9Ti, 1Cr23Ni13, 1Cr25Ni20Si2,2Cr20Mn9Ni2Si2N,4Cr14Ni14W2Mo等。
耐热钢生产工艺冶炼耐热钢一般在电弧炉或感应炉中熔炼。
质量要求高的往往采用真空精炼和炉外精炼工艺。
铸造某些高合金耐热钢难以加工变形,生产铸件不仅比轧材合算,而且铸件还有较高的持久强度。
耐热钢的高温力学性能耐热钢的基本性能是它在高温下的力学性能和耐腐蚀性能,同时还有常温下的力学性能、工艺性能和物理性能等。
耐热钢的高温力学性能主要包括蠕变性能、持久强度、疲劳性能、松弛性能等。
1 蠕变性能耐热材料的蠕变是指温度高于0.5T下,材料所承受的应力远低熔点于屈服强度的应力时,随着加载时间的持续增加而产生的缓慢塑性变形现象。
通常用蠕变曲线来描述材料的蠕变规律。
在实践中通常使用条件蠕变极限来测定耐热钢的蠕变性能。
条件蠕变极限是指在获得一定变形速率,在规定时间内获得一定总变形量的应力。
一般用下列两种方式表示:表示;1) 以伸长率确定蠕变极限时,用σδτ/τ表示。
2) 以蠕变速率确定蠕变极限时,用σv在工程实践中常用规定的蠕变速率确定蠕变极限。
汽轮机、锅炉设备零部件的工作时间一般规定为105h。
用于汽轮机、锅炉设备的耐热钢,其条件蠕变极限的确定是以105h变形为1%时的应力来计算零部件的强度。
2 持久强度耐热材料的持久强度是指在给定的温度下和规定的时间内断裂时的强度,要求给出的只是此时所能承受的最大应力。
持久强度试验不仅反映材料在高温长期应力作用下的断裂应力,而且还表明断裂时的塑性(即持久塑性)。
耐热材料零部件在高温下工作的时间长达几百小时,几千小时,甚至几万小时,而持久强度试验不可能进行那么长时间,一般只做一些应力较高而时间较短的试验,然后根据这些试验数据利用外推法,得出更长时间的持久强度值。
但外推法所得持久强度值可能与实际值有差距,因此,重要的材料仍需进行长达数万小时的持久强度试验。
耐热材料零部件由于温度波动会加速蠕变过程,降低持久强度。
有些耐热钢有缺口敏感性。
缺口所造成的应力集中对持久强度的影响决定于试验温度、缺口的几何形状、钢的持久塑性、热处理工艺及钢的成分等因素。
3 疲劳性能高温下工作的材料,除经受机械疲劳之外,还经受热疲劳作用。
材料经多次反复热应力循环以后导致破坏的过程称为热疲劳。
航空发动机涡轮叶片、导向叶片、涡轮盘及汽轮机叶片等部件经常处于温度急剧交变情况下工作.使材料内部承受交变的热应力,同时伴随着弹性变形的循环,由此引起塑性变形逐渐积累损伤,最后导致材料破坏。
耐热钢总论1.耐热钢是指在高温下工作的钢材。
耐热钢的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。
由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。
这里所谈的温度是个相对的概念。
最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。
直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。
随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。
现在,耐热钢的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。
为了适应各种工作条件不断发展的要求,耐热钢也在不断地发展。
从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。
现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。
1)珠光体型低合金热强钢该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。
2)马氏体型热强钢该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。
Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。
但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。
3)阀门钢阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。