4-3高厚比验算
- 格式:ppt
- 大小:305.00 KB
- 文档页数:16
砌体结构设计墙、柱的高厚比验算墙柱高厚比(Ratio of Hight to Sectional Thickness of Wall or Column):砌体墙、柱的计算高度与规定厚度的比值。
即规定厚度对墙取墙厚,对柱取对应的边长,对带壁柱墙取截面的折算厚度。
墙、柱的高厚比验算的主要目的在于保证墙柱的稳定性。
砌体结构设计规范[附条文说明] GB 50003-2011 第6.1节6.1.1 墙、柱的高厚比应按下式验算:β=H0/h≤μ1μ2 [β](6.1.1)式中:H0——墙、柱的计算高度;h——墙厚或矩形柱与H0相对应的边长;μ1——自承重墙允许高厚比的修正系数;μ2——有门窗洞口墙允许高厚比的修正系数:[β]——墙、柱的允许高厚比,应按表6.1.1采用。
注:1 墙、柱的计算高度应按本规范第5. 1.3条采用;2 当与墙连接的相邻两墙间的距离s≤μ1μ2[β]h时,墙的高度可不受本条限制;3 变截面柱的高厚比可按上、下截面分别验算,其计算高度可按第5. 1.4条的规定采用。
验算上柱的高厚比时,墙、柱的允许高厚比可按表6.1.1的数值乘以1.3后采用。
表6.1.1 墙、柱的允许高厚比[β]值注:1 毛石墙、柱的允许高厚比应按表中数值降低20%;2 带有混凝土或砂浆面层的组合砖砌体构件的允许高厚比,可按表中数值提高20%,但不得大于28;3 验算施工阶段砂浆尚未硬化的新砌砌体构件高厚比时,允许高厚比对墙取14,对柱取11。
6.1.2 带壁柱墙和带构造柱墙的高厚比验算,应按下列规定进行:1 按公式(6.1.1)验算带壁柱墙的高厚比,此时公式中h应改用带壁柱墙截面的折算厚度hT,在确定截面回转半径时,墙截面的翼缘宽度,可按本规范第4.2.8条的规定采用;当确定带壁柱墙的计算高度H0时,s应取与之相交相邻墙之间的距离。
2 当构造柱截面宽度不小于墙厚时,可按公式(6.1.1)验算带构造柱墙的高厚比,此时公式中h取墙厚;当确定带构造柱墙的计算高度H0时,s 应取相邻横墙间的距离;墙的允许高厚比[β]可乘以修正系数μc,μc可按下式计算:μc=1+γ(bc/l) (6.1.2)式中:γ——系数。
pkpm钢结构高厚比验算摘要:1.pkpm 钢结构高厚比验算的背景和意义2.pkpm 钢结构高厚比的计算方法和限值3.pkpm 钢结构计算中出现高厚比超限的问题和解决方法4.pkpm 钢结构计算中的其他注意事项5.结论和建议正文:一、pkpm 钢结构高厚比验算的背景和意义pkpm 是一种广泛应用于钢结构设计的软件,其中涉及到的高厚比验算,是指对钢结构中腹板的局部稳定性进行计算和检验。
高厚比主要是指腹板的高度与厚度的比值,这个比值对于钢结构的稳定性和安全性有着重要的影响。
因此,在进行钢结构设计时,对高厚比进行验算,可以确保设计方案的合理性和安全性。
二、pkpm 钢结构高厚比的计算方法和限值在pkpm 中,高厚比的计算方法是通过腹板的高度和厚度来确定的。
通常情况下,高厚比的限值是由设计规范来规定的,一般情况下,高厚比的限值不应大于3。
如果计算得到的高厚比超过这个限值,就需要对设计方案进行调整,以确保结构的安全性。
三、pkpm 钢结构计算中出现高厚比超限的问题和解决方法在使用pkpm 进行钢结构计算时,有时会出现高厚比超限的问题。
这可能是由于设计方案不合理,或者计算参数设置不当等原因导致的。
对于这个问题,可以通过调整设计方案,或者修改计算参数来解决。
比如,可以尝试增加腹板的厚度,或者减小腹板的高度,以降低高厚比。
四、pkpm 钢结构计算中的其他注意事项在进行pkpm 钢结构计算时,还需要注意一些其他的问题,比如构件的规格和材料性能等。
构件的规格应该根据实际需求和设计规范来选择,材料性能也应该根据实际情况来确定。
这样才能保证计算结果的准确性和可靠性。
五、结论和建议pkpm 钢结构高厚比验算是钢结构设计中非常重要的一环,对于确保结构的安全性和稳定性有着重要的作用。
在进行高厚比验算时,应该严格按照设计规范和计算方法来进行,同时,还需要注意一些其他的问题,比如构件的规格和材料性能等。
第三章 无筋砌体构件承载力的计算3.1柱截面面积A=0.37×0.49=0.1813m 2<0.3 m 2砌体强度设计值应乘以调整系数γa γa =0.7+0.1813=0.8813查表2-8得砌体抗压强度设计值1.83Mpa ,f =0.8813×1.83=1.613Mpa7.1037.06.31.10=⨯==h H βγβ 查表3.1得:ϕ= 0.8525 kN N kN N fA 1403.249103.249101813.0613.18525.036=>=⨯=⨯⨯⨯=ϕ满足要求。
3.2(1)沿截面长边方向按偏心受压验算 偏心距mm y mm N M e 1863106.06.03210350102.1136=⨯=<=⨯⨯== 0516.062032==h e 548.1362070002.10=⨯==h H βγβ 查表3.1得:ϕ= 0.6681 柱截面面积A=0.49×0.62=0.3038m 2>0.3 m 2 γa =1.0查表2-9得砌体抗压强度设计值为2.07Mpa , f =1.0×2.07=2.07 MpakN N kN N fA 35015.4201015.420103038.007.26681.036=>=⨯=⨯⨯⨯=ϕ满足要求。
(2)沿截面短边方向按轴心受压验算14.1749070002.10=⨯==h H βγβ 查表3-1得:φ0= 0.6915因为φ0>φ,故轴心受压满足要求。
3.3(1)截面几何特征值计算截面面积A=2×0.24+0.49×0. 5=0.725m 2>0.3m 2,取γa =1.0 截面重心位置m y 245.0725.025.024.05.049.012.024.021=⎪⎭⎫ ⎝⎛+⨯⨯+⨯⨯= y 2=0.74-0.245=0.495m截面惯性矩()()232325.0495.05.049.0125.049.012.0245.024.021224.02-⨯⨯+⨯+-⨯⨯+⨯=I =0.02961m 4截面回转半径 m A I i 202.0725.002961.0=== T 形截面折算厚度h T =3.5i=3.5×0.202=0.707m(2)承载力m y m N M e 147.0245.06.06.01159.0630731=⨯=<=== 164.0707.01159.0==T h e 22.12707.02.72.10=⨯==T h H βγβ 查表3-1得:ϕ= 0.4832 查表2-7得砌体抗压强度设计值f =2.07Mpa则承载力为 kN kN N fA 63016.7251016.72510725.007.24832.036>=⨯=⨯⨯⨯=ϕ3.4(1)查表2-8得砌体抗压强度设计值f =1.83 Mpa砌体的局部受压面积A l =0.2×0.24=0.048m 2影响砌体抗压强度的计算面积A 0=(0.2+2×0.24)×0.24=0.1632m 2(2)砌体局部抗压强度提高系数 5.1542.11048.01632.035.01135.010>=-+=-+=l A A γ 取5.1=γ (3)砌体局部受压承载力kNN kN N fA l 13576.1311076.13110048.083.15.136=≈=⨯=⨯⨯⨯=γ%5%46.2%10076.13176.131135<=⨯- 承载力基本满足要求。
带壁柱墙和带构造柱墙的高厚比验算
(一)带壁柱墙
1.整片墙的高厚比验算
按公式(4—1—1)验算带壁柱壁柱墙的高厚比,此时,仅将h改为hT,得:
式中hT——带壁柱墙截面的折算厚度,hT=3.5i;
i——带壁柱墙截面的回转半径,i=/I/A;
I、A——分别为带壁柱墙截面的惯性矩和面积。
确定带壁柱墙的计算高度Ho时,墙长s取相邻横墙间的距离。
确定截面回转半径j时,带壁柱墙截面的翼缘宽度bf应按下列规定采用:
对于多层房屋,取相邻壁柱间距离;当有门窗洞口,可取窗间墙宽度;若左、右壁柱间距离不等时,取bf=(s1+s2)/2,s1、s2分别为左右壁柱间的距离。
对于单层房屋,取bf=b+2H/3(b——壁柱宽度,H——墙高),且bf小于或等于相邻窗间墙的宽度或相邻壁柱间的距离。
2.壁柱间墙的高厚比验算
按公式(4—1—1)验算,此时墙的长度s取壁柱间的距离。
不论带壁柱墙的静力计算方案采用哪一种,壁柱间墙H的计算,可一律按刚性方案考虑。
设有钢筋混凝土圈梁的带壁柱墙,当6/5≥1/30时,圈梁可视作壁柱间墙的不动铰支点(b为圈梁宽度)。
如具体条件不允许增加圈梁宽度,可按等刚度原则(墙体平面外刚度相等)增加圈梁高度,以满足壁柱间墙不动铰支点的要求,即在上述情况下,有圈梁时墙的计算高度可取圈梁之间的距离。
(二)带构造柱墙
1.带构造柱墙的高厚比验算
1)按表2—5—1确定墙的计算高度玎o
2)按下列公式验算带构造柱墙体的高厚比:。
一.工程概况1.建筑名称:北京体育大学6号学生公寓2.结构类型:砌体结构3.层数:4层,层高:2.8m。
4.开间:3.6m,进深:5.7m。
5.建筑分类为二类,耐火等级为二级,抗震设防烈度为八度。
设计地震分组为第一组。
6.天然地面下5 ~ 10m无地下水,冰冻深度为地面以下2~ 4m处,口类场地。
7.外墙采用240厚页岩煤阡石多孔砖,内墙采用150厚陶粒空心砌块。
8.楼、地、屋面采用钢筋混凝土现浇板,条形基础,基础顶标高-1.000m。
墙体采用页岩煤阡石多孔砖,内墙、厨、厕及阳台处隔墙为200厚,其余墙体厚度均为240。
砖块强度采用MU15 ,±0.000以下采用M7.5混合砂浆。
±0.000以上采用M5混合砂浆。
构造柱设置见建筑图。
二.静力计算方案本工程横墙最大间距S max=7.2m,小于刚性方案横墙最大间距S max=32m,静力计算方案属于刚性方案。
本工程横墙厚度为240mm > 180mm,所有横墙水平截面的开洞率均小于50%, 横墙为刚性横墙。
本工程外墙水平截面开洞率小于2/3,层高2.8m ,4层总高度为11.2m,屋面自重大于0.8kN/m2,本地区基本风压为0.45kN /m2,按规范4.2.6条,可不考虑风荷载影响。
三.墙身高厚比验算1.允许高厚比[0]本工程采用采用砂浆最低强度等级为M5.0,查书表3-4,墙身允许高厚比[0]=24。
2 .由建筑图纸所示,外横墙取22轴和@、@轴间墙体验算,内横墙取£6轴和@、且轴 间墙体验算。
外纵墙取C 轴和16 ~位轴间门厅处墙体验算,内纵墙取E 轴和16 ~旦轴 间门厅处墙体验算。
1 )外横墙:S=5.7+1.8=7.5m , H=2.8+0.45+0.5=3.75m , 2H =7.5m , 2H>S查表 3-3 H 0=0.4S+0.2HH 0=3.75m , h=240mm , N =1.2 ,b H / 3 75N =1 - 0.4 — = 0.824 , p = H -=——=15.632 Sh 0.24叫N 2[p ]=1.2 x 0.824 x 24=23.73P =15.63 < N 1N 2[P]=23.73,满足要求。
4.3 墙柱高厚比验算将一块块的砖从地面往上叠砌,当砌到一定的高为什么要验算墙、柱的高厚比?度时,即使不受外力作用这样的砖墩也将倾倒。
若砖墩的截面尺寸加大,则其不致倾倒的高度显然也要加大。
若砖墩上下或四周边的支承情况不同,则其不致倾倒的高度也将不同。
混合结构房屋中,砌体结构及其构件必须满足承载力计算的要求外,还必须保证其稳定性。
在《砌体结构设计规范》中规定,用验算墙、柱高厚比的方法来进行墙、柱稳定性的验算。
4.3 墙柱高厚比验算高厚比验算主要包括三个问题: 一是允许高厚比的限制;二是墙、柱实际高厚比的确定; 三是哪些墙需要验算高厚比。
4.3 墙柱高厚比验算4.3.1 允许高厚比及影响高厚比的因素根据工程实践经验,经过大量调查研究及理论校核得到墙、柱允许高厚比值,墙、柱允许高厚比,应按《砌体结构设计规范》表6.1.1采用表 6.1.1 墙、柱允许高厚比[b ]值这是在特定条件下规定的允许值,当实际的客观条件有所变化时,有时是有利一些,有时是不利一些,所以还应该从实际条件出发作适当的修正。
砂浆的强度等级墙柱M2.52215M5.02416≥M7.52617注:1 毛石墙、柱允许高厚比应按表中数值降低20%;2 组合砖砌体构件的允许高厚比,可按表中数值提高20%,但不得大于28;3 验算施工阶段砂浆尚未硬化的新砌体高厚比时,允许高厚比对墙取14,对柱取11。
4.3 墙柱高厚比验算4.3.1 允许高厚比及影响高厚比的因素允许高厚比的影响因素砌筑砂浆的强度等级;拉接墙的间距;支承条件;砌体类型;砌体材料的质量和施工技术水平; 构件重要性(承重墙与非承重墙); 砌体截面型式(如:是否开洞); 构造柱截面及间距;房屋使用情况(有无振动荷载)。
4.3 墙柱高厚比验算表 6.1.1墙、柱允许高厚比[b ]值根据弹性稳定理论,对用同一材料制成的等高、等截面杆件,当两端支承条件相同,且仅承受自重作用时失稳的临界荷载比上端受有集中荷载的要大,所以非承重墙的允许高厚比的限值可适当放宽。