课时估计--初中数学
- 格式:xls
- 大小:63.00 KB
- 文档页数:6
25.3 用频率估计概率教学时间课题25.3.2利用频率估计概率课型新授课教学目标知识和能力了解模拟实验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力。
过程和方法初步学会对一个简单的问题提出一种可行的模拟实验。
情感态度价值观1、提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。
2、渗透数形结合思想和分类思想。
教学重点理解用模拟实验解决实际问题的合理性。
教学难点会对简单问题提出模拟实验策略。
教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、问题情境:小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。
袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。
同学们能否求出摸出的2只恰好是一双的可能性?问:同学们能否通过实验估计它们恰好是一双的可能性?如果手边没有袜子应该怎么办?问:在摸袜子的实验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做实验吗?答:不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。
注意:实验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的。
问:假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗?答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。
问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样?答:小球的颜色不影响恰好是一双的可能性大小二、问题3:一个学习小组有6名男生3名女生。
老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。
你能设计一种实验来估计“被抽取的3人中有2名男生1名女生”的概率的吗?下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗?若不合理请说明理由:需要研究的问题用替代物模拟实验的方法用什么实物一枚硬币一枚图钉怎样实验抛起后落地抛起后落地考虑哪一事件出现的机会正面朝上的机会钉尖朝上的机会需要研究的问题用替代物模拟实验的方法用什么实物3个红球2个黑球3个男生名字2个女生名字怎样实验摸出1个球摸出1个名字考虑哪一事件出现的机会恰好摸出红球的机会恰好摸出男生名字的机会三、随堂练习。
2020 年中考总复习第一讲《实数》【教学目标】1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法与近似数的概念,能按要求用四舍五入法求一个数的近似值,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.【教学重难点】教学重点是实数的概念及运算;教学难点是非负数 a2、|a|、 a (a≥0)的综合应用。
【教学过程】教学环节教学内容设计意图知识点1:实数的分类⎧⎧⎧正整数⎫⎪⎪⎪⎪⎪⎪整数⎨零⎪⎪有理数⎪⎪负整数⎪⎨⎩⎬实数⎪⎪⎪⎨⎪⎧正分数⎪⎪⎪分数⎨⎪⎪⎩⎩负分数⎭⎪⎧正无理数⎫无理数⎨⎬⎪⎩⎩负无理数⎭1、(2019 桂林)若海平面以上1045 米,记作+1045 米,则海平面以下155 米,记作()(A)-1200 米(B)-155 米(C)155 米(D)1200 米2、(2019 峡西)已知实数-1,0.16, 3 ,π,25 ,23 4 ,其中为无理数的是.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.1.数轴:规定了原点、正方向和单位长度的直线借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.2.相反数:像 2 和-2 这样,只有符号不同的两个数互为知识点 2:相反数.特别地,0 的相反数是 0.数轴、相 3.倒数:乘积为 1 的两个数互为倒数;反数、倒 4.绝对值:数轴上,表示数a的点与原点的距离叫做数a的数、绝对绝对值,记作|a|.正数的绝对值是它本身,负数的绝对值值是它的相反数,0 的绝对值是 0.3、(2019 广州) | -6|= ( )A.-6 B.6 C.-1D.1 6 64、(2019 玉林) 9 的倒数是 ( )A.1B.-1C.9 D.-9 9 95、(2017 广州)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )(A)-6 (B)6 (C)0 (D)无法确定1.科学记数法示,下列式子成立的是( )(A)a>b (B)|a|<|b| (C)a+b>0 (D a<0)b知识点 6:实数的运算1、六种基本运算:加、减、乘、除、乘方、开方.2、运算顺序:先算乘方、开方,最后算加减.如果有括号,就先算括号里面的;同级运算要按照从左到右的顺序进行.3、运算律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a b=b a乘法结合律:(a b)c=a(b c)分配律:(a+b)c=a c+b c、2019深圳)计算:9-2cos600+(1)-1+(π-3.14)0812、(2018 广东)已知a -b +b -1 = 0 ,则a +1 =.13.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a ⊗b=2a+b.例如3 ⊗ 4=2×3+4=10.求4 ⊗(一3)的值.熟练掌握实数的运算,小结有理数无理数实数的分类科学记数法、近似数作差比较法实数实数的大小比较作商比较法数轴图示法数轴、相反数倒数、绝对值常考运算及法则实数的运算实数的混合运算顺序总结本节课的主要内容,形成知识网络。
2023年人教版初中数学教学设计2023年人教版初中数学教学设计1一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。
教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×32看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向运动米2 ×(-3)=④(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。
③任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
4估算一、基本目标1.掌握估算的方法,能估计一个无理数的大致范围,培养学生估算的意识,发展学生的数感.2.通过估算检验计算结果的合理性,估计一个无理数的大致范围,并通过估算比较两个数的大小.3.掌握估算的方法,形成估算的意识,发展数感.二、重难点目标【教学重点】估计一个无理数的大致范围.【教学难点】用估算法解决实际问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P33~P34的内容,完成下面练习.【3 min反馈】1.估算下列数的大小:(1)13.6(结果精确到0.1);(2)3800(结果精确到1).解:(1)因为3.6<13.6<3.7,所以13.6≈3.6或3.7.(2)因为9<3800<10,所以3800≈9或10.2.通过估算,比较下列各组数的大小:(1)3-12与12;(2)15与3.85.解:(1)因为3<2,所以3-1<1,即3-12<12.(2)因为3.852=14.8225,15>14.8225,所以15>3.85.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】通过估算比较下列各组数的大小:(1)6+12与1.5;(2)326与2.1.【互动探索】(引发学生思考)比较数的大小的方法有哪些?【解答】(1)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.(2)因为26<27,所以326<327.即326<3,但接近于3,所以326>2.1.【互动总结】(学生总结,老师点评)比较两数大小的常用方法有:①作差比较法;②求值比较法;③移因式于根号内,再比较大小;④利用平方比较无理数的大小等.活动2巩固练习(学生独学)1.估算下列数的大小.(1)269(误差小于0.1);(2)3900(误差小于1).解:(1)∵16.4<269<16.41,∴269≈16.40(只要是16.4与16.41之间的数都可以).(2)∵9<3900<10,∴3900≈9.6(只要是9与10之间的数都可以).2.通过估算,比较下面各数的大小.(1)5-12与0.5;(2)195与14.解:(1)∵5>2,∴5-1>1,即5-12>0.5.(2)∵142=196,∴195<14.活动3拓展延伸(学生对学)【例2】已知a是8的整数部分,b是8的小数部分,求(-a)3+(b+2)2的值.【互动探索】8在哪两个整数之间?它的小数部分如何表示?【解答】因为2<8<3,a 是8的整数部分,所以a =2.因为b 是8的小数部分,所以b =8-2.所以(-a )3+(b +2)2=(-2)3+(8-2+2)2=-8+8=0.【互动总结】(学生总结,老师点评)解此题的关键是确定8的整数部分和小数部分(用这个无理数减去它的整数部分即为小数部分).环节3 课堂小结,当堂达标(学生总结,老师点评)估算⎩⎪⎨⎪⎧无理数的取值范围比较大小请完成本课时对应练习!。
课时练第25章概率初步25.3 用频率估计概率一、单选题1.“十一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法错误的是()A.转动转盘20次,一定有6次获得“文具盒”铅笔文具盒B.转动转盘一次,获得“铅笔”的概率大约是0.70C.再转动转盘100次,指针落在“铅笔”区域的次数不一定是68次D.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次2.有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是()A.16个B.20个C.24个D.25个3.如图①所示,一张纸片上有一个不规则的图案(图中画图部分),小雅想了解该图案的面积是多少,她采取了以下的办法:用一个长为5m,宽为3m的长方形,将不规则图案围起来,然后在适当位置随机地向长方形区域扔小球,并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图②所示的折线统计图,由此她估计此不规则图案的面积大约为()A.6m2B.5m2C.4m2D.3m24.在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是()A.1100B.12C.23D.不确定5.在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后再重复上述步骤;…如表是实验中记录的部分统计数据:则袋中的红球可能有()A.8个B.6个C.4个D.2个6.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子.若转动转盘2000次,指针落在“一袋橘子”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是()A.0.3B.0.7C.0.4D.0.27.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率.表格如下,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的骰子,向上面的点数是“5”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是58.一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球()个A.12B.15C.18D.249.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,右表是活动中的一组数据,则摸到白球的概率约是()A.0.58B.0.64C.0.59D.0.6010.不透明布袋中装有除颜色外完全相同的红、白球,已知红、白球共有60个,同学们通过多次试验后发现摸到红色球的频率稳定在14左右,则袋中红球个数可能为()A.30B.25C.20D.1511.一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜外都相同.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则白球的个数n的值可能是()A.1B.2C.4D.512.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.抛一枚硬币,连续两次出现正面的概率B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.任意写一个正整数,它能被5整除的概率D.掷一枚正六面体的骰子,出现1点的概率13.为了估计暗箱里白球的数量(箱内只有白球),将6个红球放进去,这些球除颜色外其他都相同,搅匀后随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现白球出现的频率稳定在0.6附近,那么可以估计暗箱里白球的个数约为()A.15B.10C.9D.4二、填空题14.在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在30%左右,则口袋中白球可能有_____个.15.黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是____.16.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为______平方米(精确到0.01平方米).17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为_______(精确到0.10).18.在一个不透明的袋子里装有红球6个,黄球若干个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.3左右,则袋子中黄球的个数可能是___个.19.在一个不透明的袋子中装有若干个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,记录颜色后放回,共进行了300次操作,其中白球出现了50次,由此估计红球的个数为_________.三、解答题20.下表是某校服生产厂对一批夏装校服质量检测的情况∶(1)从这批校服中任意抽取一套是合格品的概率的估计值是.(结果精确到0.01)(2)若要生产19000套合格的夏装校服,估计该厂要生产多少套夏装校服?21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______.(结果保留小数点后一位)(2)试估算口袋中黑、白两种颜色的球各有多少只?(3)如果再加入若干个白球后,使摸到白球的概率为0.8,求加入的白球数量.22.在一只不透明的袋子中装有黑球、白球共10个,这些球除颜色外都相同,小明每次摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过2000次重复摸球实验后,共摸出黑球1205次.(1)估计袋中有黑球________个;(2)小明从袋中取出n个黑球后,小明从袋中剩余的球中随机摸出一个球是黑球的概率为13,求n的值.23.某射击运动员在同一条件下的射击成绩记录如下:(1)根据上表估计这名运动员射击一次时“射中九环以上”的概率约为.(结果保留两位小数)(2)小明想了解该运动员连续两次射击都“射中九环以上”的概率,他将这个问题进行了简化,制作了三张不透明卡片,其中两张卡片的正面写有“中”,第三张卡片的正面写有“未中”,卡片除正面文字不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录文字后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽取的卡片上都写有“中”的概率.参考答案1.A2.B3.A4.B5.C6.A7.C8.A9.D10.D11.B12.B13.C14.715.2个16.1.8817.0.8018.1419.1020.(1)0.95(2)根据(1)的合格概率估计为:19000÷0.95=20000(套),答:该厂估计要生产20000套夏装校服.21.解:(1)根据题意得:当n 很大时,摸到白球的频率将会接近0.6; (2)∶当n 很大时,摸到白球的频率将会接近0.6,∶摸到白球的概率为35, ∶摸到黑球的概率为25, ∶口袋中黑球有22085⨯=(个) ,白球有320125⨯= (个); (3)设加入的白球有x 个,则白球一共有()12x + 个,根据题意得: 120.820x x+=+ , 解得:20x.经检验,符合题意 22.(1)1205100%60.25%60%2000⨯=≈, 1060%6⨯=(个);∶估计袋中有黑球6个;故答案是6.(2)取出n 个黑球后,还剩下()6n -个黑球,总共剩余()10n -个球, 由题意得61103-=-n n ,解得4n =; 23.解:(1)“射中九环以上”的概率约为0.6680.6660.6670.673P ++=≈, 故答案是:0.67.(2)列表如下由图可知,总的情况数是9种,满足两次抽取的卡片上都写有“中”的有4种,由概率公式:∶P(两次抽取的卡片上都写有“中”)49.11/ 11。
初中数学下册课程讲解教案教学目标:1. 知识与技能:学生能够理解平方差公式的含义,并能够运用平方差公式进行计算。
2. 过程与方法:学生通过观察、归纳和类比的方法,发现平方差公式的规律,并能够灵活运用。
3. 情感态度与价值观:学生培养对数学的兴趣和探究精神,提高解决问题的能力。
教学重点:平方差公式的理解和运用。
教学难点:平方差公式的灵活运用。
教学过程:1. 导入(5分钟)教师通过复习平方根的概念,引导学生思考两个平方根之间的关系,从而引出平方差的概念。
2. 新课讲解(15分钟)教师通过示例,讲解平方差公式的推导过程,让学生理解平方差公式的含义。
同时,引导学生发现平方差公式的规律,让学生体会数学知识之间的联系。
3. 练习与讨论(10分钟)教师给出一些练习题,让学生独立完成,巩固对平方差公式的理解。
然后,组织学生进行小组讨论,分享解题心得,互相学习。
4. 总结与拓展(5分钟)教师引导学生总结平方差公式的运用方法,提醒学生注意平方差公式的灵活运用。
同时,给出一些拓展题目,激发学生的探究兴趣。
教学评价:1. 课堂讲解:教师关注学生的学习状态,及时解答学生的疑问,引导学生理解和掌握平方差公式。
2. 练习与讨论:教师检查学生的练习成果,关注学生的解题思路和方法,鼓励学生进行思考和交流。
3. 总结与拓展:教师引导学生总结平方差公式的运用方法,关注学生的拓展能力。
教学反思:本节课通过导入、新课讲解、练习与讨论、总结与拓展等环节,让学生理解和掌握平方差公式。
在教学过程中,教师要注意关注学生的学习状态,及时解答学生的疑问,引导学生理解和掌握平方差公式。
同时,要注重培养学生的思考和交流能力,提高学生解决问题的能力。
在课后,教师要加强对学生的辅导,及时检查学生的学习成果,提高学生的数学水平。
初中七年级数学课程纲要1、课程名称:初中七年级数学上册课程纲要2、教学材料:北京师范大学出版社4、授课时间:共80—90课时5、授课教师:八千乡第一初级中学七年级全体数学教师6、授课对象:七年级学生一、课程目标:1、能从现实生活中抽象出常见的几何体,并能进行简单的分类。
2、经历展开折叠和切截,从不同方向看等数学活动,积累数学活动经验。
3、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
4、会求有理数的相反数与绝对值。
5、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算.6、理解有理数的运算律,并能运用运算律简化运算。
7、能运用有理数的运算解决简单的问题。
8、在现实情境中进一步理解用字母表示数的意义。
9、能分析简单问题的数量关系,并用代数式表示.10、能解释一些简单代数式的实际背景或几何意义。
11、会求代数式的值;12、通过丰富的实例,进一步认识角。
13、会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
14、了解角平分线及其性质。
15、能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
16、会解一元一次方程.17、能用科学计数法表示大数.18、能从条形统计图、折线统计图、扇形统计图中获取信息,能制作扇形统计图。
19、了解不同统计图的特征,能根据具体问题选择合适的统计图清晰、有效的表示数据。
20、能用计算器处理较为复杂的数据21、经历猜测、试验、收集与分析试验结果等活动过程。
22、初步体验有些事件的发生是确定的,有些则是不确定的,能区分确定事件与不确定事件。
23、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,能列举出简单试验所有可能发生的结果,并和同伴交流想法。
二、内容标准与教学安排:第一章丰富的图形世界内容标准:1.认识常见的几何体的基本特征,并能用语言描述出来,能对它们进行正确的分类。
初中数学教学计划(精选20篇)初中数学教学计划初中数学教学计划(精选20篇)光阴迅速,一眨眼就过去了,我们将带着新的期许奔赴下一个挑战,不如为接下来的教学做个教学计划吧。
怎样写教学计划才更能吸引眼球呢?以下是小编精心整理的初中数学教学计划(精选20篇),仅供参考,大家一起来看看吧。
初中数学教学计划1一、学情分析本学期担任七年级四班的数学教学工作,班级学生的人数在50人左右。
根据小学升初中考试的情况来分析,数学成绩并不理想,总体的水平一般,高分段学生少,低分段的学生较多,说明学生学习态度不够认真,学习的自觉性不高,学习习惯不够好。
根据上述情况本期的工作重点放在端正学生的学习态度,激发学生学习数学的热情,培养学生的学习习惯上,强调学生对数学学习方法的掌握,重视知识的运用。
二、教学设想(具体措施)1、教学理念——运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不断探究更好的教育方法。
2、日常教学——认真做好个人日常教学工作,把课堂教学作为提高成绩的主阵地。
认真研读新课程标准,钻研新教材,认真备课,认真上课,记录好教学反思笔记。
认真批改学生作业,认真辅导,认真制作测试试卷,引导学生学会学习。
在日常教学中,和学生一起讨论研究体验他们接受知识的方式,与同事在合作的基础上竞争,取人长,补己短,共同进步。
3、学生工作——激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,布置数学课外思考题,激发学生学习的兴趣。
设计好的开头尽量以引趣的形式引入课题集中学生的注意力,在课堂教学中以“练”为主,纠正他们解答题目的不规范,培养学生良好的学习习惯。
4、教学具体措施——教学上开展分层教学。
优生提升能力,扎实打牢基础,严格要求,端正他们的学习态度,抑制他们产生骄傲情绪;差生,掌握一些关键知识,为他们以后的发展铺平道路,扭转他们的厌学现象,利用空余时间对他们进行辅导,在平时的课堂中多给予提问,给后进生树立信心。