2019年湖北省武汉市中考数学试题
- 格式:doc
- 大小:430.50 KB
- 文档页数:13
○……………○…………装学校:___________姓○……………○…………装绝密★启用前2019年湖北省武汉市中考数学真题试卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.-2019的相反数是( ) A .2019B .-2019C .12019D .12019-2x 的取值范围是( ) A .0x >B .1x -C .1xD .1x ≤3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A .B .C .D .6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )装…………○………○……※要※※在※※装※※订装…………○………○……A.B.C.D.7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程240ax x c++=有实数解的概率为()A.14B.13C.12D.238.已知反比例函数kyx=的图象分别位于第二、第四象限,()11,A x y、()22,B x y两点在该图象上,下列命题:①过点A作AC x⊥轴,C为垂足,连接OA.若ACO∆的面积为3,则6k=-;②若12x x<<,则12y y>;③若12x x+=,则12y y+=其中真命题个数是()A.0 B.1 C.2 D.39.如图,AB是O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,ACB∠的角平分线交O于点D,BAC∠的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A B.2πC.32D10.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a=,用含a的式子表示这组数的和是()A.222a a-B.2222a a--C.22a a-D.22a a+第II卷(非选择题)二、填空题11_______.12.武汉市某气象观测点记录了5天的平均气温(单位:C︒),分别是25、20、18、23、27,这组数据的中位数是___________…外………装…………○……订………线……姓名:___________班________考号:___…内………装…………○……订………线……13.计算221164a a a ---的结果是___________14.如图,在ABCD 中,E 、F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小为___________15.抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是___________16.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,MG =点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________三、解答题 17.计算:()32242x x x -⋅18.如图,点A 、B 、C 、D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,CE DF ,求证:E F ∠=∠19.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,…外…………○装…………○…○…………线※※※要※※在※※装※※订※…内…………○装…………○…○…………线(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为__________ (2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有多少人? 各类学生人数条形统计图各类学生人数扇形统计图20.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由 (1)如图1,过点A 画线段AF ,使AFDC ,且AF DC =(2)如图1,在边AB 上画一点G ,使AGD BGC ∠=∠ (3)如图2,过点E 画线段EM ,使EM AB ∥,且EM AB =21.已知AB 是O 的直径,AM 和BN 是O 的两条切线,DC 与O 相切于点E ,分别交AM 、BN 于D 、C 两点 (1)如图1,求证:24AB AD BC =⋅(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若2ADE OFC ∠=∠,1AD =,求图中阴影部分的面积…………○…………………○……学校:______…………○…………………○……22.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2)由于某种原因,该商品进价提高了m 元/件(0)m >,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值 23.在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=…………○……………………○……答※※题※※…………○……………………○……②如图3,若M 是BC 的中点,直接写出tan BPQ 的值(用含n 的式子表示)参考答案1.A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2019的相反数是﹣2019.故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.C【解析】【分析】根据二次根式有意义的条件进行求解即可.【详解】由题意得:x-1≥0,解得:x≥1,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键. 3.B【解析】【分析】根据袋子中球的个数以及每样球的个数对摸出的3个球的颜色进行分析即可.【详解】袋中一共6个球,有4个黑球和2个白球,从中一次摸出3个球,可能3个都是黑球,也可能2个黑球1个白球,也可能2个白球1个黑球,不可能3个都是白球,故选项A、C、D都是可能事件,不符合题意,选项B是不可能事件,符合题意,故选B.本题考查了确定事件及随机事件,把握相关概念,正确进行分析是解题的关键.4.D【解析】【分析】根据轴对称图形的概念逐一进行分析即可得.【详解】A.不是轴对称图形,故不符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的识别,熟知“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形”是解题的关键.5.A【解析】【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】从物体左面看,左边2个正方形,右边1个正方形,形状如图所示:故选A.【点睛】本题考查了简单组合体的三视图,明确左视图是从物体左面看所得到的图形是解题的关键,切记将三种视图混淆而错误的选其它选项.6.A【解析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除B选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C、D选项,故选A.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7.C【解析】【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可.【详解】由题意,△=42-4ac≥0,∴ac≤4,画树状图如下:a、c的积共有12种等可能的结果,其中积不大于4的有6种结果数,所以a、c的积不大于4(也就是一元二次方程有实数根)的概率为61= 122,故选C.【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键. 8.D【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数ky x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k=-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键. 9.A 【解析】 【分析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F 四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为Rπ,DA R,进而求出点E的运动路径为弧AEB,弧长为2R,即可求得答案.【详解】连结BE,∵点E是∠ACB与∠CAB的交点,∴点E是△ABC的内心,∴BE平分∠ABC,∵AB为直径,∴∠ACB=90°,∴∠AEB=180°-12(∠CAB+∠CBA)=135°,为定值,AD BD=,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵AD BD=,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A 、E 、B 、F 四点共圆,∴∠DAE =∠DEA =67.5°,∴DE =DA =DF ,∴点D 为弓形AB 所在圆的圆心,设⊙O 的半径为R ,则点C 的运动路径长为:R π,DA,点E 的运动路径为弧AEB,弧长为:901802R π=, C 、E=故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E 运动的路径是解题的关键.10.C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.250+251+252+…+299+2100=a+2a+22a+ (250)=a+(2+22+…+250)a,∵232222+=-,234++=-,222222345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.11.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.23【分析】将这组数据按从小到大的顺序排列,然后根据中位数的概念进行求解即可.【详解】数据由小到大排列为:18、20、23、25、27,所以,中位数为23,故答案为:23.【点睛】本题考查了中位数,熟练掌握中位数的概念以及求解方法是解题的关键.13.14a + 【解析】【分析】先通分,然后根据同分母分式加减法法则进行计算即可.【详解】原式=()()()()244444a a a a a a +-+-+- =()()()2444a a a a -++- =()()444a a a -+- =14a +, 故答案为:14a +. 【点睛】本题考查了异分母分式的加减法,熟练掌握异分母分式加减法的运算法则是解题的关键. 14.21°.【解析】【分析】由直角三角形斜边中线的性质得DE =AE =EF ,进而可得DC =DE ,设∠ADE =x ,则∠DAE=x ,进而可得∠DCE =∠DEC =2x ,再根据平行线的性质可得 ∠ACB =∠DAE =x ,再根据∠ACB+∠ACD =∠BCD=63°,即可求得答案.【详解】∵AE =EF ,∠ADF =90°,∴DE =AE =EF ,∴∠DAE=∠ADE ,又∵AE =EF =CD ,∴DC =DE ,∴∠DEC=∠DCE ,设∠ADE =x ,则∠DAE =x ,则∠DCE =∠DEC =2x ,又AD ∥BC ,∴∠ACB =∠DAE =x ,由∠ACB+∠ACD =∠BCD=63°,得:x+2x =63°,解得:x =21°,∴∠ADE=21°,故答案为:21°.【点睛】本题考查了直角三角形斜边中线的性质,等腰三角形的性质,三角形外角的性质,平行四边形的性质等,正确把握相关性质是解题的关键.15.12x =-,25x =.【解析】【分析】由题意可得关于a 、b 、c 的方程组,解方程组用含a 的式子表示出b 、c ,然后把b 、c 代入到一元二次方程组进行求解即可得.【详解】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b a c a =-⎧⎨=-⎩, 所以,关于x 的一元二次方程a(x -1)2+c =b -bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+,化为:23100x x --=,解得:12x =-,25x =,故答案为:12x =-,25x =.【点睛】本题考查了抛物线上点的坐标特征,解方程组,解一元二次方程等,综合性较强,正确把握抛物线上的点的坐标一定满足抛物线的解析式,得到用含a 的式子表示出b 和c 是解题的关键.16.【解析】【分析】如图,将△MOG 绕点M 逆时针旋转60°,得到△MPQ ,易知△MOP 为等边三角形,继而得到点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,由此可以发现当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA ⊥NM 交NM 的延长线于A ,利用勾股定理进行求解即可得.【详解】如图,将△MOG 绕点M 逆时针旋转60°,得到△MPQ ,显然△MOP 为等边三角形,∴,OM +OG =OP +PQ ,∴点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,∴当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA ⊥NM 交NM 的延长线于A ,则∠MAQ=90°,∴∠AMQ =180°-∠NMQ=45°,∵MQ=MG=,∴AQ=AM=MQ•cos45°=4,∴NQ==,故答案为:【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.17.67x【解析】【分析】按顺序先分别进行积的乘方运算、同底数幂的乘法运算,然后再合并同类项即可.【详解】()3224-⋅2x x x=668x x-6=.7x【点睛】本题考查了整式的混合运算,涉及了积的乘方、同底数幂的乘法、合并同类项,熟练掌握各运算的运算法则是解题的关键.18.证明见解析【解析】【分析】根据同位角相等,两直线平行可得AE//BF,进而可得∠E=∠2,由CE//DF可得∠F=∠2,最后根据等量代换即可证明结论.【详解】∵1A ∠=∠,∴AE BF ,∴2E ∠=∠.∵CE//DF ,∴2F ∠=∠.∴E F ∠=∠.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 19.(1)50:72°.(1)见解析;(3)690人.【解析】【分析】(1)根据C 类学生的人数以及所占的比例可求得抽取的学生数,再用360度乘以D 类学生所占的比例即可求得答案;(2)先求出A 类的学生数,然后补全统计图即可;(3)用1500乘以B 类学生所占的比例即可得.【详解】(1)这次共抽取了12÷24%=50名学生进行统计调查,D 类所对应的扇形圆心角的大小为360°×1050=72°, 故答案为:50,72°;(2)A 类学生数:50-23-12-10=5,补全统计图如图所示:(3)23150069050⨯=(人),答:估计该校表示“喜欢”的B类的学生大约有690人.【点睛】本题考查了条形统计图、扇形统计图,用样本估计总体,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.20.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)观察可知点D向左平移一个格得到点A,根据平移的性质,只要找到点C向左平移一个格后对应的点F,连接AF即可(根据一组对边平行且相等的四边形是平行四边形可得四边形ADCF是平行四边形,继而根据平行四边形的性质即可求得AF//DC,AF=DC);(2)结合网格特点找到点C关于直线AB的对称点N,连接DN,DN与AB的交点即为点G(根据轴对称的性质可得∠BGC=∠BGN,又∠BGN=∠AGD,根据等量代换即可得∠AGD=∠BGC);(3)根据网格的特点,观察可知点D向下平移3格后的对应点P在BC上,由此将点C向下平移3格得到对应点Q,连接PQ,PQ与网格线的交点中靠近BC的为点M,连接EM即可(根据画法可知四边形ABPD是矩形,四边形PDEM是平行四边形,由此即可得DM//AB,DM=AB).【详解】(1)画图如图1所示;(2)画图如图1所示;(3)画图如图2所示.【点睛】本题考查了利用无刻度的直尺作图,涉及了平移的性质,平行四边形的判定与性质等,熟练掌握相关知识,正确把握网格的结构特点是解题的关键.21.(1)证明见解析;(2)S π=阴影【解析】【详解】(1)如图1,过点D 作DH BC ⊥,H 为垂足,∵AD ,BC ,CD 是O 的切线,∴OA AD ⊥,OB BC ⊥,AD ED =,BC EC =,四边形ABHD 是矩形,在Rt CDH ∆中,222DH CD CH =-,∴222()()AB AD BC BC AD =+--,∴24AB AD BC =⋅;(2)如图2,连接OD 、OC ,∵AD ,BC ,CD 是O 的切线,∴DO 平分∠ADE ,CO 平分∠BCE ,AD=DE ,BC=CE ,OA AD ⊥,OB BC ⊥,OE CD ⊥, ∴∠AOD=∠DOE ,∠BOE=2∠COE ,∠BAD=∠OED=∠OEC=∠ABC=90°,∴∠ADE+∠AOE=360°-90°-90°=180°,∵∠AOE+∠BOE=180°,∴∠ADE=∠BOE ,∵2ADE OFC ∠=∠,2BOE COF ∠=∠,∴COF OFC ∠=∠,∴CO=CF ,即COF ∆等腰三角形,∵OE CD ⊥,∴CD 垂直平分OF ,∴DO=DF ,∴∠DOE=∠OFD ,∵∠AOD+∠DOE+∠OFD=90°,∴30AOD DOE OFD ∠=∠=∠=︒,∴120BOE ∠=︒,∴tan 30AD r OA ===︒tan603BC OB =⋅︒=,∴212012232360OBC OBE S S S ππ∆=-=⨯⨯=阴影扇形.【点睛】本题考查了切线长定理,矩形的判定与性质,勾股定理,角平分线的判定,等腰三角形的判定与性质,解直角三角形的应用,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.22.(1)①y 与x 的函数关系式是2200y x =-+;②40,70,1800;(2)5.【解析】【分析】(1)①设y 与x 的函数关系式为y kx b =+,根据表格中的数据利用待定系数法进行求解即可; ②设进价为a 元,根据利润=售价-进价,列方程可求得a 的值,根据“周销售利润=周销售量×(售价-进价)”可得w 关于x 的二次函数,利用二次函数的性质进行求解即可得; (2)根据“周销售利润=周销售量×(售价-进价)”可得(2200)(40)w x x m =-+--,进而利用二次函数的性质进行求解即可.【详解】(1)①设y 与x 的函数关系式为y kx b =+,将(50,100),(60,80)分别代入得,501006080k b k b +=⎧⎨+=⎩,解得,2k =-,200b =, ∴y 与x 的函数关系式是2200y x =-+;②设进价为a 元,由售价50元时,周销售是为100件,周销售利润为1000元,得 100(50-a)=1000,解得:a=40,依题意有,(2200)(40)w x x =-+-=222808000x x -+-=()22701800x --+∵20-<,∴当x=70时,w 有最大值为1800,即售价为70元/件时,周销售利润最大,最大为1800元,故答案为:40,70,1800;(2)依题意有,(2200)(40)w x x m =-+-- 22(2280)8000200x m x m =-++--221401260180022m x m m +⎛⎫=--+-+ ⎪⎝⎭ ∵0m >,∴对称轴140702m x +=>, ∵20-<,∴抛物线开口向下,∵65x ,∴w 随x 的增大而增大,∴当65x =时,∴w 有最大值(265200)(6540)m -⨯+--,∴(265200)(6540)1400m -⨯+--=,∴5m =.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准各量间的关系正确列出函数解析式是解题的关键.23.(1)证明见解析;(2)①证明见解析;②1n 【解析】【分析】(1)延长AM 交CN 于点H ,证明ABM CBN ∆≅∆即可得;(2)①过点C 作CD BP 交AB 的延长线于点D ,由(1),得BM BD =,再根据平行线分线段成比例定理即可得到结论;②过点C 作CD//BP 交AB 的延长线于点D ,延长AM 交CD 于点H ,先证明△BPM ≌△CHM ,从而可得BP=CH ,PM=HM ,再证明△ABM ∽△BPM ,得到PM BM PB AB=,在Rt △PCH 中,由tan ∠PCH=PH CH 可得tan ∠BPQ=2BM AB ,继而根据BC=2BM ,AB n BC =即可求得答案. 【详解】(1)延长AM 交CN 于点H ,∵AM 与CN 垂直,90ABC ∠=︒,∴90BAM N ∠+∠=︒,90BCN N ∠+∠=︒,∴BAM BCN ∠=∠,∵1n =,90ABC ∠=︒,∴AB BC =,ABC CBN ∠=∠,∴ABM CBN ∆≅∆,∴BM BN=;(2)①过点C作CD BP交AB的延长线于点D,∵BP AM⊥,∴AM与CD垂直,由(1),得BM BD=,∵CD BP,∴CP DBPQ BQ=,即CP BMPQ BQ=;②过点C作CD//BP交AB的延长线于点D,延长AM交CD于点H,∴∠PCH=∠BPQ,∵BP AM⊥,∴AM⊥CD,∴∠BPM=∠CHM=90°,又∵∠BMP=∠CMH,BM=CM,∴△BPM≌△CHM,∴BP=CH,PM=HM,∴PH=2PM,∵∠PMB=∠BMA,∠ABM=∠BPM=90°,∴△ABM∽△BPM,∴PM BM PB AB=,在Rt△PCH中,tan∠PCH=PH CH,∴tan∠BPQ=22PH PM BM CH PB AB==,又∵BC=2BM,ABn BC=,∴tan∠BPQ=1 BCAB n=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角函数,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.。
2019年湖北省武汉市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019湖北武汉,1,3分)实数2019的相反数是( )A .2019B .-2019C .20191D .20191-【答案】B【解析】∵a 的相反数是-a ,∴2019的相反数是-2019.故选B . 【知识点】相反数2.(2019湖北武汉,2,3分)式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x >0B .x ≥-1C .x ≥1D .x ≤1【答案】C【解析】由1-x 在实数范围内有意义,得x -1≥0,解得x ≥1,故选B .【知识点】二次根式有意义的条件 3.(2019湖北武汉,3,3分) 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球【答案】B【解析】A 中,3个球都是黑球是随机事件;B 中3个球都是白球是不可能事件;C 中,三个球中有黑球是随机事件;D 中,3个球中有白球是随机事件.故选B .【知识点】必然事件、不可能事件、随机事件 4.(2019湖北武汉,4,3分) 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善【答案】D【解析】四个方块字中可以看作轴对称图形的是“善”,故选D . 【知识点】轴对称图形 5.(2019湖北武汉,5,3分) 如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A .B .C .D .【答案】A【解析】从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选A .【知识点】简单组合体的三视图 6.(2019湖北武汉,6,3分)“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )【答案】A【解析】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置大于0,可以排除B ;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项.故选A . 【知识点】函数图象 7.(2019湖北武汉,7,3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31C .21 D .32 【答案】C【解析】列表如下: 1 2 3 41 ——(1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4)4 (4,1) (4,2) (4,3) ——所有等可能的情况有12种,其中关于x 的一元二次方程ax 2+4x +c =0有实数根的情况有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =61122=.故选C . 【知识点】概率,一元二次方程8.(2019湖北武汉,8,3分) 已知反比例函数xky =的图象分别位于第二、第四象限,A (x 1,y 1)、B (x 2,y 2)两点在该图象上,下列命题:① 过点A 作AC ⊥x 轴,C 为垂足,连接O A .若△ACO 的面积为3,则k =-6;②若x 1<0<x 2,则y 1>y 2;③ 若x 1+x 2=0,则y 1+y 2=0其中真命题个数是( ) A .0B .1C .2D .3【答案】D【解题过程】①中,由反比例的几何意义可知,S △ACO =12|xy |=3,∴|k |=|xy |=6,∵图象位于第二、第四象限,∴k =-6.正确;∵x 1<0<x 2,∴点A 在第二象限,点B 在第四象限,故y 1>y 2,正确;③中,∵y 1=16x -,y 2=26x -,∴y 1+y 2=16x -+26x -=12126()x x x x -+,若x 1+x 2=0,∴ y 1+y 2=0.正确,其中真命题有3个.故选D . 【知识点】反比例函数的图象与性质,反比例函数的几何意义,命题9.(2019湖北武汉,9,3分) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MNDCBA上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.2πC.23D.25【答案】A【思路分析】由条件可求∠AEB=135°,∴E在以AD为半径的⊙D上(定角定圆),分别找到C和E的路径、半径、圆心角,然后用弧长公式求路径比值【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)如图,C的路径为¼MN,E的路径为»PQ设⊙O的半径为1,则⊙D的半径为2,∴¼»MNPQ=421360222360ttππ⨯⨯⨯⨯=24t2tt165432QPEDA OBCMN【知识点】圆轨迹(定角),角平分线的性质,圆周角定理,弧长公式10.(2019湖北武汉,10,3分)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【思路分析】①设y1=2+22+…+2100,y2=2+22+…+249,②250+251+252+…+299+2100=y1-y2.【解题过程】设y1=2+22+...+2100,y2=2+22+...+249,∴250+251+252+...+299+2100=y1-y2=(2+22+ (2100)-(2+22+…+249)=(2101-2)-(250-2)=2101-2-250+2=2101-250=250(251-1)=250(2×250-1).∵250=a,∴原式=a(2a-1)=2a2-a.故选C.【知识点】规律探究型,整式的乘除,幂的运算性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.11.(2019湖北武汉,11,3分)计算16的结果是___________. 【答案】4【解析】16=24=4.【知识点】二次根式的性质 12.(2019湖北武汉,12,3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________. 【答案】23【解析】把这一组数据从小到大的顺序排列为:18、20、23、25、27,位于中间的数为23.故这组数据的中位数为23.【知识点】中位数13.(2019湖北武汉,13,3分) 计算411622---a a a的结果是___________.【答案】14a + 【解析】原式=()()244444a a a a a a +-+-+-()()= ()2444a a a a --+-()= ()444a a a -+-()= 1a (+4).【知识点】分式的加减14.(2019湖北武汉,14,3分) 如图,在□ABCD 中,E 、F 是对角线AC 上两点,AE =EF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE 的大小为___________.【答案】21°【解析】如图,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠5.∵∠ADF =90°,AE =EF ,∴DE =12AF =AE ,∴∠1=∠2.∴∠5=∠2.∵AE =CD ,DE =AE ,∴DE =C D .∴∠3=∠4.∵∠3=∠1+∠2=2∠2.∴∠4=2∠2. ∵ ∠BCD =63°,∴∠5+∠4=63°.即3∠2=63°,∴∠2=21°.即∠ADE =21°.【知识点】平行四边形的性质,等腰三角形的判定与性质,三角形外角的性质,直角三角形的性质 15.(2019湖北武汉,15,3分) 抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,则 关于x 的一元二次方程a (x -1)2+c =b -bx 的解是___________. 【答案】x =-2或5【思路分析】①利用待定系数法求出抛物线的解析式,把b ,c 分别用含a 的代数式表示; ②把b ,c 的值代入一元二次方程a (x -1)2+c =b -bx 中,并整理; ③解这个一元二次方程.【解析】∵抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,∴y =a (x +3)(x -4)=ax 2-2ax -12a .∴b =-2a ,c =-12a .∴一元二次方程为 a (x -1)2-12a =-2a +2ax ,整理,得ax 2-3ax -10a =0,∵a ≠0,∴x 2-3x -10=0,解得x 1=-2,x 2=5.【知识点】二次函数的图象与性质,待定系数法求二次函数的解析式,一元二次方程的解法 16.(2019湖北武汉,16,3分)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是___________.【答案】229【思路分析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等,∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=229(RT△FQG勾股定理)【解题过程】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=229(Rt△FQG勾股定理)44426图2QFHGNOM【知识点】最短路径问题,旋转的性质,全等三角形的判定与性质三、解答题(本大题共8小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.(2019湖北武汉,17,8分)计算:(2x2)3-x2·x4【思路分析】根据同底数幂的乘法运算法则和积的乘方运算法则进行计算即可.【解题过程】解:原式=8x6-x6=7x6【知识点】同底数幂的乘法;积的乘方18.(2019湖北武汉,18,8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F【思路分析】由∠A=∠1可得到AE∥BF,进而得到∠2=∠E,由,CE∥DF可得到∠2=∠F,∠E=∠F即可得证.【解题过程】证明:∵∠A=∠1,∴AE∥BF,∴∠E=∠2.∵CE∥DF,∴∠F=∠2.∴∠E=∠F.【知识点】平行线的判定和性质19.(2019湖北武汉,19,8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:各类学生人数条形统计图 各类学生人数扇形统计图 (1) 这次共抽取_________名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为__________ (2) 将条形统计图补充完整(3) 该校共有1500名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?【思路分析】(1)由条形统计图中可以看出C 类的人数为12,扇形统计图中可以看出C 类所占抽取学生人数的比例为24%,C 类的人数除以所占抽取学生人数的比例即可得到学生总人数;D 类人数所占抽取学生人数的比例乘以360°,即可得到D 类所对应的扇形圆心角度数;(2)用抽取学生人数减去B 、C 、D 类的人数即可得到A 类的人数,即可补充条形统计图; (3)用B 类学生所占抽取学生人数的比例乘以学校总人数即可得到该校B 类的学生人数. 【解题过程】(1)抽取学生人数为12÷24%=50;D 类所对应的扇形圆心角的大小为10100%3607250⨯⨯=o o ,故答案为50,72°(2)A 类人数为50-23-12-10=5,补充条形统计图如图人数类别2310125D C B A 510152025(3)1500×2350=690(人),∴估计该校表示“喜欢”的B 类的学生大约有690人. 【知识点】条形统计图;扇形统计图;用样本估计总体. 20.(2019湖北武汉,20,8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1) 如图1,过点A 画线段AF ,使AF ∥DC ,且AF =DC (2) 如图1,在边AB 上画一点G ,使∠AGD =∠BGC (3) 如图2,过点E 画线段EM ,使EM ∥AB ,且EM =ABECBDAECBDA图1 图2 【思路分析】(1)作平行四边形AFDC 即可;(2)作C 关于AB 的对称点C ′,连接C ′D ,交AB 于点G 即可(3)将线段CD 向下平移三个单位长度,得到C 1D 1,过E 作EM ∥CC 1,交C 1D 1于点M 即为所求. 【解题过程】(1)画图如图1;(2)画图如图1;(3)画图如图2.GF ECBDA MECBDA图1 图2 【知识点】网格作图 21.(2019湖北武汉,21,8分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN 于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODENMC BAF EA BC MND O图1 图2 【思路分析】(1)分别连接OD 、OE 、OC ,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,由切线的性质可得OD 平分∠ADC ,OC 平分∠BCD ,由于AD ∥BC ,不难得到∠ODE +∠OCE =90°,因为∠ODE +∠DOE =90°,从而∠DOE =∠OCE ,进而可得△ODE ∽△COE ,则OE 2=ED ·EC ,又AB =2OE ,AD =ED ,EC =BC ,带入即可得到AB 2=4AD ·BC (2)由(1)知∠ADE =∠BOE ,又∠ADE =2∠OFC ,∠BOE =2∠COF =2∠BOC ,即∠COF =∠OFC =∠BOC ,则CD 垂直平分OF ,则∠AOD =∠DOE =∠OFD =30°,∠BOE =120°,从而求得圆的半径OA =3,用2S △OBC -S 扇形OBE即可得到阴影部分的面积.【解题过程】 证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线,∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°, ∴△ODE ∽△COE .∴OE ECED OE =,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF , ∴∠COF =∠OFC ,∴△COF 等腰三角形。
湖北省武汉市2019年初中毕业生考试数学试卷(解析版)2019年武汉市初中毕业生考试数学试卷解析为学科网调研员所做,请下载自用,但不要盗用本解析再上传到本网站或其它网站!!一、选择题(共10小题,每小题3分,共30分)1.实数2019的相反数是()A.2019 B.-2019 C.D.答案:B考点:相反数。
解析:2019的相反数为-2019,选B。
2.式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥-1 C.x≥1D.x≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x-1≥0,所以,x≥1,选C。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y是均匀的减少,所以,只有A符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.答案:C考点:概率,一元二次方程。
2019年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)(2019•武汉)在实数﹣3,0,5,3中,最小的实数是() A.﹣3 B.0 C. 5 D.3考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2019•武汉)若代数式在实数范围内有意义,则x 的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:根据题意得:x﹣2≥0,解得x≥2.故选:C.点评:本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.3.(3分)(2019•武汉)把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式得到结果,即可做出判断.解答:解:原式=a(a﹣2),故选A.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.4.(3分)(2019•武汉)一组数据3,8,12,17,40的中位数为()A. 3 B.8 C.12 D.17考点:中位数.分析:首先把这组数据3,8,12,17,40从小到大排列,然后判断出中间的数是多少,即可判断出这组数据的中位数为多少.解答:解:把3,8,12,17,40从小到大排列,可得3,8,12,17,40,所以这组数据3,8,12,17,40的中位数为12.故选:C.点评:此题主要考查了中位数的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2019•武汉)下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a2解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选C.6.(3分)(2019•武汉)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB 缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.7.(3分)(2019•武汉)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.8.(3分)(2019•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:00解:A、由横坐标看出4:00气温最低是24℃,故A正确;B、由纵坐标看出6:00气温为24℃,故B正确;C、由横坐标看出14:00气温最高31℃;D、由横坐标看出气温是30℃的时刻是12:00,16:00,故D错误;故选:D.9.(3分)(2019•武汉)在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.10.(3分)(2019•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG 绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1解:连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选D.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2019•武汉)计算:﹣10+(+6)= ﹣4 .考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.(3分)(2019•武汉)中国的领水面积约为370 000km2,将数370 000用科学记数法表示为×105.解:370 000=×105,故答案为:×105.13.(3分)(2019•武汉)一组数据2,3,6,8,11的平均数是 6 .解:(2+3+6+8+11)÷5=30÷5=6所以一组数据2,3,6,8,11的平均数是6.故答案为:6.14.(3分)(2019•武汉)如图所示,购买一种苹果,所付款金额y (元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2 元.解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.15.(3分)(2019•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3= 10 .解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.16.(3分)(2019•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2019•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.18.(8分)(2019•武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)(2019•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.20.(8分)(2019•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:线段AB向右平移5个单位得到线段CD;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.21.(8分)(2019•武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===﹣1.22.(10分)(2019•武汉)已知锐角△ABC中,边BC长为12,高AD 长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S 的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.23.(10分)(2019•武汉)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3.(1)求证:EF+PQ=BC;(2)若S1+S3=S2,求的值;(3)若S3+S1=S2,直接写出的值.(1)证明:∵EF∥BC,PQ∥BC,∴,,∵AE=BP,∴AP=BE,∴==1,∴=1,∴EF+PQ=BC;(2)解:过点A作AH⊥BC于H,分别交PQ于M、N,如图所示:设EF=a,PQ=b,AM=h,则BC=a+b,∵EF∥PQ,∴△AEF∽△APQ,∴=,∴AN=,MN=(﹣1)h,∴S1=ah,S2=(a+b)(﹣1)h,S3=(b+a+b)h,∵S1+S3=S2,∴ah+(a+b+b)h=(a+b)(﹣1)h,解得:b=3a,∴=3,∴=2;(3)解:∵S3﹣S1=S2,∴(a+b+b)h﹣ah=(a+b)(﹣1)h,解得:b=(1±)a(负值舍去),∴b=(1+)a,∴=1+,∴=.24.(12分)(2019•武汉)已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,)∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,则∴n+=2∴n=(﹣2<m<0)(3)由题意可知P(t,0),M(t,)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.。
2019年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2019的相反数是()A.2019B.﹣2019C.D.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤13.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.B.C.D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c =0有实数解的概率为()A.B.C.D.8.(3分)已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0B.1C.2D.39.(3分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.10.(3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.15.(3分)抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是.16.(3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题(共8题,共72分)17.(8分)计算:(2x2)3﹣x2•x4.18.(8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E =∠F.19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.21.(8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.22.(10分)某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.23.(10分)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)24.(12分)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.2019年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2019的相反数是()A.2019B.﹣2019C.D.【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:﹣2009.故选:B.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.3.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:.故选:A.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c =0有实数解的概率为()A.B.C.D.【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.8.(3分)已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()A.0B.1C.2D.3【分析】利用反比例函数的比例系数的几何意义、反比例函数的增减性、对称性分别回答即可.【解答】解:过点A作AC⊥x轴,C为垂足,连接OA.∵△ACO的面积为3,∴|k|=6,∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k=﹣6,正确,是真命题;②∵反比例函数y=的图象分别位于第二、第四象限,∴在所在的每一个象限y随着x的增大而增大,若x1<0<x2,则y1>0>y2,正确,是真命题;③当A、B两点关于原点对称时,x1+x2=0,则y1+y2=0,正确,是真命题,真命题有3个,故选:D.9.(3分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.【分析】如图,连接EB.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C 的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.【解答】解:如图,连接EB.设OA=r.∵AB是直径,∴∠ACB=90°,∵E是△ACB的内心,∴∠AEB=135°,∵∠ACD=∠BCD,∴=,∴AD=DB=r,∴∠ADB=90°,易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α∴==.故选:A.10.(3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是4.【分析】根据二次根式的性质求出即可.【解答】解:=4,故答案为:4.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是23℃.【分析】根据中位数的概念求解可得.【解答】解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23℃,故答案为:23℃.13.(3分)计算﹣的结果是.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:14.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.15.(3分)抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是x1=﹣2,x2=5.【分析】由于抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,从而得到抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),然后根据抛物线与x 轴的交点问题得到一元二方程a(x﹣1)2+b(x﹣1)+c=0的解.【解答】解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,把抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),所以抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.故答案为x1=﹣2,x2=5.16.(3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=P A,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=P A,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠P AE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠P AE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题(共8题,共72分)17.(8分)计算:(2x2)3﹣x2•x4.【分析】先算乘方与乘法,再合并同类项即可.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.18.(8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E =∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.【解答】解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取50名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为72°;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?【分析】(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°;(2)A类学生:50﹣23﹣12﹣10=5(人),据此补充条形统计图;(3)该校表示“喜欢”的B类的学生大约有1500×=690(人).【解答】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°,故答案为50,72°;(2)A类学生:50﹣23﹣12﹣10=5(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有1500×=690(人),答:该校表示“喜欢”的B类的学生大约有690人;20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【分析】(1)作平行四边形AFCD即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB即可得到结论.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.21.(8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.【分析】(1)连接OC、OD,证明△AOD∽△BCO,得出=,即可得出结论;(2)连接OD,OC,证明△COD≌△CFD得出∠CDO=∠CDF,求出∠BOE=120°,由直角三角形的性质得出BC=3,OB=,图中阴影部分的面积=2S△OBC﹣S扇形OBE,即可得出结果.【解答】(1)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.22.(10分)某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:解方程组即可得到结论;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣800﹣200m,由于对称轴是x =,根据二次函数的性质即可得到结论.【解答】解:(1)①依题意设y=kx+b,则有解得:所以y关于x的函数解析式为y=﹣2x+200;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:则有,解得:,∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m,∵对称轴x=,∴①当<65时(舍),②当≥65时,x=65时,w求最大值1400,解得:m=5.23.(10分)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.24.(12分)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)易求点A(3,0),b=4,联立方程﹣x+4=(x﹣1)2﹣4,可得B(﹣,);设P(t,﹣t+4),Q(t,t2﹣2t﹣3),①当AP=AQ时,则有﹣4+t=t2﹣2t﹣3,求得t=;②当AP=PQ时,PQ=t2+t+7,P A=(3﹣t),则有t2+t+7=(3﹣t),求得t=﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,P A=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;。
2019年武汉市初中真题毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .20191D .20191-答案:B 考点:相反数。
解析:2019的相反数为-2019,选B 。
2.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x -1≥0, 所以,x ≥1,选C 。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球D .3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B 。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y 是均匀的减少, 所以,只有A 符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( ) A .41B .31C .21 D .32 答案:C考点:概率,一元二次方程。
x -12019年武汉市初中毕业生考试数学试卷一、选择题(共10 小题,每小题3 分,共30 分)1.实数2019 的相反数是()A.2019 B.-2019 C.12019D.-120192.式子在实数范围内有意义,则x 的取值范围是()A.x>0 B.x≥-1 C.x≥1 D.x≤13.不透明的袋子中只有4 个黑球和2 个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3 个球,下列事件是不可能事件的是()A.3 个球都是黑球B.3 个球都是白球C.三个球中有黑球D.3 个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善5.如图是由5 个相同的小正方体组成的几何体,该几何题的左视图是()6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是()7.从1、2、3、4 四个数中随机选取两个不同的数,分别记为a、c,则关于x 的一元二次方程ax2+4x+c=0 有实数解的概率为()A.14B.13C.12D.232168.已知反比例函数y =k的图象分别位于第二、第四象限,A (x1,y1)、B(x2,y2)两点在该图象x上,下列命题:①过点A 作AC⊥x 轴,C 为垂足,连接OA.若△ACO 的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③ 若x1+x2=0,则y1+y2=0 其中真命题个数是()A.0 B.1 C.2 D.39.如图,AB 是⊙O 的直径,M、N 是弧AB(异于A、B)上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D,∠BAC 的平分线交CD 于点E.当点 C 从点M 运动到点N 时,则C、E 两点的运动路径长的比是()A.B.2C.32D.5210.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a 的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a二、填空题(本大题共6 个小题,每小题3 分,共18 分)11.计算的结果是12.武汉市某气象观测点记录了5 天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是13.计算2a-a 2 -161a -4的结果是14.如图,在□ABCD 中,E、F 是对角线AC 上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为15.抛物线y=ax2+bx+c 经过点A(-3,0)、B(4,0)两点,则关于x 的一元二次方程a(x-1)2+c=b-bx 的解是16.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE,DE 与BC 交于点P,可推出结论:PA+PC=PE问题解决:如图2,在△MNG 中,MN=6,∠M=75°,MG=4则点O 到△MNG 三个顶点的距离和的最小值是三、解答题(共8 题,共72 分)17.(本题8 分)计算:(2x2)3-x2·x4.点O 是△MNG 内一点,18.(本题8 分)如图,点A、B、C、D 在一条直线上,CE 与BF 交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F19.(本题8 分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为(2)将条形统计图补充完整(3)该校共有1500 名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图20.(本题8 分)如图是由边长为1 的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1)如图1,过点A 画线段AF,使AF∥DC,且AF=DC(2)如图1,在边AB 上画一点G,使∠AGD=∠BGC(3)如图2,过点E 画线段EM,使EM∥AB,且EM=AB221.(本题8 分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E,分别交AM、BN 于D、C 两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE 并延长交AM 于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积22.(本题10 分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)① 求y 关于x 的函数解析式(不要求写出自变量的取值范围)② 该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元(2)由于某种原因,该商品进价提高了m 元/件(m>0),物价部门规定该商品售价不得超过,65 元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400 元,求m 的值23.(本题10 分)在△ABC 中,∠ABC=90°AB=n ,M 是BC 上一点,连接AMBC(1)如图1,若n=1,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM=BN(2)过点B 作BP⊥AM,P 为垂足,连接CP 并延长交AB 于点Q① 如图2,若n=1,求证:CP=BMPQ BQ② 如图3,若M 是BC 的中点,直接写出tan∠BPQ 的值(用含n 的式子表示)24.(本题12 分)已知抛物线C1:y=(x-1)2-4 和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C 与x 轴正半轴交于点A,直线y =-4x +b 经过点A,交抛物线C 于另一1 13点B.请你在线段AB 上取点P,过点P 作直线PQ∥y 轴交抛物线C1于点Q,连接AQ➀若AP=AQ,求点P 的横坐标②若PA=PQ,直接写出点P 的横坐标(3)如图2,△MNE 的顶点M、N 在抛物线C2上,点M 在点N 右边,两条直线ME、NE 与抛物线C2均有唯一公共点,ME、NE 均与y 轴不平行.若△MNE 的面积为2,设M、N 两点的横坐标分别为m、n,求m 与n 的数量关系2019 年武汉市初中毕业生考试数学试卷一、选择题(共10 小题,每小题3 分,共30 分)1.实数2019 的相反数是()A.2019 B.-2019 C.12019D.12019答案:B考点:相反数。
2019年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.C.31D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2019年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106. D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2019年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2019年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2019年总投入中购置器材的资金最多;②②2009年购置器材投入资金比2019年购置器材投入资金多8%;③③若2019年购置器材投入资金的年增长率与2019年购置器材投入资金的年增长率相同,则2019年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD 相交于点H.下列结论:①△AED≌△DFB;3CG2;②S四边形B C D G=4③若AF=2DF,则BG=6GF.其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=x k 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22x x x x x -÷-,其中x=3.19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B(1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N 两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A (-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点 D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y 轴上.若存在,求出点P的坐标;若不存在,请说明理由.2019年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x· x/(x+2)(x-2)= x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等 ∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA 为⊙O 的切线,∴∠PAO=90°∵OA=OB ,OP⊥AB 于C∴BC=CA ,PB =PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O 的切线(2)解法1:连接AD ,∵BD 是直径,∠BAD =90°由 左 直 右 左 (左,左) (左,直) (左,右) 直 (直,左) (直,直) (直,右) 右 (右,左) (右,直) (右,右)(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t ∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BA D=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t 由△PBC∽△BOC,得PC=2BC=4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S 最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG由(1)得DM/BG =MN/GF =EN/CF∴(MN/GF )2=(DM/BG)·(EN/CF)∴MN 2=DM·EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B(-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+时,平移的抛物线与射线CD 只有一个公共点. ②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+.(3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的内心在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,...............9分∴GP/PH=GE/HF, ∴-x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F+3-t)∴2kx E·x F=(t-3)(x E+x F)由y=x2,y=-kx+3.得x2-kx-3=0.∴x E+x F=k,x E·x F=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.方法 2 设EF的解析式为y=kx+3(k≠0),点E,F 的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E 关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.武汉市光谷三初冉瑞洪整理。