高等代数1.7
- 格式:ppt
- 大小:877.00 KB
- 文档页数:18
高等代数教学大纲(Higher Algebra)前言教学大纲是一门课程的指导性文件.教学大纲的科学化、规范化,对建设良好的教学秩序,提高教学质量,搞好教学管理等方面都有很重要的意义.为此,我们根据学校有关文件,编写了《高等代数》这门课程的教学大纲.《高等代数》这门课程是数学系各专业的必修专业基础课程之一,可为后继课程的学习打下必要的基础.它是数学系各专业硕士研究生入学考试的必考课程.它除培养学生掌握必要的基础知识之外,同时着重训练学生掌握数学结构的观念、公理化的方法、纯形式化的思维,从而在知识结构、综合素质、创新能力等方面对学生加以全面培养和整体提高.本课程的基本内容有: 包括:多项式,行列式,线性方程组, 矩阵,二次型,线性空间, 线λ矩阵,欧几里得内积空间,双线性函数和辛空间.重点是下列几章:多项式,行性变换, -列式,线性方程组, 矩阵,二次型,线性空间, 线性变换,欧几里得内积空间.通过本课程的学习,学生能正确理解矩阵、行列式、线性空间、线性变换、欧几里得空间等有关概念, 能理解并掌握线性方程组理论和多项式的理论,并能熟练地应用它们,为后续课程的学习打下坚实的基础.本课程作为基础课,对其它课程依赖不大,当然,如果在学完《空间解析几何》之后开设效果会更好.本课程作为基础课,应在大学低年级学生中开设,建议对本科一年级学生开设.本课程为一学年课程.教材: 《高等代数学》(第三版)北京大学数学系几何与代数教研室前代数小组, 高等教育出版社,2003年。
参考书:《线性代数》吴赣昌主编,中国人民大学出版社,2006年《高等代数学》姚慕生编, 复旦大学出版社,1999《高等代数新方法》王品超主编,山东教育出版社,1989年《高等代数学》(第二版)张贤科主编,清华大学出版社,2002年《Linear Algebra》S.K.Jain, A.D.Gunawardena,机械工业出版社,2003年建议学时分配课程内容第一章多项式[教学目的与要求]通过本章学习,实现如下目的:(1)理解整除、最大公因式、互素、多项式的不可约性、重因式、本原多项式等概念;(2)熟练掌握整除的性质;(3)熟练掌握最大公因式的求法;(4)熟练掌握有无重因式的判别方法;(5)熟练掌握整系数多项式的有理根的求法;(6)熟练掌握整系数多项式在有理数域上不可约的艾森斯坦判别法;(7)掌握复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用;(8)掌握韦达定理和多元多项式的基本性质.[教学重点]整除的性质、最大公因式的求法、有无重因式的判别方法、整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法;复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用.[教学难点]整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法.[教学内容]§1.1. 数域数域的定义和例子§1.2. 一元多项式一、一元多项式的定义二、一元多项式的运算和运算律§1.3. 整除的概念一、带余除法二、整除的定义和几个常用的性质§1.4. 最大公因式一、最大公因式的定义和求法二、互素§1.5. 因式分解定理一、不可约多项式的定义和简单性质二、因式分解唯一性定理§1.6. 重因式重因式的定义和性质§1.7. 多项式函数一、余数定理二、多项式的根或零点§1.8. 复系数与实系数多项式的因式分解一、复系数多项式的因式分解定理 二、实系数多项式的因式分解定理§1.9. 有理系数多项式一、本原多项式的定义和高斯引理 二、整系数多项式的有理根的求法 三、爱森斯坦判别法§1.10. 多元多项式多元多项式的定义及其次数§1.11. 对称多项式一、初等对称多项式二、对称多项式基本定理思考题1. 证明:多项式)(x f 整除任意多项式的充要条件是)(x f 是零次多项式.2. 设b a ,为两个不相等的常数.证明:多项式)(x f 被))((b x a x --除所得的余式为ba b bf a af x b a b f a f --+--)()()()(3. 证明:1|1--n d x x 当且仅当n d |.4. 设k 为正整数.证明:)(|x f x k 当且仅当)(|x f x .5. 已知242)(234---+=x x x x x f ,22)(234---+=x x x x x g ,求)(),(x v x u 使))(),(()()()()(x g x f x g x v x f x u =+. 6. 证明:如果)(|)(x f x d ,)(|)(x g x d ,且)()()()()(x g x v x f x u x d +=,则)(x d 是)(x f 与)(x g 的最大公因式.7. 证明:如果1))(),((=x g x f ,1))(),((=x h x f ,则1))()(),((=x h x g x f . 8. 证明:如果1))(),((=x g x f ,则1))(),((=mmx g x f . 9. 若1))(),((21=x f x f ,则对任意的)(x g ,))(),(())(),(())(),()((2121x g x f x g x f x g x f x f =.10.判断下列多项式在有理数域上是否有重因式,若有,则求出重因式,并确定重数(1)1)(24++=x x x f(2)277251815)(2346+-++-=x x x x x x f11.设)(x p 是)(x f '的k 重因式,能否说)(x p 是)(x f 的1+k 重因式,为什么?12.设n 为正整数,证明:如果)(|)(x g x f nn ,则)(|)(x g x f .13.设)(x p 为数域P 上的不可约多项式,)(x f 与)(x g 为数域P 上的多项式.证明:如果)()(|)(x g x f x p +,且)()(|)(x g x f x p ,则)(|)(x f x p ,且)(|)(x g x p .14.设)(x f 为数域P 上的n 次多项式,证明:如果)(|)(x f x f ',则nb x a x f )()(-=,其中P b a ∈,.15.求多项式92)(24++=x x x f 与944)(234-+-=x x x x g 的公共根.16.求多项式61510)(25-+-=x x x x f 的所有根,并确定重数.第二章 行列式[教学目的与要求] 通过本章学习,实现如下目的: (1) 理解行列式的概念;(2) 能熟练应用行列式的性质和展开定理计算行列式; (3) 会用Cramer 法则求解线性方程组. [教学重点]行列式的计算、Cramer 法则. [教学难点] 行列式的定义 [教学内容]§2.1. 引言二阶、三阶行列式与线性方程组的解§2.2. 排列一、排列及排列逆序数的定义 二、奇偶排列§2.3. n 阶行列式 n 阶行列式的定义§2.4. n 阶行列式的性质 n 阶行列式的性质及其推论§2.5. 行列式的计算n 阶行列式的计算§2.6. 行列式按一行一列展开一、n 阶行列式按一行一列展开定理 二、范德蒙(Vandermonde )行列式§2.7. 克拉默(Cramer )法则 克拉默(Cramer )法则§2.8. 拉普拉斯(Laplace )定理 行列式的乘法规则一、拉普拉斯(Laplace )定理 二、行列式的乘法规则思考题1. 求下列排列的逆序数:(1))2(24)12(13n n -; (2)21)1( -n n . 2. 写出四阶行列式中含有因子4123a a 的项,并指出应带的符号. 3.用行列式的定义计算下列行列式:(1)00001002001000nn -; (2)000000053524342353433323125242322211312a a a a a a a a a a a a a a a a . 4.用行列式的性质及行列式的展开定理计算下列行列式:(1)xa a a a x a a a a x a a a a xn nn321212121; (2)na a a +++11111111121,其中021≠n a a a(3)12125431432321-n n n; (4)221222212121211nn n n n na x a a a a a a a x a a a a a a a x +++其中021≠n x x x .(5)x a a a a a x x x n n n +-----122110000010001;(6)nnn n n nn n nna a a a a a a a a a a a21222212222121111---5. 已知4阶行列式D 中的第1行上的元素分别为4,0,2,1-,其余子式分别为1,5,2,1--;第3行上元素的余子式分别为x ,7,1,6-;求行列式D 的值,及x 的值.6.设4阶行列式1234302186427531中第4行元素的余子式分别为44434241,,,M M M M ,代数余子式分别为44434241,,,A A A A ,求44434241432A A A A +++,44434241432M M M M +++.7. 设4阶行列式2211765144334321中第4行元素的代数余子式分别为44434241,,,A A A A ,求4241A A +与4443A A +.8. 设行列式nn0010301002112531-中第1行元素的代数余子式分别为n A A A 11211,,, ,求n A A A 11211+++ .第三章 线性方程组[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握向量的线性表示、线性相关性的判别法; (2) 掌握极大无关组的求法; (3) 掌握矩阵秩的求法;(4) 掌握线性方程组解情况的判定方法; (5) 掌握齐次线性方程组的基础解系的求法; (6) 掌握非齐次线性方程组解结构定理[教学重点] 向量的线性表示、线性相关性、极大无关组、向量组的秩、矩阵的秩、齐次线性方程组的基础解系.[教学难点] 极大无关组、矩阵的秩.[教学内容]§3.1. 消元法消元法§3.2. n 维向量空间n 维向量及其运算§3.3. 线性相关性一、线性表示二、向量组的线性相关性 三、向量组的极大无关组、秩§3.4. 矩阵的秩矩阵的行秩、列秩、秩§3.5. 线性方程组有解判定定理线性方程组有解判定定理§3.6. 线性方程组解的结构一、齐次线性方程组的解结构 二、非齐次线性方程组的解结构§3.7. 二元高次方程组二元高次方程组可作为选学内容.思考题1.设)1,1,1(1λα+=,)1,1,1(2λα+=,)1,1,1(3λα+=,),,0(2λλβ=.问当λ为何值时(1)β不能由321,,ααα线性表出?(2)β可由321,,ααα线性表出,并且表示法唯一?(3)β可由321,,ααα线性表出,并且表示法不唯一? 2.设)1,2,(1a =α,)0,,2(2a =α,)1,1,1(3-=α,问a 为何值时321,,ααα线性相关?3. 求下列向量组的一个极大无关组,并将其余向量表为该极大无关组的线性组合.(1))5,2,1(1-=α,)1,2,3(2-=α,)17,10,3(3-=α;(2))4,0,1,1(1-=α,)6,5,1,2(2=α,)0,2,1,1(3--=α,)14,7,0,3(4=α. 4.已知21,ββ是非齐次线性方程组b Ax =的两个解,21,αα是其导出组0=Ax 的基础解系,21,k k 是任意常数,则b Ax =的通解是( ).(A)2)(2121211ββααα-+++k k ; (B)2)(2121211ββααα++-+k k ;(C)2)(2121211ββββα-+-+k k ; (D)2)(2121211ββββα++-+k k .5.设A 为秩为3的45⨯矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若)0,0,0,2(2321=++ααα,)8,6,4,2(321=+αα,求方程组b Ax =的通解. 6.设b Ax =为4元线性方程组,其系数矩阵A 的秩为3,又321,,ααα是b Ax =的三个解,且)0,2,0,2(1=α,)0,2,2,0(32=+αα,求方程组b Ax =的通解.7.已知β是非齐次线性方程组b Ax =的解,s ααα,,,21 是其导出组0=Ax 的基础解系,证明s αβαβαββ+++,,,,21 是b Ax =解向量组的极大无关组.8.线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,当21,k k 取何值时,无解?有唯一解?有无穷多解?在方程组有无穷多解时,用导出组的基础解系表示其全部解.第四章 矩阵[教学目的与要求] 通过本章学习,实现如下目的:(1) 能熟练地进行矩阵的各种运算(加、减、数乘、乘、转置、求逆等); (2) 能熟练掌握矩阵的初等变换,理解初等变换和初等矩阵的关系; (3) 能掌握各种求逆矩阵的方法; (4) 会应用分块乘法的初等变换. [教学重点]矩阵的各种运算(加、减、数乘、乘、转置、求逆等);矩阵的初等变换; 初等变换求逆法;分块乘法的初等变换.[教学难点] 分块乘法的初等变换 [教学内容]§2.1. 矩阵的概念的一些背景矩阵的概念§2.2. 矩阵的运算一、矩阵的加法、减法 二、矩阵的乘法三、数与矩阵的乘法 四、矩阵的转置§2.3. 矩阵乘积的行列式与秩一、矩阵乘积的行列式 二、矩阵乘积的秩§2.4. 矩阵的逆一、矩阵可逆的定义 二、伴随矩阵求逆法§2.5. 矩阵的分块一、分块矩阵的概念 二、分块矩阵的运算三、几种分块矩阵的逆矩阵§2.6. 初等矩阵一、初等矩阵及其性质 二、初等变换求逆法§2.7. 分块乘法的初等变换及应用举例一、分块乘法的初等变换二、分块乘法的初等变换应用举例思考题1. 举例说明下列命题是错误的:(1) 若02=A ,则0=A ;(2) 若A A =2,则0=A 或E A =;(3) 若E A =2,则E A =或E A -=; (4) 若AY AX =,且0≠A ,则Y X =. 2. 证明(1)2222)(B AB A B A +±=±成立当且仅当BA AB =; (2)22))((B A B A B A -=-+成立当且仅当BA AB =. 3.已知n n ij a A ⨯=)(为n 阶方阵,写出:(1)2A 的k 行l 列元素; (2)TAA 的k 行l 列元素; (3)A A T的k 行l 列元素. 4. 已知)3,2,1(=α,)31,21,1(=β.设矩阵βαT A =,求n A . 5. 证明:对任意的n m ⨯矩阵A ,T AA 和A A T都是对称矩阵.6. 设A 是n 阶方阵,且E AA T=,1||=A ,求||n E A -.7.已知A 为三阶方阵,且21||=A ,求|2)3(|*1A A --.8.已知⎪⎪⎪⎭⎫ ⎝⎛--=100021201A ,求1*])[(-T A .9.(1)已知⎪⎪⎪⎭⎫ ⎝⎛=300130113A ,矩阵B 满足B A AB 2+=,求B ;(2)已知⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵B 满足B A E AB +=+2,求B ;(3)已知)1,2,1(-=diag A ,矩阵B 满足E BA BA A 82*-=,求B . 10.已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .11.(1)证明)()()(B r A r B A r +≤+;(2)若n 阶矩阵B A ,满足0=AB ,证明n B r A r ≤+)()(;(3)若n 阶矩阵A 满足A A =2,证明n E A r A r =-+)()(;(4)若n 阶矩阵A 满足E A =2,证明n E A r E A r =-++)()(. 12.(1)B A ,为两个n 阶方阵,证明||||B A B A AB BA -⋅+=; (2)B A ,分别为m n ⨯和n m ⨯矩阵,证明||||BA E AB E E AB E m n nm -=-=.第五章 二次型[教学目的与要求] 通过本章学习,实现如下目的:(1)掌握用非退化线性替换把二次型化成标准形和规范形的方法; (2)会判断二次型的正定性.[教学重点] 二次型化标准形和规范形的方法;惯性定理;二次型的正定性. [教学难点] 惯性定理 [教学内容]§5.1. 二次型及其矩阵表示一、二次型及其矩阵表示 二、矩阵的合同§5.2. 标准形化二次型为标准形的配方法§5.3. 唯一性一、复二次型的规范形二、实二次型的规范形、惯性定理§5.4. 正定二次型一、正定二次型的概念和判定方法二、半正定二次型简介思考题1.写出下列二次型AX X '的矩阵,其中 (1)⎪⎪⎪⎭⎫⎝⎛---=205213111A ; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 2. 设二次型32212221442x x x x x x f --+=,分别作下列可逆线性变换,求新二次型的矩阵,(1)Y X ⎪⎪⎪⎭⎫⎝⎛--=100210211; (2)Y X ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2101101121.3.分别用配方法和初等变换法化下列二次型为标准形,并写出所作的非退化线性替换(1)2332223121214322x x x x x x x x x f +++++=; (2)323121622x x x x x x f -+=.4. 分别在实数域和复数域上将3题中的两个二次型进一步化成规范型,并写出所作的非退化线性替换.5. 证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称矩阵之和. 6. 证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于2和符号差等于0,或者秩等于1. 7. t 取什么值时,下列二次型是正定的:(1)3231212222214223x x x x x tx x x x f +-+++=; (2)32312123222161024x x x x x tx x x x f +++++=.8. 证明:如果A 正定,则1-A 和*A 也都正定.9.已知m 阶实对称矩阵A 正定,B 是n m ⨯矩阵,证明:AB B T正定的充要条件是n B r =)(.10. 已知A 为实矩阵,证明:)()(A r A A r ='.第六章 线性空间[教学目的与要求] 通过本章学习,实现如下目的:(1)能熟练地判断所给非空集合在指定的运算下能否构成线性空间; (2)会判断所给非空子集能否构成子空间; (3)会判断子空间之间的和是否为直和; (4)会判断两个线性空间的同构;(5)能熟练掌握线性空间基和维数的求法;(6)能熟练求向量在基下的坐标、基到基的过渡矩阵; (7)能熟练地求和空间的维数;(7)能熟练地应用维数公式求交空间的基与维数.[教学重点] 线性空间的定义、子空间的直和、维数公式、线性空间的同构. [教学难点] 线性空间的定义 [教学内容]§6.1. 集合 映射一、集合的概念和运算二、映射的概念、映射的乘法、逆映射§6.2. 线性空间的定义与简单性质一、线性空间的定义 二、线性空间的简单性质§6.3. 维数 基与坐标一、线性表示、线性相关和线性无关、向量组的等价 二、线性空间的基、维数,向量的坐标§6.4. 基变换与坐标变换一、基到基的过渡矩阵 二、坐标变换公式§6.5. 线性子空间一、线性子空间的定义二、线性子空间的维数和基§6.6. 子空间的交与和一、子空间的交 二、子空间的和§6.7. 子空间的直和一、两个子空间的直和 二、多个子空间的直和§6.8. 线性空间的同构一、线性空间同构的定义 二、同构映射的性质思考题1.检验下列集合对于所规定的运算是否构成给定数域上的线性空间:(1) 数域P 上的对角线元素的和为零的所有n 阶方阵所成的集合,对于矩阵的加法和数量乘法;(2) 设},|2{Q b a b a V ∈+=,Q 为有理数域,对于通常数的加法和乘法; (3) 设},|),{(R b a b a V ∈=,R 为实数域,定义加法和数乘如下:),(),(),(21212211b b a a b a b a +=+, ),(),(kb ka b a k = )(R k ∈.(4) 按照通常的数的运算,实数域R 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间?(5) 按照通常的数的运算,复数域C 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间? (6) +R 是全体正实数组成的集合,定义加法和数乘如下:ab b a =⊕, k a a k =⋅,这里+∈R b a ,,R k ∈.2.证明:在数域P 上的线性空间V 中,成立以下运算律:(1)βαβαk k k -=-)(;(2)αααl k l k -=-)(.这里P l k ∈,,V ∈βα,.3.实数域R 按照通常的乘法构成实数域R 上的线性空间.全体正实数集合+R 对1(6)题中定义的加法和数乘也构成实数域R 上的线性空间,能否据此说明+R 是线性空间R 的一个子空间?+R 是线性空间R 的子空间吗?4. 设)1,2,1(1-=α,)3,1,0(2-=α,)0,1,1(3-=α;)5,1,2(1=β,)1,3,2(2-=β,)2,3,1(3=β,(1) 证明:321,,ααα和321,,βββ都是3R 的基; (2) 求321,,ααα到321,,βββ的过渡矩阵; (3) 求向量)1,4,1(=α在两组基下的坐标.5. 在线性空间nR 中,判断下列哪些子集是子空间,(1)},|),0,,0,{(11R a a a a n n ∈ ;(2)}0|),,,{(121=∑=ni in aa a a ;(3)}1|),,,{(121=∑=ni in aa a a ;(4)},,2,1,|),,,{(21n i Z a a a a i n =∈.6. 举例说明线性空间的两个子空间的并一般不是子空间.两个子空间的并仍是子空间的充要条件是什么?7. 设线性空间V 含有非零向量,21,V V 是V 的任意两个真子空间,证明:V V V ≠⋃21. 8.在线性空间3][x P 中,求向量组21-=x α,x 22=α,x -=13α,24x =α 的一个极大无关组.9. 判断正误,并说明理由.(1)V 是n 维向量空间,V r ∈αα,,1 ,则r αα,,1 是子空间),,(1r L αα 的一组基;(2)n 个向量n αα,,1 是n 维向量空间V 的一组生成元,则n αα,,1 一定是V 的一组基;(3)向量空间V 的维数等于V 的任一生成组所含向量的个数; (4)任一向量空间都有基; (5)若向量空间V 的每一个向量都可以由n αα,,1 唯一的线性表示,则n αα,,1 是V 的一组基;(6)若s αα,,1 与t ββ,,1 的极大无关组分别是r i i αα,,1 与p j j ββ,,1 ,则),,(),,(11t s L L ββαα +的一组基为r i i αα,,1 p j j ββ,,1 .10. 下列向量组是否为3][x P 的基:(1)}22,,1,1{2322++++++x x x x x x x ; (2)},22,1,1{322x x x x x -+--. 11.求下列子空间的维数:(1)3))4,2,5(),2,4,1(),1,3,2((R L ⊆--; (2)][),1,1(22x P x x x x L ⊆---;(3)],[),,(32b a C e e e L x xx⊆,],[b a C 表示区间],[b a 上的全体连续函数空间.12.设⎪⎪⎪⎭⎫ ⎝⎛=000100010A ,求33⨯P 中所有与A 可交换的矩阵组成的子空间的维数和一组基.13.令},|{1A A P A A V n n ='∈=⨯,},|{2A A P A A V n n -='∈=⨯,证明21V V P n n ⊕=⨯. 14.设n αα,,1 是P 上n 维线性空间V 的一组基,A 是P 上的一个s n ⨯矩阵,令A n s ),,(),,(11ααββ =,证明:)(),,(dim 1A r L s =ββ . 15.证明:线性空间][x P 可以和它的真子空间同构.第七章 线性变换[教学目的与要求] 通过本章学习,实现如下目的: (1) 能熟练掌握线性变换的运算; (2) 能理解线性变换与矩阵的关系;(3) 能熟练地求线性变换的特征值与特征向量;(4) 理解哈密尔顿—凯莱(Hamilton-Caylay )定理; (5) 能熟练地将矩阵对角化;(6) 能熟练地求出线性变换的值域与核; (7) 了解若尔当标准形理论.[教学重点] 线性变换与矩阵的关系;线性变换的特征值与特征向量;线性变换的值域与核;矩阵对角化.[教学难点] 矩阵的对角化 [教学内容]§7.1. 线性变换的定义一、线性变换的定义 二、线性变换的简单性质§7.2. 线性变换的运算一、线性变换的乘法 二、线性变换的加法三、线性变换的数量乘法 四、线性变换的逆§7.3. 线性变换的矩阵一、线性变换的矩阵 二、矩阵的相似§7.4. 特征值与特征向量一、线性变换特征值与特征向量的概念 二、线性变换特征值与特征向量的求法 三、哈密顿-凯莱定理§7.5. 对角矩阵一、特征向量的性质二、线性变换的矩阵可以是对角矩阵的条件§7.6. 线性变换的值域与核一、线性变换的值域 二、线性变换的核§7.7. 不变子空间一、不变子空间二、不变子空间与线性变换矩阵的化简§7.8. 若尔当(Jordan )标准形介绍若尔当标准形介绍§7.9. 最小多项式最小多项式概念和性质思考题1.线性空间V 到V 的同构映射称为线性空间V 的自同构.线性空间V 的线性变换和它的自同构有什么异同?2.A 是线性空间V 的线性变换,s αα,,1 是V 中一组线性无关的向量,问)(,),(1s ααA A 是否仍线性无关?试举例说明. 3.设A 是n 维线性空间V 的线性变换,证明:(1)A 是线性空间V 的自同构当且仅当A 把线性无关的向量组变成线性无关的向量组;(2)A 把线性空间V 中某一组线性无关的向量变成一组线性相关的向量的充要条件是A 把V 中某个非零向量变成零向量,即}0{)0(1≠-A ;(3)A 是线性空间V 的自同构当且仅当}0{)0(1=-A .4.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A ,定义4P 的变换为:ξξA =A ,4P∈ξ,证明A 为4P 的线性变换,并求A 的核和象空间以及它们的维数.5.为什么线性变换的问题可以转化为相应的矩阵的问题去研究?)(V L 与nn P ⨯有什么关系?求出线性空间)(V L 的维数.6.设⎪⎪⎭⎫ ⎝⎛=4321A ,求22⨯P 的如下线性变换A 在基⎪⎪⎭⎫ ⎝⎛=00011ε,⎪⎪⎭⎫⎝⎛=00102ε,⎪⎪⎭⎫ ⎝⎛=01003ε,⎪⎪⎭⎫⎝⎛=10004ε下的矩阵. (1)AX X =)(A ; (2)XA X =)(A .7.在3R 中,试求关于基)0,0,1(1=ε,)0,1,1(2=ε,)1,1,1(3=ε的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=221101211A 的线性变换.8.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛---=6788152051115A ,求A 在基321,,βββ下的矩阵,其中321132αααβ++=,321243αααβ++=,321322αααβ++=.若3212αααξ-+=,求)(ξA 在基321,,βββ下的坐标.9.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A , 求(1)A 在基123,,ααα下的矩阵;(2)A 在基321,,αααk 下的矩阵;)0(≠k (3)A 在基3221,,αααα+下的矩阵.10.四维线性空间V 的线性变换A 在基4321,,,αααα下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3707011311013412A ,求:(1)A 的值域; (2)A 的核;(3)在A 的值域中选一组基,把它扩充成线性空间V 的基; (4)在A 的核中选一组基,把它扩充成线性空间V 的基.11.若矩阵A 与B 相似,证明:(1) 若A 与B 可逆,则1-A 与1-B 相似; (2) 对任意的常数k ,kA 与kB 相似;(3) 对任意的正整数m ,mA 与mB 相似;(4) 对于任意多项式)(x f ,)(A f 与)(B f 相似.12.若矩阵A 与B 相似,C 与D 相似,证明:⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 13.取定矩阵n n P A ⨯∈.对于任意的nn P X ⨯∈,定义变换A 为XA AX X -=)(A ,(1) 证明A 为线性空间nn P ⨯的线性变换;(2) 若⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ00000021,求线性变换A 在基},1|{n j i E ij ≤≤下的矩阵. 14.在线性空间3P 中,定义线性变换A 为),,(),,(312321x x x x x x =A .令}2,1,|)0,,{(21=∈=i P x x x S i ,则S 是3P 的一个子空间,试问S 是否为线性变换A 的不变子空间.15.V 为数域P 上的一个线性空间,A 为V 的一个线性变换,][)(x P x f ∈,如果S 为线性变换A 的不变子空间,则S 线性变换)(A f 的不变子空间.16.若S 为线性空间V 的线性变换A 和B 的不变子空间,则S 也是B A +和AB 的不变子空间.17.若21,S S 为线性空间V 的线性变换A 的不变子空间,则21S S ⋂,21S S +也是A 的不变子空间. 18.若S 为线性空间V 的线性变换A 的不变子空间,当线性变换A 可逆时,则S 也是1-A的不变子空间. 19.若A 是线性空间V 的线性变换,且满足A A=2,证明:(1)}|)({)0(1V ∈-=-ξξξA A; (2))Im()0(1A A ⊕=-V .20.n 阶矩阵A 和B 相似时,它们有相同的特征多项式.反过来对吗?即n 阶矩阵A 和B 有相同的特征多项式时,哪它们相似吗?试举例说明.21.A 是线性空间V 的线性变换,证明A 可逆的充分必要条件是A 的特征值都非零. 22.证明线性变换A 的一个特征向量不能同时属于两个不同的特征值.23.证明:对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021和⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 0021 相似的充分必要条件是n b b b ,,,21 是n a a a ,,,21 的一个排列.24.设A 是复数域C 上的一个n 阶矩阵,n λλλ,,,21 是A 的全部特征值(按重数计算),证明:(1)如果][)(x C x f ∈是次数大于0的多项式,则)(,),(),(21n f f f λλλ 是)(A f 的全部特征值;(2)如果A 可逆,则n λλλ,,,21 全部不等于零; (3)如果A 可逆,则nλλλ1,,1,121 为1-A 的全部特征值.25.设三维线性空间V 的线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A , 求:(1)A 的特征值和特征向量;(2)是否存在V 的基321,,βββ使得线性变换A 在其下的矩阵为对角形.若这样的基321,,βββ存在,试写出由基321,,ααα到321,,βββ的过渡矩阵T .以及A 在321,,βββ下的矩阵;(3)计算AT T 1-.第八章 -λ矩阵[教学目的与要求] 通过本章学习,实现如下目的: (1)会求-λ矩阵的标准形 (2)会求-λ矩阵的行列式因子(3)会求矩阵A 的初等因子,并能写出A 若尔当标准形 (4)会求矩阵A 的有理标准形[教学重点] 矩阵A 的初等因子,矩阵的A 若尔当标准形 [教学难点] 矩阵相似的条件 [教学内容]§8.1. -λ矩阵一、-λ矩阵的秩 二、-λ矩阵的可逆§8.2. -λ矩阵在初等变换下的标准形一、-λ矩阵的初等变换 二、-λ矩阵的标准形§8.3. 不变因子一、-λ矩阵的行列式因子 二、-λ矩阵的不变因子§8.4. 相似矩阵的条件两个矩阵相似的充要条件§8.5. 初等因子一、初等因子的概念 二、初等因子的求法§8.6. 若尔当(Jordan )标准形理论推导一、若尔当矩阵的概念二、矩阵的若尔当标准形的求法§8.7. 矩阵的有理标准形一、有理形矩阵的概念 二、有理标准形的求法思考题1.求下列矩阵的初等因子、不变因子、行列式因子,并写出若当标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛-----222333111, (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0167121700140013, (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10021*********1. 2. 已知nn P A ⨯∈,证明A 与A '相似.3. 设复矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102002c b a A ,(1)求出A 的一切可能的若当标准形;(2)给出A 可对角化的条件.第九章 欧几里得空间[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握求标准正交基的施密特(Schmidt )正交化方法;(2) 会判断两个欧氏空间的同构; (3) 理解正交变换与正交矩阵的关系; (4) 会求欧氏空间子空间的正交补;(5) 能熟练地把实对称矩阵正交相似于对角矩阵; (6) 能掌握最小二乘法.[教学重点] 求标准正交基的施密特(Schmidt )正交化方法;欧氏空间的同构;正交变换;对乘变换;实对称矩阵正交相似于对角矩阵的方法.[教学难点] 最小二乘法[教学内容] §9.1. 定义与基本性质一、内积与欧氏空间的定义 二、向量的长度 三、向量的正交四、欧氏空间基的度量矩阵§9.2. 标准正交基一、标准正交基的概念 二、标准正交基的求法§9.3. 同构一、欧氏空间同构的概念 二、欧氏空间同构的充要条件§9.4. 正交变换一、正交变换的定义 二、正交变换的性质§9.5. 子空间一、欧氏空间中子空间的正交 二、欧氏空间子空间的正交补§9.6. 实对称矩阵的标准形一、对称变换二、实对称矩阵的特征值特征向量的性质 三、实对称矩阵的对角化四、二次型化标准形的正交变换法§9.7. 向量到子空间的距离 最小二乘法一、向量到子空间的距离 二、最小二乘法§9.8. 酉空间介绍一、酉空间的概念二、酉空间中的一些重要结论思考题1.下列线性空间对给定的二元函数),(βα是否构成欧氏空间(1)在线性空间nR 中,对任意向量),,(1n a a =α,),,(1n b b =β,定义二元函数∑==ni i i b a 1||),(βα(2)在线性空间nn R ⨯中,对任意向量nn RB A ⨯∈,,定义二元函数)(),(A B tr B A '=2. 在欧氏空间4R 中求出两个单位向量使它们同时与下面三个向量正交.)0,4,1,2(1-=α,)2,2,1,1(2--=α,)4,5,2,3(3=α3. 称||),(βαβα-=d 为向量α和β间的距离.证明:),(),(),(βγγαβαd d d +≤. 4.设α,β是欧氏空间中任意两个非零向量,证明:(1))0(>=k k βα的充分必要条件是α和β间的夹角为零; (2))0(<=k k βα的充分必要条件是α和β间的夹角为π. 5. 已知)0,1,2,0(1=α,)0,0,1,1(2-=α,)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基,对这个基正交化,求出4R 的一个标准正交基.6. 在欧氏空间]1,1[-C 里,对基32,,,1x x x 正交化,求出]1,1[-C 的一个标准正交基. 7. 已知))0,2,0(),0,0,1((L W =是3R 的一个子空间,求⊥W . 8.设21,,W W W 为欧氏空间V 的子空间,则(1)W W =⊥⊥)(;(2)如果21W W ⊂,则⊥⊥⊂12W W ; (3)⊥⊥⊥⋂=+2121)(W W W W . 9.求正交矩阵T 使得AT T '成对角形.其中A 为(1)⎪⎪⎪⎭⎫ ⎝⎛--510810228211; (2)⎪⎪⎪⎭⎫ ⎝⎛----114441784817. 10.用正交的线性替换化下列二次型为标准形(1)322322214332x x x x x f +++=;(2)43324121242322212222x x x x x x x x x x x x f +--++++=; (3)434232413121222222x x x x x x x x x x x x f ++--+=.第十章 双线性函数与辛空间 *[教学目的与要求] 通过本章学习,实现如下目的:(1)理解线性函数的定义,熟悉线性函数的简单性质 (2)理解线性空间与其对偶空间的同构关系(3)理解双线性度量空间、正交空间、准欧氏空间、辛空间等概念 [教学重点] 对偶空间和对偶基、双线性函数、双线性度量空间、正交空间、准欧氏空间、辛空间等概念。
---文档均为word文档,下载后可直接编辑使用亦可打印--- 摘要代数是学学的心础课程,是其它课程的要提.本文共分三大部分,第一大部分主要介绍了高等代数课程的七个重要定理的内容、证明.因高等代数中提出了许多新概念、新定义、新定理,譬如多项式、数域、线性空间、映射等,且都是较为抽象的内容,故此将其中各章节中的重要定理列举出来,并寻找多个定理证明来加深对其的理解及认识.第二大部分主要介绍了在高等代数学习中遇到的问题及解决的方法.第三大部分则主要讲了高等代数在实际问题中的应用中的两种应用方法,即矩阵密码与保密通讯和情报信息检索模型.关键词:定理证明;矩阵;行列式;线性空间;高等代数应用AbstractHigher algebra is the core curriculum of university mathematics,and it is an important prerequisite for learning other courses. This paper is divided into three parts,and the first part mainly introduces the seven important theorems in advanced algebra course content. Because of Higher Algebra put forward many new concepts and new definition, theorems, such as polynomial, the number of domain, linear space mapping, etc., which are more abstract content.Therefore one of the important theorem of various sections of the list, and to find a proof of the theorem to deepen understanding and understanding of these.The second part mainly introduces the problems and solutions in the study of higher algebra. The third part focuses on the application of advanced algebra in the practical application of the two methods, namely, matrix cryptography and secure communications and information retrieval model.Key words:Theorem proving;matrix;determinant;application of Advanced algebra目录TOC \o "1-2" \u 前言11 定理阐述及证明21.1因式分解及唯一性定理21.2最大公因式存在定理41.3最小数原理51.4替换定理61.5哈密尔顿-凯莱定理81.6带余除法101.7行列式计算定理121.8定理:在数域上,任意一个对称矩阵都合同于一对角矩阵132 高等代数的重要定理在相关的对应理论中的作用、地位与应用132.1因式分解及唯一性定理142.2 最大公因式存在定理142.3 最小数定理142.4 替换定理142.5 哈密尔顿-凯莱定理152.6 带余除法152.7 行列式计算定理152.8 对称矩阵合同于对角矩阵153 高等代数的学习15结束语17参考文献18引言高代数是范学校学业的学生所学习的一门主要,是学的继与高.它的内容由多项式理论、解理论、线性空间理论三大部分组成.这三大部分的特殊性在于其中的定理和概念较多,具体的模型稀少,,可引导用的例题较少,计算性弱,逻辑性强.在对高等代数几个重要定理的证明方法的探索中,能够改变我们的思维,增强大家都思维能力,辑思维能力和代数计算.此外,高等代数已经是从事科学研究的科技人员必备的数学基础知识,因它是理论化学与理论物理的不可替代的代数基础知识,也已经渗透到了管理、经济、科学技术等多项领域,除此以外,矩阵又有了新的意,尤其是对矩阵的数值分析方面的贡献.由是对于本文探索高等代数的定理新证明又有了重大意义.1 定理阐述及证明1.1因式分解及唯一性定理:理容:数上有的多式都可一地解为域,一些可多项的积,所说的性是说,如有个分式,则,同在当排因的次后有,,且是些零数.证法一:首先要证明的式分解式是否存在,我们对的次数作数学归纳法.因为一次性多项式都是不可约的,所以当时结论成立.先,同设此论对于数的多项式已成立.如果,那么然论成,不是约的,,其的次数都.由归纳假和都可以分解成数上一些多式的积.把,的分式来就可以得到的一个式.由归纳法原理,可知结论普遍成立.下证它的一性.设可以解成约项式的积.如果还有另一个分解,其中都可约多项式,于是. (1)我们对作归纳法.当,是不可约多项式,由定义一定有且现在设可约式的时性已证.由(1)因此,能尽中的一个,.因为也可多式,,(2)在(1)式两边消去,就有.由归纳假设,有,即,(3)并且适当排列次序之后有,,(4)即(2),(3),(4)三式加起来就是我们所要证得,即证明了分解的唯一性.[1]证法二:可以对因式的用数学归纳法.对于可多式,也是对于的情来说,理成立.假定对于能分解成个不可约因式的乘积的多项式来说,定理成立.们明对于能可因的积的多项来说也立.等(1)表明,积可以被可多式整.性,若项与的积能被可多式,则有一能被的,且某一能被.适当调整的次序,可以假定即.但不是可约多项式,而的次数是零,所以必须是一个多项式:(2), 把的表示式代入式(1)的右端,得:,等端除为的多项式,得出式,令那么是一个能分解成不约多项式乘积的多项式.于是由归纳假定得,亦即,并且可以假定(3)其及都是次多式.令,由(2)及(3)得,这样得到明1.2最大公因式存在定理:如果中意个项在中存一个大因,且表示为的一个合,即中项式使.证法一:数学归纳法证明:将定理证明过程中会用到的引理列出:引理[1]:如有式成,和有同的因式.下面用归纳证明大因式在定理.(种形证)证明当或时,的最大公因式为或,显然有或当且时,不妨设,令,下面对n实行归纳法:.当时设,则(非零常数)或,当时,,于是的最大公因式为,有. 当(非零常数)时,由于,故的最大公因式为,由引理,的最大公因式也为,且有定理成立..假对于的自然,定都成.看n时情形设,则或,⑴时,,于是的最大公因式为,有.⑵时,设,则或⑶时,的最大公因式为,由引理,的最大公因式也为,且有.⑷当时,由归纳假设,存在最大公因式,且由引理,的最大公因式也为,进而的最大公因式也是.所以,对于一切都存在最大公因式.由于所以,取,,则有.[3]1.3最小数原理:负整数集合的任意一个非空子集一定含一个最小数,接下来通过构造的方法证明最大公因式存在定理.证明:分成两种情况当或时,的最大公因式为或,显然有或当且时,令,记,由于,所以,则是非负整数集的一个非空子集.由最小数原理,中存在最小数,故存在,且,即是中最小次数多项式.于是,有中多项式使由带余除法或或’若则,但,即,于是,与是中最小次数多项式矛盾.因此,从而.同理可证:.于是是与的公因式.设是与的任一公因式,则,,由得:,所以是与的最大公因式,且有.1.4替换定理:设无关的量组(1)可由组(2)线表,则,且(2)中个量使得向组,(3)与量(2).证法1.由可知性无的向组由量(2)表示,则有:可由向量组线性表示.从而,由可向量线性表示,得(3)性关.那么根据前面所提供的定理,可知至少有一个向量能用其前个向量线性表示.在向量组(3)中将除去,剩下个向量为(4)这时向量组(4)与(2)等价.同理可得(6)如果线性无关向量组的元素个数,则进行次可得向量组(7)则这个组(7)不含向,但量组(7)与向组(2)价.此又于可由,则可由性出.这与性关,故.由以上的证明过程可以的知向量组同向量组(2)等价. [4]证法2.运极无组的性质证,之后过扩极大关组来证明向量的价.设向组的极大无关组(8),然,因(1)可由线性表示,所也是的一个大无关,又因为性无关,因,又,故.因为的秩为,然,当选,可以把(1)为的一个极无关.因为,均是的极无关组,因此和等价,因此是极1.5哈密尔顿-凯莱定理:设是数上一个阵,是的,则:.证法一:是.因为矩阵都是的多项式,次数不超过,故此由矩阵的运算性质,可以写成.其中都是数字矩阵.设(6)而(7)比较(6)和(7)得(8)以依次从右边乘以(8)的第一式,第二式,…,第式,第式,得(9)把的个式子一块儿起来,就成了,右边,故.证法二:幂级数证法对于,由行列的拉普公式可得标准方程其中表示的伴随矩阵,的系数取自于的形式幂级数.因为所以可逆且为其逆矩阵,因此:将写成的次数取自于的形式幂级数,可得可以注意到中的元素都是的次数不超过的多项式,因此是零矩阵,等式两的系数,可得:,即. [5]1.6带余除法:对于中两个多项,其中,中的项存在,使(1)成立,其中,并且这样是唯一决定的.证法一:(1)中的存在性可以由高等代数北师大第四版课本上第八页所提及的除法直接得出,如果.下面设.令的次数分别为.对的次数作第二数学归纳法.当时,显然取,(1)式成立接下来讨论的情形,假设当次数时,的存在已证,现在看当次数等于时的情形.令的项,然有同的,因多项的数或为0.7对于者,取对于者,由归假,对在使其中,于是,也就是说,有,使成立.由归纳法原理,对的存在性就证明了.下面明性,设另有项使,其中,于是,即如果,又,那么,且有,但,所以不可能立,这就,因此证法二:用限维性来证明的带除法理.引理1:数上的任何线性关向量组构的一基;引理2:上一元多项式中,小于的组成的是上的;引理3:在中,一个互相同的项式组都是无关的.叙述:设是一元多项式环中的任意两个多项式,并且,那么存在唯一一对多项式满足:(1)(2)证明:设先证存在性,如果,那么就是满足定理条件(1)和(2)的唯一,如果,那么由引理2可知,中的个多项式组成的集合是线性空间的一组基.事实上,由引理3知,是一个线性无关集合,再由引理1和引理2的结论可知,它构成了的一组基.因为,所以在数域中存在唯一的一组数令,,于是满足定理的条件.再证唯一性:由于数域中的数是唯一的,所以也是唯一的1.7行列式计算定理:1.首先给出一个上三角行列式行列其实于主对线上素乘积即行列式计算定理.2.定义:数域上列式转化为三角行列式i ;ii ,;iii 换列式中的.比如把行列式的-2倍加到,得到再把第一行加到第三行,得到-2,我们将形如,,其分为三行列式和.1.8定理:在数域上,任意一个对称矩阵都合同于一对角矩阵对角矩阵:形式为的矩阵,其中是数,通常称为对角矩阵.对称矩阵:矩阵称为对称矩阵,如果:数域上矩阵之,如果有上的矩阵,使.合同是间的一个关系,具备下列三个特点:1)自反性:;2)对称性:由即得;3) 传递性:由和即得.2 高等代数的重要定理在相关的对应理论中的作用、地位与应用2.1因式分解及唯一性定理,我们前把它成几个能再,只是续分解这个是由于我们,并它不能,实际上这是相对于系数的数域而言的,并不是绝对的.因式分解及唯一性定理是对我们初中多项式分解知识有更深刻更宽广的认知,可是该并给出能够解多项式的以上便是多项式理论中的地位与局限.此外,初阶的因式分解定理常应用于初中考试题中.2.2 最大公因式存在定理我们在维纳的经典控制论等学科里常常会用到最大公因式,这说明最大公因式不仅是数学中的重要概念,而且在多个学科里都占据着不可替代的地位,因此在求解两个多项式之间的最大公因式时所用的辗转相除法是最大公因式定理的核心内容,它又被称为欧几里得算法,历史源远流长,是现代人们已得知的最古老的算法,这就是最大公因式存在定理的地位.辗转相除法是证明与计算最大公因式的核心,并且应用范围十分广泛.当需要寻找剩余定理的数时,它会被用来解丢翻图方程;在现代密码学里,RSA的主要构成部分就是它……这些都是辗转相除法应用里的沧海一粟.2.3 最小数定理,它等故此在解决许多存在性问题时常会用到最小数定理,证法与之结合解题常有2.4 替换定理替换定理是高等代数量空间理论的又.它应用广泛,可以被,也可被用于比较大无关量组向量的;亦;也可被用于证明基的扩充性,替换定理可以使这些问题可以得到更好的解决.2.5 哈密尔顿-凯莱定理哈密尔顿-凯莱定理是线性代数中的,是式所具备的一个,它揭示了和它式之间的关系,并且在解决.哈密尔顿-凯莱定理的应用可谓十分广泛,在计算方面可以辅助证明方阵的幂与方阵的逆阵,在证明方面即矩阵多项式等于零的有关问题中,可以使问难快速的得到解决.2.6 带余除法高等代数课程中占有重要地位的多项式的整除理论的基础就是带余除法,它是初等代数中最最基础,最最重要也是最直白的定理及工具.带余除法在初等代数中常被用到,常在小学初中的试卷中以应用题的形式出现,而在做这一类题的时候,就需要把题目外面包裹的各种各样的情境忽略掉而直接注意题目的本2.7 行列式计算定理,计算理,学习行列式的计算是学好高等代数的重要基石.,也很要,学会行列式的,我们可以应用它,还可以应用它求.2.8 对称矩阵合同于对角矩阵矩阵概念在高等代数课程的应用与内容中占据了非常广泛且重要的地位.首先,线性方程组的重要性质里就包含了矩阵的知识,例如它的系数矩阵和增广矩阵,除了线性方程组之外,许多问题的研究也常常会用到矩阵,甚至会研究有关于矩阵的方面.此外,对称矩阵、对角矩阵也是矩阵理论的重要研究对象.矩阵的应用方面包括,保密通讯技术时常会用到矩阵,信息的解码和编码也是需要用到矩阵密码这个技巧的.3 高等代数的学习《等代数》与相同,是学习的大学生要学习的核心课程之,是数学在,通过对高等代数的学习,我们可以加强自身的数学素养.在对高等代数的学习过程中,我们应该注意以下几点要求,可以让我们对这门课程的学习领悟更加深刻,更加透彻.高等代数里的抽象概念非常多,学生理解起来就有困难,譬如数域,映射,线性空间等概念,这些概念的特点就在于它们从很多具体的例子中被抽象出来的,总的来说学习高等代数时首要的是注意解相关.一方面,等代数这门课程的理与概念基本属于学专业的,由此,学生首先应注重对课程义的领会和运用,在充分理解定义定理后,我们对这门课的理解也就更深刻,在面对一些复杂的题目时更容易领会解答,从而使学生解高等代数象的内容,也会使学生对这门课程产生,唯有这样,才能对数学学习有正的度.另一方面,寻求正确的学习策略是在以培养学习的兴趣,端正学习的态度的条件下所进行的十足紧要的学习步骤.有些同学学习刻苦努力,但是成绩不算太好,就把原因归结为自己太笨,自暴自弃,其实这不是计算能力的问题,而是因为概念理解能力不行,即习对大家来说,要从、象的高等代数思维蛮困难的,故此我们在学习过程中,不应只是一味努力,也要注重学习方法,课前预习,课后复习,借力于具体的例子来理解抽象的定义定理,加深对定理的理解和掌握,寻找正确的途径学习高等代数.总而言之,学习高等代数,基本上就是在熟练掌握代数方法的同时尝试深入理解几何意义.结束语在完成这篇论文的近一百天的过程中,我再次复习了OFFICE的使用方法,对此更加熟练;阅读了许多关于高等代数重要定理的书本与论文,使我对高等代数的理解变得深刻,兴趣愈发浓厚,这也是我在大学真真正正用心去做,独立思考的稚嫩的成果,希望写论文的这段人生体验能让我在以后的学习生活中乘风破浪,积极进取.参考文献[1]王萼芳,石生明.高等代数[M].第四版.北京:高等教育出版社,2013:18.[2]张禾瑞,郝鈵新.高等代数上[M].第二版.北京人民教育出版社,1979:58.[3]苏白云,张瑞.最大公因式存在定理的两个新证法[D].河南郑州:河南财经政法大学数学与信息科学系,2013.[4]杜奕秋.替换定理的若干证明方法[D].吉林四平:吉林师范大学数学学院,2006.[5]邓勇.关于Cayley-Hamilton定理的新证明[D].新疆喀什:喀什师范学院数学系,2015.[6]王萼芳,石生明.高等代数[M].第四版高等教育出版社2013:8.[7]邓勇.多项式带余除法定理的一种新证明[D].新疆喀什:喀什大学数学与统计学院,[8]韦城东,尹长明,何世榕,庞伟才.大学数学学习成败的原因的成败分析[D].广西:广西师范学院学报,2006.[9]王喜建.高等代数课程教学中的几点体会[D].广东:广东五邑大学数学物理系[10]白永成,郑亚林.数学中的基本元素[D].陕西:安康师专学报,1998.[11]欧阳伦群,欧阳伦键.高等代数学习中的困惑与解决对策[D].湖南:当代教育理论与实践,2015.[12]熊斌,周瑶.最小数原理[D].数学通讯:教师阅读,2017.[13]李丽花.哈密尔顿-凯莱定理的应用[D].上海电力学院学报,2008.[14]侯波,郭艳红.高等代数教学的几点探索[D].学园,2015.[15]张爱萍.可逆矩阵的判定及求法[D].赤峰学院学报(自然科学版),2011.。
《高等代数》课 程 教 案(另有电子多媒体制作的课件教案)(一) 课程概况课程名称: 高等代数I,高等代数II课程学时:两学期,课内周4学时,共计128学时。
课外另有讨论课。
课程性质:必修基础课。
讨论交流:每周安排1次讨论课。
考核方法: 多种形式结合。
平时表现 (课堂讨论、作业、思考题)占10%, 期中考试占20%,期末考试(和小论文小答辩)占70%.开课学期:秋季学期、春季学期。
(二) 使用教材:1.《高等代数学》(第一、二版), 张贤科,许甫华编著,清华大学出版社(主教材)2.《高等代数解题方法》,许甫华、张贤科编著,清华大学出版社(辅导教材)3.《Theory and Problems of Linear Algebra》,S. Lipschutz著, McGraw-Hill出版.4.《Linear Algebra》,S.Berberian著,Oxford Univ. 出版5. 《Advanced Linear Algebra》,S. Roman著,Springer出版社。
(以上3本为参考书)(三) 内容合进度安排 (带星号*的是简单介绍性内容)第一部分 基 础 内 容 (第一学期上课)第1章 数与多项式1.1 数的进化与代数系统 (第1大节上课)*1.2 整数的同余与同余类 (第2大节上课)1.3 多项式形式环 (第3大节上课)1.4 带余除法与整除性1.5 最大公因子与辗转相除法 (第4大节上课)1.6 唯一析因定理1.7 根与重根 (第5大节上课)1.8 与 (第6大节上课)1.9 与1.10 多元多项式 (第7大节上课)1.11 对称多项式习题1 (4 次讨论课)第2章 行列式2.1 排列 (第8大节上课)2.2 行列式的定义2.3 行列式的性质2.4 Laplace 展开 (第9大节上课)2.5 Cramer 法则与矩阵乘法 (第10大节上课)2.6 矩阵的乘积与行列式 (第11大节上课)2.7 行列式的计算习题2 (2次讨论课)第3章 线性方程组3.1 Gauss消元法 (第12大节上课)3.2 方程组与矩阵的秩3.3 行向量空间和列向量空间 (第13大节上课)3.4 矩阵的行秩和列秩3.5 线性方程组解的结构 (第14大节上课)3.6 例题*3.7 结式与消去法习题3 (2次讨论课)第4章 矩阵的运算与相抵4.1 矩阵的运算 (第15大节上课)4.2 矩阵的分块运算4.3 矩阵的相抵 (第16大节上课)4.4 矩阵运算举例 (第17大节上课)4.5 矩阵与映射 (第18大节上课)*4.6 矩阵的广义逆*4.7 最小二乘法习题4 (2 次讨论课)-------------------复习, 期中考试 (第19大节)第5章 线性(向量)空间5.1 线性(向量)空间 (第20大节上课)5.2 线性映射与同构 (21大节上课)5.3 基变换与坐标变换 (第22大节上课)5.4 子空间的和与直和 (第23大节上课)*5.5 商空间习题5 (两次讨论课)第6章 线性变换6.1 线性映射及其矩阵表示 (第24大节上课)6.2 线性映射的运算 (第25大节上课)6.3 线性变换 (第26大节上课)*6.4 线性表示介绍6.5 不变子空间 (第27大节上课)6.6 特征值与特征向量 (第28大节上课)6.7 方阵的相似 (第29大节上课)习题6 (两次讨论课)------------------------复习, 期末考试 (第30-32大节)第二部分 深 入 内 容(第二学期上课)第7章 方阵相似标准形与空间分解7.1 引言: 孙子定理 (第1大节上课)7.2 零化多项式与最小多项式 (第2大节上课)7.3 准素分解与根子空间 (第3大节上课)7.4 循环子空间 (第4大节上课)7.5 循环分解与有理标准形 (第5大节上课)7.6 Jordan 标准形 (第6-7大节上课)7.7 矩阵与空间分解 (第8大节上课)7.8 矩阵的相抵与Smith标准形 (第9大节上课)7.9 三种因子与方阵相似标准形 (第10大节上课) *7.10 方阵函数 (第11大节上课)*7.11 与可交换的方阵*7.12 模分解基本定理7.13 若干例题习题7 (讨论课4次)第8章 双线性型、二次型与方阵相合8.1 二次型与对称方阵 (第12大节上课)8.2 对称方阵的相合 (第13大节上课)8.3 正定实对称方阵 (第14大节上课)8.4 交错方阵的相合及例题 (第15大节上课)8.5 线性函数与对偶空间 (第16大节上课)8.6 双线性函数 (第17大节上课)8.7 对称双线性型与二次型 (第18大节上课)*8.8 二次超曲面的仿射分类*8.9 无限维线性空间习题8 (讨论课 3次)-------------------------复习, 期中考试 (第19大节上课)第9章 欧几里得空间与酉空间9.1 标准正交基 (第20大节上课)9.2 方阵的正交相似 (第21大节上课)9.3 欧几里得空间的线性变换 (第22大节上课)9.4 正定性与极分解 (第23大节上课)*9.5 二次超曲面的正交分类 (第24大节上课)9.6 杂例 (第25大节上课)9.7 Hermite型 (第26大节上课)9.8 酉空间和标准正交基 (第27大节上课)9.9 方阵的酉相似与线性变换 (第28大节上课)*9.10 变换族与群表示9.11 型与线性变换 (第29大节上课)习题9 (讨论课 4次)-------------------------复习, 期末考试 (第30-32大节) 第三部分 选 学 内 容(课外阅读材料, 不在课内讲课, 或稍作介绍)第10章 正交几何与辛几何10.1 根与正交补10.2 正交几何与辛几何的结构10.3 等距变换与反射10.4 Witt定理10.5 极大双曲子空间习题10第11章 Hilbert空间11.1 内积与度量空间11.2 内积空间与完备11.3 逼近与正交直和11.4 Fourier展开11.5 等距同构于11.6 有界函数与Riesz表示习题11第12章 张量积与外积12.1 引言与概述12.2 张量积12.3 线性变换及对偶12.4 张量及其分量12.5 外积12.6 交错张量习题12(四)课程的定位和作用《高等代数》是数学的核心基础课程。
目录第1 章行列式 (1)§1.1 二阶与三阶行列式 (1)§1.2 排列及其逆序数 (3)§1.3 n 阶行列式的定义 (4)§1.4 对换 (6)§1.5 行列式的性质 (8)§1.6 行列式按行(列)展开 (14)§1.7 Matlab 在行列式计算中的应用 (22)习题1 (22)第2 章矩阵 (26)§2.1 矩阵的概念 (26)§2.2 矩阵的关系和运算 (31)§2.3 伴随矩阵和逆矩阵 (39)§2.4 矩阵的分块法 (45)§2.5 矩阵的初等变换和初等矩阵 (52)§2.6 矩阵的秩 (59)§2.7 Matlab 在矩阵运算与初等变换中的应用 (63)习题2 (66)第3 章线性方程组 (72)§3.1 Cramer 法则 (72)§3.2 一般线性方程组的解 (74)§3.3 Matlab 在解线性方程组中的应用 (85)习题3 (86)·1·高等代数第4 章向量组的线性相关性 (89)§4.1 向量组及其线性组合 (89)§4.2 向量组的线性相关性 (92)§4.3 向量组的秩 (97)§4.4 线性方程组解的结构 (100)§4.5 Matlab 在向量组线性相关性中的应用 (106)习题4 (107)第5 章线性空间与线性变换 (111)§5.1 数环、数域与映射 (111)§5.2 线性空间及其性质 (115)§5.3 基、维数与坐标 (118)§5.4 基变换与坐标变换 (120)§5.5 线性变换 (123)§5.6 线性变换的矩阵表示 (127)§5.7 欧氏空间 (132)§5.8 Matlab 在线性空间和线性变换中的应用 (141)习题5 (144)第6 章相似矩阵及二次型 (150)§6.1 方阵的特征值与特征向量 (150)§6.2 相似矩阵 (155)§6.3 实对称矩阵的相似矩阵 (158)§6.4 二次型及其标准形 (161)§6.5 化二次型为标准形 (163)§6.6 正定二次型 (169)§6.7 Matlab 在相似矩阵和二次型中的应用 (172)习题6 (175)第7 章多项式 (179)§7.1 一元多项式的定义和运算 (179)§7.2 多项式的整除性 (182)§7.3 多项式的最大公因式和互素 (186)§7.4 多项式的分解 (191)·2·高等代数§7.5 多项式的重因式 (194)§7.6 多项式函数多项式的根 (197)§7.7 复数域和实数域上的多项式 (200)§7.8 有理数域上的多项式 (202)§7.9 Matlab 在多项式中的应用 (208)习题7 (211)习题答案与选解 (215)参考文献 (243)·3·第 1 章行列式行列式是基于解线性方程组的需要建立起来的. 作为一个重要工具,行列式在数学和其他学科中都有广泛的应用. 本章主要介绍n 阶行列式的定义、性质及其计算.§1.1二阶与三阶行列式1.1.1 二阶行列式定义1.1 把4 个数排成两横排两竖列构成数表a 11 a 21 a12a22(1.1)表达式a11a22-a12a21称为由数表(1.1)确定的二阶行列式(two order determinant),记为a11a21 即a12a22(1.2)a 11 a12 =a a -a aa 21 a2211 22 12 21其中横排称为行(row),竖排称为列(column). 数aij( i = 1, 2 ;j = 1, 2 ) 称为行列式(1.2)的元素或元(entry),元素aij 的第一个下标i 称为行标,表明元素aij位于第i行,第二个下标j 称为列标,表明元素aij位于第j 列.例1.1 计算二阶行列式D =1 2 3 4解 D = 1⨯ 4 - 2 ⨯3 =-2·1·高等代数例1.2 解方程解方程左端的行列式为x - 24-1= 0x + 3方程化为解得 x = 1 或 x =-2 .1.1.2 三阶行列式D = (x - 2 )(x + 3) - (-1) ⨯ 4 =x2+x - 2x2 +x - 2 = 0定义1.2 把9 个数排成三行三列构成数表a11a21a31a12a22a32a13a23a33(1.3)表达式a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31称为由数表(1.3) 确定的三阶行列式(three order determinant),记为a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31(1.4)三阶行列式中的6 项可以借助图1.1 来记忆,如图1.1 所示,实线上三元素的乘积前加正号,虚线上三元素的乘积前加负号.a11a12a13a21a22a23a31a32a33图 1.1·2·第 1 章行列式例1.3 计算三阶行列式2 -3 3D = 1 2 -74 0 -5解 D = 2 ⨯ 2 ⨯ (-5) + (-3) ⨯ (-7) ⨯ 4 + 3⨯1⨯ 0 -2 ⨯ (-7) ⨯ 0 - (-3) ⨯1⨯ (-5) -3 ⨯ 2 ⨯4 = 25 例1.4 证明1 1 1 a bcb cac ab= (b -a)(c -a)(c -b) = (a -b)(b -c)(c -a)证明左端=ab2 +a2 c +bc2 -ac2 -a2b -b2c=c2 (b -a) +ab(b -a) -c(b +a)(b -a)= (b -a)(c2 +ab -ac -bc) = (b -a)[c(c -a) -b(c -a)]= (b -a)(c -a)(c -b) = (a -b)(b -c)(c -a) =右端§1.2排列及其逆序数为了给出n 阶行列式的定义并讨论它的性质,这里先讨论排列及其逆序.定义 1.3 由n 个数1, 2, , n 组成的有序数组称为一个n 元排列,简称排列(permutation).由中学排列组合知识可知所有不同的n 元排列共有n! 个. 如3 元排列共有3! = 6 个,它们是123, 132 , 213, 231, 312, 321通过观察发现3 元排列中除排列123 按照自然顺序排列外,其余的排列中,都有较大的数排在了较小的数的前面.定义 1.4 在一个排列中,如果一个较大的数排在了一个较小的数的前面,那么称这两个数构成一个逆序(inverted sequence). 一个排列中所有逆序的总数,称为该排列的逆序数(number of inverted sequence).例如排列3214 中,3 与2,3 与1,2 与1 分别构成逆序,其余都不构成逆序,所以排列3214 的逆序数是3 .排列12n 称为标准排列或自然排列,显然它的逆序数是0 . 一般地,排列p 1 p2pn的逆序数记为( p1p2pn) . 于是(3214 )= 3 ,(12n)=0 .设pi后面比pi小的数有ti( i = 1, 2, , n ) 个,则·3·高 等 代 数21 22 23 1 p 12 p 2( p 1 p 2p n ) = t 1 + t 2 ++ t n = ∑t ii =1例 1.5 求排列5761423 的逆序数.解 按照上面的记号,5 后面比5 小的数有1, 4 , 2 , 3 ,所以t 1 = 4 ,同理t 2 = 5 , t 3 = 4 , t 4 = 0 , t 5 = 2 , t 6 = 0 , t 7 = 0 . 故排列5761423 的逆序数为(5761423) = 4 + 5 + 4 + 0 + 2 + 0 + 0 = 15逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列.§1.3n 阶行列式的定义为了给出 n 阶行列式的定义,需要对三阶行列式的结构作进一步的分析,找出它们的结构规律。
高等代数高等代数是现代数学中的一门重要学科,它研究的是代数结构的基础和性质。
代数结构是指由一组元素及其相关运算组成的数学系统,如群、环、域等。
高等代数是对线性代数和抽象代数等基础知识的延伸和深化,对于理解现代数学中许多分支都至关重要。
一、线性代数高等代数中最基础的部分是线性代数。
线性代数是代数学中的一个分支,主要研究向量、矩阵以及线性方程组的性质和运算。
线性代数是微积分和微分方程等数学领域必不可少的基础知识,它的应用范围也很广泛,包括了图像处理、信号处理、机器学习等领域。
1. 向量空间向量空间是线性代数中最重要的概念之一,它是由一组向量以及其对应的加法和数乘运算组成的数学结构。
向量可以是实数向量或复数向量,它们具有加法、数乘、向量求和、向量求差等运算。
2. 线性变换线性变换是一种从一个向量空间到另一个向量空间的映射,它具有线性性质。
线性变换的本质是将一个向量空间中的向量映射到另一个向量空间中的向量,它可以用矩阵表示,从而得到更方便的运算方式。
3. 矩阵及其运算矩阵是线性代数中常见的数学工具,它具有加法、数乘、矩阵乘法等运算,可以用于解决线性方程组、对称矩阵的特征值和特征向量等问题。
二、抽象代数抽象代数是研究代数结构的基本性质和理论结构的一门学科,它通过对代数结构的抽象和推广,研究了许多重要的代数性质。
抽象代数包括了群论、环论、域论等领域。
1. 群论群是一种有限或无限的、具有代数结构的量,它由一组元素以及合成运算组成。
群具有封闭、结合、单位元和逆元等运算性质,在数学研究中被广泛应用。
群论的应用领域包括了几何学、物理学、密码学等领域。
2. 环论环是一种数学结构,它由一个集合以及两个二元运算(加法和乘法)组成。
环论是研究环以及环上的运算和性质的数学分支,它的应用包括了计算机科学、代数几何学等领域。
3. 域论域是一种具有加法、乘法、加法逆元和乘法逆元等运算的数学结构,它是一个基本的代数结构。
域论是研究域以及域上的运算和性质的数学分支,它在现代数学和理论物理学中都有广泛的应用。
第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i ) ;13)(,14)(234--=--=x x x g x x x f (ii);23)(,13)(3235+-=-+-=x x x g x x x x f2.证明:k x f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++5.设F 是一个数域,.F a ∈证明:a x -整除.n na x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-dx整除1-n x 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式: ( i ) ()();32103,34323234-++=---+=x x x x g x x x x x f(ii)()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3.令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明: (i )h g f ),(是fh 和gh 的最大公因式;(ii )),,,,(),)(,(212121212211g g f g g f f f g f g f =此处h g f ,,等都是][x F 的多项式。
高等代数使用教材及辅导材料课程:高等代数高等代数北京大学数学系几何与代数教研室高等教育出版社 1978高等代数丘维声高等教育出版社 1996高等代数张禾瑞郝炳新高等教育出版社 1983高等代数习题课教材钱芳华黎有高卜淑云邓培民广西师范大学出版社 1997高等代数解题方法许甫华张贤科清华大学出版社 2001高等代数习题课参考书张均本高等教育出版社 1991线性代数试题选解魏宗宣中南工业大学出版社 1986用MAPLEV学习线性代数丘维声(译)高等教育出版社施普林格出版社 2001高等代数教学大纲数学与应用数学专业《高等代数》教学大纲一、课程说明:《高等代数》是河北师范大学数学与应用数学专业(数学系)的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用。
二、教学目的及要求:通过本课程教学的主要环节(讲授与讨论,习题课,作业,辅导等),使学生对多项式理论、线性代数的“解析理论”、与“几何理论”及其思想方法有较深的认识和理解,从而有助于学生正确理解高等代数的基本概念和论证方法及提高分析问题解决问题的能力。
三、教学重点及难点:带余除法、最大公因式的性质、不可约多项式的定义及性质、重因式、多项式的有理根等;计算行列式的一些方法;线性方程组及其相关理论的理解及应用;矩阵理论的灵活应用;正定二次型的等价条件及二次型的标准形;向量空间一些基本概念的理解及相关理论的灵活应用;线性变换与矩阵的联系、矩阵相似、线性变换在不同基下的矩阵、矩阵的特征值、特征向量及子空间理论;一些基本概念(内积空间、欧氏空间、正交矩阵、酉空间)的理解。