【名师一号】高中物理(人教版)必修2综合检测(含详解)
- 格式:doc
- 大小:358.00 KB
- 文档页数:11
期末综合检测卷本试卷分第1卷(选择题)和第2卷(非选择题)两局部,总分为100分,考试时间90分钟。
第1卷(选择题,共48分)一、选择题(此题共12小题,每一小题4分,共48分。
在每个小题给出的四个选项中,第1~8小题,只有一个选项符合题意;第9~12小题,有多个选项符合题意,全部选对的得4分,选对而不全的得2分,错选或不选的得0分)1.关于运动的合成与分解,如下说法中不正确的答案是( ) A .物体的两个分运动是直线运动,如此它们的合运动一定是直线运动B .假设两个互成角度的分运动分别是匀速直线运动和匀加速直线运动,如此合运动一定是曲线运动C .合运动与分运动具有等时性D .速度、加速度和位移的合成都遵循平行四边形定如此 答案 A解析 物体的两个分运动是直线运动,如此它们的合运动可能是直线运动,也可能是曲线运动,假设合速度方向与合加速度方向共线,如此为直线运动,否如此为曲线运动,A 错误,B 、C 、D 正确。
2.飞镖比赛是一项极具观赏性的体育比赛项目,在飞镖世界杯大赛中某一选手在距地面高h ,离靶面的水平距离L 处,将质量为m 的飞镖以速度v 0水平投出,结果飞镖落在靶心正上方。
不计空气阻力,如只改变h 、L 、m 、v 0四个量中的一个,可使飞镖投中靶心的是( )A .适当减小v 0B .适当提高hC .适当减小mD .适当减小L答案 A解析 飞镖飞出后在水平方向做匀速直线运动,竖直方向做匀加速直线运动;开始时飞镖落于靶心上方,说明在飞镖水平方向飞行L 时,下落高度较小,而水平方向L =v 0t ,竖直方向y =12gt 2=gL22v 20,为增大y ,可以增大L 或减小v 0,故A 正确,D 错误;假设L 不变,v 0不变,也可以降低h ,故B 错误;而平抛运动规律和物体的质量无关,故C 错误。
3.如下列图,在同一轨道平面上的三个人造地球卫星A 、B 、C ,在某一时刻恰好在同一条直线上。
机械能守恒定律章末检测时间:90分钟满分:100分第I 卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.每小题给 出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项 符合题目要求)1 •用水平拉力F=1 000N 拉质量为M= 500kg 的大车移动10m, 用相同的水平拉力拉质量为/n = 50kg 的小车也移动10m,则两次拉 车所做的功相比较()拉大车做的功多因水平面的粗糙程度不知,两车速度大小不知,无法判定 解析 某个力的功等于力的大小,位移的大小及力和位移之间夹 角的余弦三者的乘积,与物体是否受其他力,及物体的运动性质等因 素无关,故只有C 选项正确・答案c2.如图石块自由下落过程中,由力点到〃点重力做的功是10J, 下列说法正确的是()A.B. 拉小车做的功多C. 两次做功一样多D.BA.由/到〃,石块的重力势能减少了10JB.由力到〃,功减少了10JC.由/到310J的功转化为石块的动能D.由力到B,10J的重力势能转化为石块的动能解析物体自由下落,重力做的功等于物体重力势能的减少量,故A 选项正确;功是能转化的量度,故B、C选项错误;由动能定理可知重力做功,从而动能增加,故D选项正确・答案AD3・下列说法正确的是()A.物体的机械能守恒,一定只受重力和弹簧弹力作用物体处于平衡状态时机械能定守恒C.物体的动能和重力势能之和增大时,必定有重力以外的其他力对物体做了功D.物体的动能和重力势能在相互转化过程中,一定通过重力做功来实现解析物体的机械能守恒时,一定只有重力和弹簧的弹力做功,但不一定只受重力和弹簧弹力的作用・4.如图所示, 为一汽车在平直的公路上, 由静止开始运动的速答案CD度图象,汽车所受阻力恒定.图中Q4为一段直线,力〃为一曲线,BC为一平行于时间轴的直线,贝U()A.0/段汽车发动机的功率是恒定的B.04段汽车发动机的牵引力恒定C.段汽车发动机的功率可能是恒定的D・段汽车发动机的功率是恒定的解析OA段汽车做匀加速运动,牵引力恒定,功率是逐渐增大的.答案BCD5.如图所示,在电梯中的斜面上放置了一滑块,在电梯加速上升的过程中,滑块相对斜面静止.则在该过程中()新课标版•物理•必修2A.斜面对滑块的弹力对滑块所做的功等于滑块增加的重力势能B.滑块所受合力对滑块所做的功等于滑块增加的机械能C.斜面对滑块的摩擦力对滑块做负功D.斜面对滑块的弹力对滑块所做的功小于滑块增加的机械能解析物体克服重力所做的功等于物体增加的重力势能,故A选项错误;合力对物体所做的功等于物体动能的增量,故B选项错误;斜面对物体的摩擦力沿斜面向上,因此摩擦力做正功,C选项错误;斜面对滑块的弹力.摩擦力对滑块做的总功等于滑块机械能的增量,因此D选项正确.答案D6.如图所示是健身用的“跑步机”示意图,质量为加的运动员踩在与水平面成a角静止的皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为F{,使皮带以速度©匀速向右运动,则在运动过程中,下列说法正确的是()新课标版•物理•必修2A.人脚对皮带的摩擦力是皮带运动的动力B.人对皮带不做功C.人对皮带做功的功率为加牌D.人对皮带做功的功率为解析皮带之所以能运动起来,是人对皮带的摩擦力充当了动力,故A正确.摩擦力的大小与阻力相等,故人对皮带做功的功率为F®.答案AD7.如图所示,小球自Q点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩到最短.若不计弹簧的质量和空气阻力,在小球由a-^b-^c的运动过程中()77777777777新课标版•物理•必修2A.小球在方点时的动能最大B.小球的重力势能随时间均匀减少C.小球从b到c运动过程中,动能先增大后减小,弹簧的弹性势能一直增大D.到达c点时小球重力势能的减少量等于弹簧弹性势能的增加解析小球由Qfb做自由落体运动重力势能减少AEp = mg\h m s\s^ = 2mg2t2 '故选项B错误;由b_c过程中,速度先增大,当弹力等于重力时加速度为零,此时速度最大,接着再做变减速运动•故小球动能先增大后减小,而弹性势能一直增大,选项c正确;到达C点时球速为零,由机械能守恒定律可知选项D正确・答案CD&如图所示,重10N的滑块在倾角为30。
新人教版必修2全册综合测试一、不定项选择题1、下面说法中正确的是:()A、物体在恒力作用下不可能做曲线运动。
B、物体在变力作用下有可能做曲线运动。
C、做曲线运动的物体,其速度方向与加速度的方向不在同一直线上。
D、物体在变力作用下不可能做曲线运动。
2、一飞机以150m/s的速度在高空某一水平面上做匀速直线运动,相隔1s先后从飞机上落下A、B两个物体,不计空气阻力,在运动过程中它们所在的位置关系是:()A、A在B之前150m处。
B、A在B之后150m处。
C、正下方4.9m处。
D、A在B的正下方且与B的距离随时间而增大。
3、下列说法正确的是:()A、做匀速圆周运动的物体的加速度恒定。
B、做匀速圆周运动的物体所受的合外力为零。
C、做匀速圆周运动的物体的速度大小是不变的。
D、做匀速圆周运动的物体处于平衡状态。
4、如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对球的作用力,则F()A、一定是拉力。
B、一定是推力C、一定等于0D、可能是拉力,可能是推力,也可能等于05、某个行星质量是地球质量的一半,半径也是地球半径的一半,则一个物体在此行星上的重力是地球上重力的()A、0.25倍B、0.5倍C、4倍D、2倍6、关于地球同步卫星,下列说法中正确的是()A、由于它相对地球静止,所以它处于平衡状态B、它的加速度一定小于9.8m/2sC、它的速度小于7.9km/sD、它的周期为一天,且轨道平面与赤道平面重合7、行星A和B都是均匀球体,其质量之比是1:3,半径之比是1:3,它们分别有卫星a和b,轨道接近各自行星表面,则两颗卫星a和b的周期之比为()A、1:27B、1:9C、1:3D、3:18、关于功率,下列说法中正确的是:()A、由P=W/t可知,做功越多,功率越大。
B、由P=W/t可知,单位时间内做功越多,功率越大。
C、由P=Fv可知,做功的力越大,功率就越大。
必修二综合测试(时间:90分钟满分:100分)一、单项选择题(本题共13小题,每小题3分,共39分)1.下列情形中,物体的机械能守恒的是()A.月球表面下落的羽毛B.滑块沿斜面匀速下滑C.火箭点火后徐徐上升D.从狙击枪射出的子弹答案 A解析月球表面没有空气,故下落的羽毛只受月球的引力作用,只有引力做功,势能转化为动能,机械能守恒,故A正确;滑块沿斜面匀速下滑,动能不变,重力势能减小,机械能不守恒,故B错误;火箭点火后加速上升,动能增加,重力势能增加,即机械能增大,机械能不守恒,故C错误;狙击枪射出的子弹在空中运动时受到空气阻力的作用,空气阻力做负功,机械能减少,不守恒,故D错误.2.如图所示,在皮带传送装置中,皮带把物体P匀速传送至高处,在此过程中,下述说法正确的是()A.摩擦力对物体做正功B.支持力对物体做正功C.重力对物体做正功D.合外力对物体做正功答案 A解析摩擦力方向平行皮带向上,与物体运动方向相同,故摩擦力做正功,A对;支持力始终垂直于速度方向,不做功,B错;重力对物体做负功,C错;合外力为零,做功为零,D错.3.奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是()A.加速助跑过程中,运动员的动能增加B.起跳上升过程中,杆的弹性势能一直增加C.起跳上升过程中,运动员的重力势能增加D.越过横杆后下落过程中,运动员的重力势能减少,动能增加答案 B解析加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆后,下落的过程中,他的高度降低、速度增大,重力势能转化为动能,即重力势能减少,动能增加,D正确.4.质量不等但有相同初动能的两个物体在动摩擦因数相同的地面上滑行,直到停止,则()A.质量大的物体滑行距离大B.质量小的物体滑行距离大C.两个物体滑行的时间相同D.质量大的物体克服摩擦力做的功多答案 B解析由动能定理得-μmgx=0-E k,两个物体克服摩擦力做的功一样多,质量小的物体滑行距离大,B正确,A 、D 错误;由E k =12m v 2得v =2E km ,再由t =v μg可知,滑行的时间与质量有关,C 错误. 5.2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少 答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由GMm r 2=m v 2r 知,卫星的轨道半径越大,卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.6.如图所示,在水平桌面上摆一条弯曲的轨道,它是由几段稍短的弧形光滑轨道组合而成的.通过压缩弹簧使钢球从轨道的C 端进入,在轨道的约束下做曲线运动.则下列说法中正确的是( ) A .小球运动过程中,受到重力、弹力和向心力作用 B .小球在运动过程中做速度不变的运动 C .弹簧的弹性势能转化为小球的动能和重力势能D .从A 点飞出时,小钢球的速度方向一定沿着A 点的切线方向 答案 D7.如图所示,一网球运动员对着墙练习发球,运动员离墙的距离为L ,某次球从离地高H 处水平发出,经墙反弹后刚好落在运动员的脚下,设球与墙碰撞前后球在竖直方向的速度大小、方向均不变,水平方向的速度大小不变,方向相反,则( ) A .球发出时的初速度大小为2gLHB .球从发出到与墙相碰的时间为8H gC .球与墙相碰时的速度大小为()224g H L H+D .球与墙相碰点离地的高度为34H 【答案】D 【详解】 A .根据212H gt =,可得2t H g =,则球发出的初速度0222L gv L t H== A 错误;B .球从发出到与墙相碰的时间22t H t g'== B 错误;C .球与墙相碰时竖直分速度22y t gHv g== 根据平行四边形定则知,球与墙相碰时的速度大小()2222042yg H L v v v H+=+=C 错误;D .竖直方向上球做自由落体运动,相等时间内的竖直位移之比为1:3,则球与墙相碰时下降的高度为14H ,离地的高度为34H ,D 正确。
高一综合测试卷班级姓名得分一、单项选择( 30 分)1.发现万有引力定律和测出引力常量的科学家分别是()A.开普勒、卡文迪许B. 牛顿、伽利略C. 牛顿、卡文迪许D. 开普勒、伽利略2.以下对于匀速圆周运动的说法中正确的选项是()A.匀速圆周运动状态是均衡状态B.匀速圆周运动是匀变速曲线运动C.匀速圆周运动是速度和加快度都不停改变的运动D.匀速圆周运动的物体遇到的合外力是恒力3.若是一做圆周运动的人造地球卫星的轨道半径增大到本来的 2 倍,仍做圆周运动,则()A .依据公式ωr ,可知卫星运动的线速度将增大到本来的 2 倍v=B .依据公式F m v2 ,可知卫星运动的线速度将增大到本来的 2 倍rC.依据公式 F=m v2,可知卫星所需要的向心力将减小到本来的 1 倍r 2D .依据公式 F=G Mm,可知地球供给的向心力将减小到本来的 1 倍r 2 44.一同重机吊着物体以加快度a(a<g) 竖直着落。
在着落一段距离的过程中,以下说法中不正确的是()A、重力对物体做的功等于物体重力势能的减少许B、物体重力势能的减少许等于物体动能的增添量C、重力做的功大于物体战胜缆绳的拉力所做的功D、物体重力势能的减少许大于物体动能的增添量5.我国发射的风云一号气象卫星是极地卫星,周期为12h。
我国发射的风云二号气象卫星是地球同步卫星,周期是24h。
与风云二号对比较,风云一号()A.距地面较近B. 角速度较小C. 线速度较小D. 遇到地球的万有引力较小6.倒置的圆滑圆锥面内侧,有质量同样的两个小玻璃球A、 B,沿锥面在水平面内作匀速圆周运动,对于A、 B 两球的角速度、线速度和向心加快度正确的说法是()A . 它们的角速度相等 ωA =ωB B . 它们的线速度 υA < υB C. 它们的向心加快度相等D. A 球的向心力小于 B 球的向心力7.某人在离地 h 高的平台上抛出一个质量为 m 的小球,小球落地前瞬时的速度大小为V ,不计空气阻力和人的高度, (以地面为零势面)则()A .人对小球做功 1mV 2B .人对小球做功 1 mV 2mgh221 mV 2C .小球落地的机械能为1 mV 2mgh D .小球落地的机械能为 mgh228.质量为 2kg 的小车以 2m/s 的速度沿圆滑的水平面向右运动,若将质量为 2kg 的砂袋以 3m/s的速度迎面扔上小车,则砂袋与小车一同运动的速度的大小和方向是()A .,向右B .,向左C .,向左D .,向右 9.一轻绳一端固定在 O 点,另一端拴一小球,拉起小球使轻绳水平,而后无初速开释小球 . 如图所示,小球从开始运动至轻绳达竖直地点的过程中,小球重力的刹时功率的变化状况是( )A .向来增大B .向来减小C .先增大,后减小D .先减小,后增大10.两块小木块 A 和 B 中间夹着一轻质弹簧,用细线捆在一同,放在 圆滑的水平台面上,将细线烧断,木块 A 、 B 被弹簧弹出,最后落在水平川面上,落地址与平台边沿的水平距离分别为l =1 m ,l =2 m ,AB如下图,则以下说法不正确 的是()A .木块 A 、B 走开弹簧时的速度大小之比v ∶v =1∶2ABB .木块 A 、 B 的质量之比 m A ∶m B =2∶1C .木块 A 、 B 走开弹簧时的动能之比E ∶E =1∶2D .弹簧对木块 A 、 B 的冲量大小之比A BI ∶I =1∶2AB二、填空题( 24 分)11.两颗人造地球卫星 A 、B 绕地球做匀速圆周运动的轨道半径之比r A ∶ r B =1∶ :4,则它们的线 速度大小之比 v A ∶ v B = ,向心加快度大小之比a A ∶ a B =。
绝密★启用前2020年秋人教版高中物理必修二综合测试本试卷共100分,考试时间90分钟。
一、单选题(共10小题,每小题4.0分,共40分)1.我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点的运动速率小,如果近地点距地心距离为R1,远地点距地心距离为R2,则该卫星在远地点运动速率和近地点运动的速率之比为()A.B.C.D.2.爱尔兰作家萧伯纳曾诙谐的说“科学总是从正确走向错误”,像一切科学一样,经典力学也有其局限性,是“一部未完成的交响曲”,经典力学能适用于下列哪些情况()A.研究原子中电子的运动B.研究“嫦娥一号”飞船的高速发射C.研究地球绕太阳的运动D.研究强引力3.如图所示,长0.5 m的轻质细杆,其一端固定于O点,另一端固定有质量为1 kg的小球.小球在竖直平面内绕O点做圆周运动.已知小球通过最高点时速度大小为2 m/s,运动过程中小球所受空气阻力忽略不计,g取10 m/s2.关于小球通过最高点时杆对小球的作用力,下列说法中正确的是()A.杆对小球施加向上的支持力,大小为2 NB.杆对小球施加向上的支持力,大小为18 NC.杆对小球施加向下的拉力,大小为2 ND.杆对小球施加向下的拉力,大小为18 N4.关于功率的以下说法中正确的是()A.根据P=可知,机器做功越多,其功率就越大B.根据P=Fv可知,汽车牵引力一定与速度成反比C.对于交通工具而言,由P=Fv只能计算出牵引力的瞬时功率D.根据P=Fv可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.5.欧盟和中国联合开发的伽利略项目建立起了伽利略系统(全球卫星导航定位系统).伽利略系统由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,现已投入使用.卫星的导航高度为2.4×104km,倾角为56°,分布在3个轨道上,每个轨道面部署9颗工作卫星和1颗在轨预备卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗预备卫星处在略低于工作卫星的轨道上,以下说法中正确的是()A.预备卫星的周期大于工作卫星的周期,速度大于工作卫星的速度,向心加速度大于工作卫星的向心加速度B.工作卫星的周期小于同步卫星的周期,速度大于同步卫星的速度,向心加速度大于同步卫星的向心加速度C.为了使该颗预备卫星进入工作卫星的轨道,应考虑启动火箭发动机向前喷气,通过反冲作用从较低轨道上使卫星加速D.三个轨道平面只有一个过地心,另外两个轨道平面分别只在北半球和南半球6.若用假想的引力场线描绘质量相等的两星球之间的引力场分布,使其他星球在该引力场中任意一点所受引力的方向沿该点引力场线的切线上并指向箭头方向.则描述该引力场的引力场线分布图是()A.B.C.D.7.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合外力8.关于做匀速圆周运动的物体,下列说法正确的是()A.因为在相等的时间内通过的圆弧长度相等,所以线速度恒定B.如果物体在0.1 s内转过30°角,则角速度为300 rad/sC.若半径r一定,则线速度与角速度成反比D.若半径为r,周期为T,则线速度为v=9.我国自主研发的北斗卫星导航系统中有数颗地球同步轨道卫星(其周期与地球自转周期相同),A 是其中一颗.物体B静止于赤道上随地球自转.分别把A、B的角速度记为ωA、ωB,线速度记为v A、v B,加速度记为a A、a B,所受地球万有引力记为F A、F B,则()A.ωA>ωBB.v A<v BC.a A>a BD.F A<F B10.我国成功发射“天宫二号”空间实验室,之后发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示,物体在恒力F作用下沿曲线从点A运动到点B,这时突然使它所受的力反向,但大小不变,即由F变为-F.在此力的作用下,物体以后的运动情况,下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线BA返回12.(多选)某物体同时受到三个力作用而做匀减速直线运动,其中F1与加速度a的方向相同,F2与速度v的方向相同,F3与速度v的方向相反,则()A.F1对物体做正功B.F2对物体做正功C.F3对物体做正功D.合外力对物体做负功13.(多选)一物体做变速运动时,下列说法正确的有()A.合外力一定对物体做功,使物体动能改变B.物体所受合外力一定不为零C.合外力一定对物体做功,但物体动能可能不变D.物体加速度一定不为零14.(多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大三、实验题(共1小题,每小题10.0分,共10分)15.某同学在“验证机械能守恒定律”时按如图甲所示安装好实验装置,正确进行实验操作,从打出的纸带中选出符合要求的纸带,如图乙所示.图中O点为打点起始点,且速度为零.甲乙(1)选取纸带上打出的连续点A、B、C,……,测出其中E、F、G点距起始点O的距离分别为h1、h2、h3,已知重锤质量为m,当地重力加速度为g,打点计时器打点周期为T.为验证此实验过程中机械能是否守恒,需要计算出从打下O点到打下F点的过程中,重锤重力势能的减少量ΔE p=________,动能的增加量ΔE k=________(用题中所给字母表示).(2)以各点到起始点的距离h为横坐标,以各点速度的平方v2为纵坐标建立直角坐标系,用实验测得的数据绘出v2-h图线,如图丙所示,该图象说明了________.丙(3)从v2-h图线求得重锤下落的加速度g=________ m/s2.(结果保留三位有效数字)四、计算题(共3小题,每小题10.0分,共30分)16.盘在地面上的一根不均匀的金属链重30 N,长1 m,从甲端缓慢提至乙端恰好离地时需做功10 J.如果改从乙端缓慢提至甲端恰好离地要做多少功?(取g=10 m/s2)17.一艘宇宙飞船绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示,太阳光可看作平行光,宇航员在A点测出地球的张角为α,已知地球的半径为R,地球质量为M,引力常量为G,求:(1)宇宙飞船离距地面的高度.(2)宇宙飞船的周期T.18.如图所示,斜面体ABC固定在水平地面上,小球p从A点静止下滑.当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角θ=30°.不计空气阻力,g取10 m/s2,求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.答案解析1.【答案】B【解析】由开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等即rmv=c(常数),所以v=,v近∶v远=R2∶R1.2.【答案】BC【解析】经典力学适用于低速运动、宏观物体.电子是属于微观粒子,故A不适用;研究“嫦娥一号”飞船的高速发射,是低速运动、宏观物体.故B正确;研究地球绕太阳的运动,是低速运动、宏观物体.故C正确;强引力属于微观粒子之间的相互作用,故D不适用.3.【答案】C【解析】通过最高点时,小球受重力和杆的弹力F作用.假设弹力F和重力同向竖直向下,那么就有mg+F=m,带入数据得F=2 N,弹力大于0所以弹力方向与假设的方向相同,竖直向下,是拉力.答案C正确.4.【答案】D【解析】P=表明,功率不仅与物体做功的多少有关同时还与做功所用的时间有关,A选项错误;对于交通工具而言,由P=Fv可知,如果v为平均速度,则计算出的功率为平均功率,故C错误;P=Fv,当功率一定时,在一定阶段牵引力与速度成反比,但当牵引力等于阻力时,速度不变,牵引力也不再变化,D选项正确;当牵引力一定时,速度增加,功率也增加,在这种情况下牵引力F是不变的,B选项错误.5.【答案】B【解析】预备卫星在略低于工作卫星的轨道上,由开普勒第三定律=k知预备卫星的周期小于工作卫星的周期,由卫星的速度公式v=分析知,预备卫星的速度大于工作卫星的速度,由向心加速度公式a n==知,预备卫星的向心加速度大于工作卫星的向心加速度,A错误;地球同步卫星的周期为24 h,工作卫星的周期小于同步卫星的周期,由卫星的速度公式v=分析知,工作卫星的速度大于同步卫星的速度,由向心加速度公式a n =知,工作卫星的向心加速度大于同步卫星的向心加速度,B正确;预备卫星处于低轨道上,为了使该预备卫星进入工作卫星的轨道上,应考虑启动火箭发动机向后喷气,通过加速使其做离心运动,使卫星的轨道半径增大才能从较低轨道进入工作卫星的轨道,C错误.三个轨道平面都必须过地心,否则由于地球引力的作用,卫星不能稳定工作,D错误.6.【答案】B【解析】其他星球在该引力场中任意一点必定受到两星球的万有引力,方向应指向两星球,A、D错,由于两星球相互间引力场间的影响,其引力场线应是弯曲的,C错;故描述该引力场的引力场线分布图是图B.7.【答案】B【解析】物体做曲线运动时,速度方向一定变化,速度大小不一定变化,A错,B对.做曲线运动的物体的合外力或加速度既可能变,也有可能不变,C、D错.8.【答案】D【解析】物体做匀速圆周运动时,线速度大小恒定,方向沿圆周的切线方向,在不断地改变,故选项A错误;角速度ω==rad/s=rad/s,选项B错误;线速度与角速度的关系为v=ωr,由该式可知,r一定时,v∝ω,选项C 错误;由线速度的定义可得,在转动一周时有v=,选项D正确.9.【答案】C【解析】同步卫星和地球赤道上的物体的角速度相同,即ωA=ωB,A错误.由v=ωr,a=ω2r知,v A>v B,a A>a B,B错误,C正确.因为不知道卫星A与物体B的质量,无法比较F A、F B的大小,D错误.10.【答案】C【解析】若使飞船与空间实验室在同一轨道上运行,飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,A错误;若使飞船与空间实验室在同一轨道上运行,空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,C正确,同理D错误.11.【答案】ABD【解析】物体沿曲线从点A运动到点B(点B除外)的过程中,其所受恒力F的方向必定指向曲线的内侧.当运动到B点时,因恒力反向,由曲线运动的特点“物体以后运动的曲线轨迹必定向合外力方向弯曲”可知:物体以后的运动只可能沿Bc运动.故本题正确选项为A、B、D.12.【答案】BD【解析】因物体做匀减速直线运动,a的方向与v的方向相反,故F1对物体做负功,A错误;F2与v的方向相同,做正功,B正确;F3与v 的方向相反,做负功,C错误;物体做匀减速直线运动时,物体所受合外力的方向与运动方向相反,做负功,故D正确.13.【答案】BD【解析】物体的速度发生了变化,则合外力一定不为零,加速度也一定不为零,B、D正确;物体的速度变化,可能是大小不变、方向变化,故动能不一定变化,合外力不一定做功,A、C 错误.14.【答案】BCD【解析】由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v的极小值是零,A错;v由零逐渐增大,由F向=可知,F向也增大,B对;当v=时,F向==mg,此时杆恰对小球无作用力,向心力只由其自身重力提供;当v由增大时,则=mg+F,故F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球的力为支持力.此时,mg-F′=,F′=mg-m ,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D. 15.【答案】(1)mgh2【解析】(1)重锤重力势能的减少量ΔE p=mgh2,动能增加量ΔE k=.(2)当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒.(3)由mgh=mv2可知题图的斜率表示重力加速度g的2倍,为求直线的斜率,可在直线上取两个距离较远的点,如(25.5×10-2,5.0)、(46.5×10-2,9.0),则g==×≈9.52 m/s2.16.【答案】20 J【解析】设绳子的重心离乙端距离为x,则当乙端刚离开地面时有mgx=10 J,可得:x=m.则绳子的重心离甲端为m,可知从乙端缓慢提至甲端恰好离地要做功W=mg(1-x)=20 J.17.【答案】(1).(2)2π【解析】(1)设飞船做圆周运动的半径为r,距离地面的高度为h.由几何关系知sin=①距离地面的高度为h=r-R②由①②解得h=R(2)由万有引力提供做圆周运动所需的向心力得G=m()2r③由①③解得T=2π18.【答案】(1)1 s(2)m/s【解析】(1)设小球p 从斜面上下滑的加速度为a,由牛顿第二定律得:a==g sinθ①设下滑所需时间为t1,根据运动学公式得l=at12②由①②得t1=③代入数据得t1=1 s;④(2)对小球q:水平方向位移x=l cosθ=v0t2⑤依题意得t2=t1⑥由④⑤⑥得v0==m/s.。
综合检测(A)本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,时间90分钟。
第Ⅰ卷(选择题 共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.同学们到中国科技馆参观,看到了一个好玩的科学试验:如图所示,一辆小火车在平直轨道上匀速行驶,当火车将要从“∩”形框架的下方通过时,突然从火车顶部的小孔中向上弹出一小球,该小球越过框架后,又与通过框架的火车相遇,并恰好落回原来的孔中.下列说法中正确的是( D )A .相对于地面,小球运动的轨迹是直线B .相对于火车,小球运动的轨迹是曲线C .小球能落回小孔是因为小球在空中运动的过程中受到水平向前的力D .小球能落回小孔是因为小球具有惯性,在水平方向保持与火车相同的速度解析:相对于地面,小球竖直方向做竖直上抛运动,水平方向做匀速运动,轨迹是曲线,相对于火车小球的运动轨迹是直线,A 、B 错误;能落回小孔是因为小球具有惯性,在水平方向保持与火车相同的速度,故C 错误,D 正确。
2.(2024·石家庄市高一上学期期末)“套圈”是老少皆宜的嬉戏。
如图所示,将A 、B 、C 三个套圈分别以速度v 1、v 2、v 3水平抛出,都能套中地面上的同一玩具,已知套圈A 、B 抛出时距玩具的水平距离相等,套圈A 、C 抛出时在同一高度,设套圈A 、B 、C 在空中运动时间分别为t 1、t 2、t 3。
不计空气阻力,下列说法正确的是( C )A .v 1与v 2肯定相等B .v 2肯定大于v 3C .t 1与t 3肯定相等D .t 2肯定大于t 3解析:套圈做平抛运动,竖直分运动是自由落体运动,依据h =12gt 2,有:t =2hg,故t 1=t 3>t 2,故C 正确,D 错误;A 、B 水平分位移相同,由于t 1>t 2,依据x =v 0t ,有:v 1<v 2;由于t 1=t 3,x 1<x 3,依据x =v 0t ,有:v 1<v 3;v 2和v 3关系不能确定,故A 、B 错误;故选C 。
必修一必修二综合测试一、选择题(每小题有一个或几个正确选项,全部选对的得4分,选不全的得2分,本大题共48分)1.关于摩擦力,下列说法正确的是()A.受滑动摩擦力的物体可以静止B.两个相互接触的粗糙物体间发生相对滑动时,产生滑动摩擦力C.两个相对静止的物体间的正压力增大,两者之间摩擦力一定增大D.摩擦力的方向与物体的运动方向可以不同,摩擦力可以充当动力,也可以充当阻力2.用3 N的水平恒力, 使在水平面上一质量为2 kg的物体, 从静止开始运动,在2 s内通过的位移是2 m, 则物体的加速度大小和所受摩擦力的大小分别是()A.0.5 m / s2,2 N B.1 m / s2,1 NC.2 m/ s2,0.5 N D.1.5 m / s2,03.升降机地板上放一个弹簧磅秤,秤上放一质量为m的物体,当秤的示数为0.8mg时,升降机可能作的运动是()A.加速上升B.加速下降C.减速上升D.减速下降.4.如图所示,把重为20N的物体放在倾角为30的粗糙斜面上处于静止,物体左端与固定在斜面上的与斜面平行的轻弹簧相连接,若物体与斜面间的最大静摩擦力为13N,则关于弹簧的弹力下列说法中错误..的是()A. 可以为22N,方向沿斜面向上B. 可以为2N,方向沿斜面向上C. 可以为2N,方向沿斜面向下D. 摩擦力不可能为零5.下列所给的作直线运动物体的位移—时间图象或速度—时间图像中,不可能正确.....反映物体从某点开始运动又重新回到初始位置的图象是()6.一质点的加速度方向始终与质点的速度方向相同,当加速度逐渐减小的时候,下述情况中可能出现的是()A.速度和位移均增大,加速度为零时,速度达到最大B.速度和位移均减小,速度减小得越来越慢C.速度逐渐减小,位移逐渐增大,速度减为零时,位移达到最大D.速度先增大,后减小,而位移一直在不断增大7.如图所示,汽车以速度v通过一圆弧式的拱桥顶端时,关于汽车受力的说法正确的是()A、汽车的向心力就是它所受的重力B、汽车的向心力就是它所受的重力和支持力的合力,方向指向圆心C、汽车受重力、支持力、牵引力、摩擦力和向心力的作用D、以上均不正确8.关于平抛运动下列说法正确的是()A、因为轨迹是曲线,所以平抛运动是变加速运动B、运动时间由下落高度和初速度共同决定C、水平位移由初速度决定D、运动时间由下落高度决定9.一颗正在绕地球转动的人造卫星,由于受到阻力作用则将会出现()A、速度变大B、动能增大C、角速度变小D、半径变小10.火星有两颗卫星,分别是火卫I和火卫II,它们的轨道近似为圆,已知火卫I的周期为7小时39分,火卫II的周期为30小时18分,则两颗卫星相比()A.火卫II距火星表面较近B.火卫II的角速度大C.火卫I的运动速度较大D.火卫I的向心加速度较大11.关于功和能,下列说法正确的是()A.功有正负,因此功是矢量B .功是能量转化的量度C .能量的单位是焦耳,功的单位是瓦特D .物体发生1m 位移的过程中,作用在物体上大小为1 N 的力对物体做的功一定为1 J12.人造地球卫星可以看起来相对地面静止,就是我们常说的同步卫星。
高中物理必修一必修二综合测评(时间:90分钟满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.)1.甲、乙两个小物体,甲的重力是乙的3倍,它们从同一高度处同时自由下落,不考虑空气阻力,则下列说法中正确的是()A.甲比乙先落地B.甲的加速度比乙大C.甲、乙同时落地D.无法确定谁先落地2.下列各图分别表示的是某一物体的运动情况或其所受合外力的情况.其中甲图是某物体的位移—时间图象;乙图是某一物体的速度—时间图象;丙图表示某一物体的加速度—时间图象;丁图表示某一物体所受合外力随时间变化的图象.四幅图中的图线都是直线,从这些图象中可判断出一定质量物体的某些运动特征.下列有关说法中不正确的是()A.甲物体受合外力为零B.乙物体受到的合外力不变C.丙物体的速度一定越来越大D.丁物体的加速度越来越大3.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-14.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()A.重力势能增加了34mghB.动能损失了12mgh C.动能损失了mghD.动能损失了32mgh5.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上. 若不计空气阻力,则A、B两个小球的运动时间之比为()A.1∶1B.4∶3C.16∶9 D.9∶166.一质量为1 kg的质点静止于光滑水平面上,从t=0时刻开始,受到水平外力F作用,如图所示.下列判断正确的是()A.0~2 s内外力的平均功率是4 WB.第2 s内外力所做的功是4 JC.第2 s末外力的瞬时功率最大D.第1 s末与第2 s末外力的瞬时功率之比为9∶57.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2,下列说法中正确的是()A.m1、m2做圆周运动的线速度之比为3∶2B.m1、m2做圆周运动的角速度之比为3∶2C.m1做圆周运动的半径为2 5LD.m2做圆周运动的半径为2 5L二、多项选择题(本大题共3小题,每小题5分,共15分.每小题有多个选项是正确的,全选对得5分,少选得3分,选错、多选或不选得0分)8.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度9.如图所示,车内绳AB与绳BC拴住一小球,BC水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则()A.AB绳拉力F T1不变,BC绳拉力F T2变大B.AB绳拉力F T1变大,BC绳拉力F T2变小C.AB绳拉力F T1变大,BC绳拉力F T2不变D.AB绳拉力F T1不变,BC绳拉力F T2的大小为(F T1sin θ+ma)10.如图所示,在“嫦娥”探月工程中,设月球半径为R,月球表面的重力加速度为g.飞船在半径为4R的圆形轨道Ⅰ上运动,到达轨道的A点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B时,再次点火进入半径约为R的近月轨道Ⅲ绕月做圆周运动,则()A.飞船在轨道Ⅰ上的运行速率等于12g0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B处的速率C.飞船在轨道Ⅰ上的加速度大于在轨道Ⅱ上B处的加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比TⅠ∶TⅢ=4∶1三、非选择题(共57分)11.(8分)某同学用图(a)所示的实验装置测量物块与斜面之间的动摩擦因数.已知打点计时器所用电源的频率为50 Hz,物块下滑过程中所得到的纸带的一部分如图(b)所示,图中标出了五个连续点之间的距离图(a)图(b)(1)物块下滑时的加速度a=m/s2,打C点时物块的速度v=m/s;(2)已知重力加速度大小为g,为求出动摩擦因数,还必须测量的物理量是(填正确答案:标号).A.物块的质量B.斜面的高度C.斜面的倾角12.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p=__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.13.(8分)在做“研究平抛运动”的实验中,为了确定小球不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,在一块平整的木板表面钉上白纸和复写纸.将该木板竖直立于水平地面上,使小球从斜槽上紧靠挡板处由静止释放,小球撞到木板并在白纸上留下痕迹A;将木板向远离槽口的方向平移距离x,再使小球从斜槽上紧靠挡板处由静止释放,小球撞在木板上得到痕迹B;将木板再向远离槽口的方向平移距离x,小球再从斜槽上紧靠挡板处由静止释放,再得到痕迹C.若测得木板每次移动距离x=10.00 cm.A、B间距离y1=5.02 cm,B、C间距离y2=14.82 cm(g=9.80 m/s2).(1)为什么每次都要使小球从斜槽上紧靠挡板处由静止释放?______________________________________________________.(2)根据以上直接测量的物理量来求得小球初速度的表达式为v0=________________(用题中所给字母表示).(3)小球初速度的值为v0=________ m/s.14.(6分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.15.(12分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg 的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B =24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1 530 J,取g=10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.16.(15分)如图所示,一轻质弹簧左端固定在足够长的水平轨道左侧,水平轨道的PQ段粗糙,调节其初始长度为l0=1.5 m,水平轨道右侧连接半径为R=0.4 m的竖直圆形光滑轨道,可视为质点的滑块将弹簧压缩至A点后由静止释放,经过水平轨道PQ后,恰好能通过圆形轨道的最高点B.已知滑块质量m=1 kg,与PQ段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g取10 m/s2,求:(1)弹簧压缩至A点时弹簧的弹性势能E p;(2)若每次均从A点由静止释放滑块,同时调节PQ段的长度,为使滑块在进入圆形轨道后能够不脱离轨道而运动,PQ段的长度l应满足什么条件?高中物理必修一必修二综合测评高中物理必修一必修二综合测评(答案)一、单项选择题(本题共7小题,每小题4分,共28分.)1.甲、乙两个小物体,甲的重力是乙的3倍,它们从同一高度处同时自由下落,不考虑空气阻力,则下列说法中正确的是()A.甲比乙先落地B.甲的加速度比乙大C.甲、乙同时落地h=gt2,t=可知,甲、乙同时落地.2.下列各图分别表示的是某一物体的运动情况或其所受合外力的情况.其中甲图是某物体的位移—时间图象;乙图是某一物体的速度—时间图象;丙图表示某一物体的加速度—时间图象;丁图表示某一物体所受合外力随时间变化的图象.四幅图中的图线都是直线,从这些图象中可判断出一定质量物体的某些运动特征.下列有关说法中不正确的是()A.甲物体受合外力为零B.乙物体受到的合外力不变C.丙物体的速度一定越来越大,甲是匀速运动,乙、丙都是匀变速运动,而丁的加速度越来越大;对丙:如果a与v方向反向,速度会越来越小,故选项C错误.3.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-1解析:设同步卫星离地面的高度为h,地球半径为R.近地卫星的周期为T1=24 hn,同步卫星的周期为T2=24 h,则T1∶T2=1∶n,对于近地卫星有G MmR 2=m 4π2T 21R ,对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ),联立解得h =(3n 2-1)R ,故D 正确. 答案:D4.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh解析:重力做功W G =-mgh ,故重力势能增加了mgh ,A 错.物体所受合力F =ma =34mg ,合力做功W合=-Fh sin 30°=-34mg ×2h =-32mgh ,由动能定理知,动能损失了32mgh ,B 、C 错,D 正确.答案:D5.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上. 若不计空气阻力,则A 、B 两个小球的运动时间之比为( )A .1∶1B .4∶3C .16∶9D .9∶16解析:两小球均做平抛运动,且均落在斜面上,则对于A 球有tan 37°=y x =12gt 2Av 0t A =gt A2v 0,解得t A =2v 0tan 37°g ,同理对于B 球有t B =2v 0tan 53°g ,则t A t B =tan 37°tan 53°=916,故D 正确. 答案:D6.一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图所示.下列判断正确的是( )A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶5 解析:0~1 s 内,质点的加速度a 1=F 1m =31 m/s 2=3 m/s 2,则质点在0~1 s 内的位移x 1=12a 1t 21=12×3×1 m =1.5 m ,1 s 末的速度v 1=a 1t 1=3×1 m/s =3 m/s ,第2 s 内质点的加速度a 2=F 2m =11m/s 2=1 m/s 2,第2 s 内的位移x 2=v 1t 2+12a 2t 22=3×1 m +12×1×1 m =3.5 m ,在0~2 s 内外力F 做功的大小W =F 1x 1+F 2x 2=3×1.5 J +1×3.5 J =8 J ,可知0~2 s 内外力的平均功率P =W t =82 W =4 W ,故A 正确;第2 s 内外力做功W 2=F 2x 2=1×3.5 J =3.5 J ,故B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W =9 W ,第2 s 末的速度v 2=v 1+a 2t 2=3 m/s +1×1 m/s =4 m/s ,则外力的瞬时功率P 2=F 2v 2=1×4 W =4 W ,可知第2 s 末外力的瞬时功率不是最大,第1 s 末和第2 s 末外力的瞬时功率之比为9∶4,故C 、D 错误.答案:A7.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( ) A .m 1、m 2做圆周运动的线速度之比为3∶2 B .m 1、m 2做圆周运动的角速度之比为3∶2 C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L解析:根据F 万=F 向,对m 1得G m 1m 2L 2=m 1v 21r 1=m 1r 1ω2,对m 2得G m 1m 2L 2=m 2v 22r 2=m 2r 2ω2,又r 1+r 2=L ,由以上各式得v 1v 2=r 1r 2=m 2m 1=23,A 错误.由于T 1=T 2,故ω=2πT 相同,B 错误.r 1=25L ,r 2=35L ,C 正确,D错误.答案:C二、多项选择题(本大题共3小题,每小题5分,共15分.每小题有多个选项是正确的,全选对得5分,少选得3分,选错、多选或不选得0分)8.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地m R 2地=mg 地,在月球表面附近有G M 月mR 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G MmR 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D 正确.答案:BD9.如图所示,车内绳AB 与绳BC 拴住一小球,BC 水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则( )A.AB 绳拉力F T 1不变,BC 绳拉力F T 2变大B.AB 绳拉力F T 1变大,BC 绳拉力F T 2变小C.AB 绳拉力F T 1变大,BC 绳拉力F T 2不变F T 1不变,BC 绳拉力F T 2的大小为(F T 1sin θ+ma ) 解析:受力分析如图所示,由F T 1cos θ=mg 可知F T 1不变;由F T 2-F T 1sin θ=ma 可知F T 2=F T 1sin θ+ma.10.如图所示,在“嫦娥”探月工程中,设月球半径为R ,月球表面的重力加速度为g .飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入半径约为R 的近月轨道Ⅲ绕月做圆周运动,则( )A .飞船在轨道Ⅰ上的运行速率等于12g 0R B .飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率 C .飞船在轨道Ⅰ上的加速度大于在轨道Ⅱ上B 处的加速度 D .飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1 解析:根据G Mm (4R )2=m v 214R ,得飞船在轨道Ⅰ上的运行速率v 1=GM4R,又GM =g 0R 2,解得v 1= g 0R 4=12g 0R ,故A 正确;根据G Mmr2=m v 2r ,解得v =GMr,飞船在轨道Ⅰ和轨道Ⅲ上的速率关系为v Ⅲ>v Ⅰ,飞船在轨道Ⅱ上的B 处减速进入轨道Ⅲ,则飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率,故B 正确;根据牛顿第二定律,得a =G Mm r 2m =GMr 2,飞船在轨道Ⅰ上的加速度小于在轨道Ⅱ上B 处的加速度,故C错误;根据G Mmr 2=mr 4π2T 2,得T =4π2r 3GM,飞船在轨道Ⅰ、轨道Ⅲ上运行的轨道半径之比为4∶1,则周期之比为8∶1,故D 错误.答案:AB三、非选择题(共57分)11.(8分)某同学用图(a)所示的实验装置测量物块与斜面之间的动摩擦因数.已知打点计时器所用电源的频率为50 Hz,物块下滑过程中所得到的纸带的一部分如图(b)所示,图中标出了五个连续点之间的距离图(a )图(b )(1)物块下滑时的加速度a= m/s 2,打C 点时物块的速度v= m/s;(2)已知重力加速度大小为g ,为求出动摩擦因数,还必须测量的物理量是 (填正确答案:标号). A.物块的质量 B.斜面的高度.25 1.79 (2)C 1)滑块下滑的加速度a== m/s2解得a=3.25 m/s2v C=== m/s=1.79 m/s.(2)由mg sin θ-μmg cos θ=ma可得μ=tan θ-,故还需要测出斜面的倾角,选项C正确.12.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p=__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.解析:(1)在重物下落过程中,若任意两点间重力势能的减少量等于动能的增加量,则重物的机械能守恒,所以A 正确.(2)打点计时器需要交流电源,测量纸带上各点之间的距离需要刻度尺,本实验需要验证的等式为mgh =12m v 2,即gh =12v 2(或mgh =12m v 22-12m v 21,即gh =12v 22-12v 21),所以不需要测量重物的质量,不需要天平. (3)从打O 点到打B 点的过程中,重力势能的变化量ΔE p =-mgh B ,动能的变化量ΔE k =12m v 2B =12m⎝⎛⎭⎫h C -h A 2T 2=m (h C -h A )28T 2.(4)重力势能的减少量大于动能的增加量,主要原因是重物在运动过程中存在空气阻力和摩擦阻力,选项C 正确.(5)该同学的判断依据不正确.在重物下落h 的过程中,若阻力f 恒定,根据mgh -fh =12m v 2-0⇒v 2=2()g -fm h ,可知v 2h 图象就是过原点的一条直线.要想通过v 2h 图象的方法验证机械能是否守恒,还必须看图象的斜率是否接近2g .答案:(1)A (2)AB (3)-mgh B m (h C -h A )28T 2(4)C (5)见解析13.(8分)在做“研究平抛运动”的实验中,为了确定小球不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,在一块平整的木板表面钉上白纸和复写纸.将该木板竖直立于水平地面上,使小球从斜槽上紧靠挡板处由静止释放,小球撞到木板并在白纸上留下痕迹A ;将木板向远离槽口的方向平移距离x ,再使小球从斜槽上紧靠挡板处由静止释放,小球撞在木板上得到痕迹B ;将木板再向远离槽口的方向平移距离x ,小球再从斜槽上紧靠挡板处由静止释放,再得到痕迹C .若测得木板每次移动距离x =10.00 cm.A 、B 间距离y 1=5.02 cm ,B 、C 间距离y 2=14.82 cm(g =9.80 m/s 2).(1)为什么每次都要使小球从斜槽上紧靠挡板处由静止释放? ______________________________________________________.(2)根据以上直接测量的物理量来求得小球初速度的表达式为v 0=________________(用题中所给字母表示).(3)小球初速度的值为v 0=________ m/s.解析:(1)每次从斜槽上紧靠挡板处由静止释放小球,是为了使小球离开斜槽末端时有相同的初速度. (2)根据平抛运动在水平方向上为匀速直线运动,则小球从A 到B 和从B 到C 运动时间相等,设为T ;竖直方向由匀变速直线运动推论有y2-y1=gT2,且v0T=x.解以上两式得:v0=xgy2-y1.(3)代入数据解得v0=1.00 m/s.答案:(1)为了保证小球每次做平抛运动的初速度相同(2)xgy2-y1(3)1.0014.(6分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.解析:(1)当小物块受到的摩擦力为零,支持力和重力的合力提供向心力,有mg tan θ=mω20R sin θ,解得ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下时摩擦力达到最大值,设此时最大角速度为ω1,由牛顿第二定律,得f cos θ+F N sin θ=mω21R sin θ,f sin θ+mg=F N cos θ,联立以上三式,解得ω1=32g 2R.当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2,由牛顿第二定律,得F N sin θ-f cos θ=mω22R sin θ,mg=F N cos θ+f sin θ,联立解得ω2=2g 2R.答案:(1) 2gR(2)32g2R2g2R15.(12分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大. 解析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v 2B =2ax ,① 由牛顿第二定律,有mg Hx -F f =ma ,②联立①②式,代入数据,解得F f =144 N .③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理,有mgh +W =12m v 2C -12m v 2B ,④设运动员在C 点所受的支持力为F N ,由牛顿第二定律,有 F N -mg =m v 2CR,⑤由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R =12.5 m. 答案:(1)144 N (2)12.5 m16.(15分)如图所示,一轻质弹簧左端固定在足够长的水平轨道左侧,水平轨道的PQ 段粗糙,调节其初始长度为l 0=1.5 m ,水平轨道右侧连接半径为R =0.4 m 的竖直圆形光滑轨道,可视为质点的滑块将弹簧压缩至A 点后由静止释放,经过水平轨道PQ 后,恰好能通过圆形轨道的最高点B .已知滑块质量m =1 kg ,与PQ 段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g 取10 m/s 2,求:(1)弹簧压缩至A 点时弹簧的弹性势能E p ;(2)若每次均从A 点由静止释放滑块,同时调节PQ 段的长度,为使滑块在进入圆形轨道后能够不脱离轨道而运动,PQ 段的长度l 应满足什么条件?解析:(1)设滑块冲上圆形轨道最高点B 时速度为v ,由能量守恒定律,得 E p =12m v 2+2mgR +μmgl 0,①滑块在B 点时,重力提供向心力,由牛顿第二定律,得 mg =m v 2R,②联立①②式并代入数据,解得E p=16 J.(2)若要使滑块不脱离轨道,分两种情况讨论:①滑块能够通过B点而不脱离轨道,则应满足l≤1.5 m,③②滑块能够到达圆形轨道,则应满足E p≥μmgl,解得l≤4 m,④滑块到达圆形轨道而又不超过与圆心等高的C点时,如图所示,临界条件取到达C点时速度恰好为零,则有E p≤mgR+μmgl,解得l≥3 m,⑤联立③④⑤式,可得PQ段长度l应满足的条件是:l≤1.5 m或3 m≤l≤4 m.答案:(1)16 J(2)l≤1.5 m或3 m≤l≤4 m。
必修二综合测试卷一、选择题(本大题共10个小题,每小题一个或者一个以上正确答案,请将正确答案的序号选出并填写在对应题号下的空格中,每小题5分,共50分)1、一船在静水中的速度为6 m/s,要横渡流速为8 m/s的河,下列说法正确的是()A.这船不能渡过此河B.船能行驶到正对岸C.若河宽60 m,过河的最少时间为10 sD.若河宽60 m,过河的最少时间为7.5 s2、有一种叫做“蹦极跳”的运动,如图所示,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5L时到达最低点,若在下落过程中不计空气阻力,则以下说法正确的是()A.速度先增大后减小B.加速度先减小后增大C.动能增加了mgLD.重力势能减小了mgL3、在光滑水平面上,用绳子系一小球,做半径为R的匀速圆周运动,若绳的拉力为F,在小球经圆周的过程中,F所做的功为()A.0B.C.RFD.RF4、质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上,已知t=0时质点的速度为零,在图示的t1、t2、t3和t4时刻中,哪一时刻质点的动能最大()A.t1B.t2C.t3D.t45、某质点在光滑水平面上做匀速直线运动,现对它施加一个大小不变、方向改变的水平力,则下列说法正确的是()A.质点可能做匀加速直线运动B.质点可能做匀减速直线运动C.质点可能做匀速圆周运动D.质点可能做匀变速曲线运动6、如图所示,在水平放置的半径为R的圆柱体的正上方的P点将一个小球以水平速度v0沿垂直于圆柱体的轴线方向抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为θ,那么小球完成这段飞行的时间是()A. B. C. D.7、如图所示,一个内壁光滑的圆锥筒,其轴线垂直于水平面,圆锥筒固定不动。
有一个质量为m的小球A紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R和H,小球A所在的高度为筒高的一半。
本册综合检测时间:90分钟满分:100分第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分.每小题给出的四个选项中有的有一个选项符合题目要求,有的有多个选项符合题目要求)1.物体受到几个恒力作用而做匀速直线运动,若突然撤去其中一个力,保持其他力不变,它不可能做()A.匀速圆周运动B.匀速直线运动C.匀变速直线运动D.匀变速曲线运动解析若撤去的力与原来的运动方向相同,则物体将做匀减速直线运动;若撤去的力与原来的运动方向相反,则物体将做匀加速直线运动;若撤去的力与原来运动方向不共线,物体将做匀变速曲线运动;撤去一个力后其他力的合力不为零,物体不会做匀速直线运动,撤去一个力后其他力的合力仍为恒力,不可能做匀速圆周运动.答案AB2.在地面高处,以一定的初速度水平抛出一个物体,在忽略空气阻力的情况下,该物体落地过程中的运动轨迹是一条抛物线,如图所示,则()A.c点的机械能比a点的机械能大B.a点的动能比c点的动能大C.c点的势能比a点的势能大D.a、b、c三点的机械能相等解析做平抛运动的物体忽略空气的阻力,机械能守恒,在运动过程中重力做功,动能增大,重力势能减小,故D选项正确.答案 D3.两个绕地球做匀速圆周运动的人造地球卫星,轨道半径分别为R1和R2,则两卫星的绕行速度比是( )A .R 1/R 2B .R 2/R 1 C.R 1/R 2D.R 2/R 1解析 由GMm R 2=m v 2R ,得v =GMR,所以v 1 v 2= R 2R 1,故D 选项正确. 答案 D4.一个质量为m 的物体,以速度v 竖直向上抛出.物体在上升过程中,受到空气阻力为F μ,能达到最大高度为h ,则人对物体做的功为( )A.12m v 2+mgh B.12m v 2+F μh C.12m v 2 D .F μh +mgh 解析 在上抛时,物体获得速度v ,由动能定理可知,人对物体做的功等于12m v 2,在上升运动过程中,由动能定理F μh +mgh =12v 2,故C 、D 选项正确.答案 CD5.(2011·全国新课标)卫星电话信号需要地球同步卫星传送.如果你与同学在地面上用卫星电话通话,则从你发出信号至对方收到信号所需的最短时间最接近于(可能用到的数据:月球绕地球运转的轨道半径约为3.8×105km ,运行周期约为27天,地球半径约为6 400km ,无线电信号的传播速度为3×108m/s)( )A .0.1sB .0.25sC .0.5sD .1s解析 由GMm r 2=m 4π2T 2r 可得:地球同步卫星的轨道半径与月球的公转轨道半径之比为r 同r 月=3⎝⎛⎭⎫T 同T 月2=19又ct =2(r 同-R 地) 可得t =2(r 同-R 地)c=2×(3.8×108×19-6.4×106)3.0×108s=0.24s. 故B 选项正确. 答案 B6.如图所示,汽车在一段弯曲水平路面上匀速行驶,关于它所受到的水平方向的作用力方向的示意图,可能正确的是(下列图中:F为地面对轮子的静摩擦力、f为车行驶时的阻力)()解析车受到的阻力f应与速度方向相反,即f应与曲线相切,而静摩擦力F的分力为汽车转弯的向心力,应指向曲线的圆心处,故C选项正确.答案 C7.如图所示,一光滑圆环竖直放置,AB为其水平方向的直径,甲、乙两球以同样大小的初速度从A处出发,沿环内侧始终不脱离环运动到达B点,则()A.甲先到达BB.乙先到达BC.同时到达BD.若质量相同,它们同时到达B解析圆环是光滑的,小球运动过程中机械能守恒.甲、乙两小球在A点速度大小相等,在B点速度大小也相等,且与A点时速度等大.甲先减速后加速,乙先加速后减速.甲、乙经过的路程相等,其速率-时间图象可表示为故t乙<t甲,B选项正确.答案 B8.如图所示,将质量为m的滑块放在倾角为θ的固定斜面上,滑块与斜面间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力和滑动摩擦力相等,重力加速度为g,则()A.滑块由静止释放,如果μ>tanθ,滑块将下滑B.给滑块沿斜面向下的初速度,如果μ<tanθ,滑块将减速下滑C.用平行于斜面向上的力拉滑块向上匀速运动,如果μ=tanθ,拉力大小应是2mg sinθD.用平行斜面向下的力拉滑块向下匀速运动,如果μ=tanθ,拉力大小应是mg sinθ解析本题考查力学中的基本知识,包括受力分析,牛顿第二定律和运动学的基本知识.对放在斜面的滑块受力分析,当mg sinθ=μmg cosθ时,即μ=tanθ,滑块受力平衡,若滑块最初静止,则滑块静止,若滑块有向下的初速度,则做匀速运动,选项A中μ>tanθ,滑块静止在斜面上不会下滑;选项B中,滑块加速下滑;选项C中,拉力沿斜面向上,滑动摩擦力向下,则拉力的大小为2mg sinθ;选项D中,滑块沿斜面向下匀速下滑,不需要外力作用.答案 C9.质量为2kg的物体置于水平面上,在运动方向上受拉力作用沿水平面做匀变速运动,物体的速度图象如图,若物体所受摩擦力为10 N,则下列说法正确的是()A.拉力做的功为150 J B.拉力做的功为100 J C.摩擦力做的功为250 J D.物体克服摩擦力做功250 J解析由图象可知物体的加速度a=ΔvΔt=-105m/s2=-2m/s2,所以物体受到的拉力大小为6N.由图象可知物体5s内的位移为25m,则A、C、D选项正确.答案ACD10.一辆汽车在平直公路上以速度v0开始加速行驶,经过一段时间t,前进距离l,此时恰好达到其最大速度v m,设此过程中汽车发动机始终以额定功率P工作,汽车所受阻力恒为f,则在这段时间里,发动机所做的功为()A.f v m t B.P·tC.12m v2m+f·l-12m v20D.F·tv0+v m2解析发动机牵引力为变力,而牵引力的功率恒定,则可用W=P·t求变力做功,故B选项正确;根据P=F牵·v=f·v max,所以W=f·v m·t,故A选项正确.根据动能定理,W-f·l=12m v2m-12m v20.得W=12m v2m-12m v20+f·l.故C选项正确.答案ABC11.如图所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处于同一水平面上,则()A.两球到达各自悬点的正下方时,两球动能相等B.两球到达各自悬点的正下方时,A球动能较大C.两球到达各自悬点的正下方时,B球动能较大D.两球到达各自悬点的正下方时,A球损失的重力势能较多解析A球在运动过程中机械能守恒.最初的重力势能转化为A球的动能,而B球下摆到悬点正下方时,B球及弹簧组成的系统满足机械能守恒,B球最初的重力势能转化为B球的动能和弹簧的弹性势能,故B选项正确.答案 B12.(2011·全国)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时),然后经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球.如果按圆形轨道计算,并忽略卫星质量的变化,则每次变轨完成后和变轨前相比()A.卫星的动能增大,引力势能减小B.卫量的动能增大,引力势能增大C.卫星的动能减小,引力势能减小D.卫星的动能减小,引力势能增大解析由GMmr2=M4π2T2r可得T=2πr3GM.由此式可得周期越长,轨道半径越大,由卫星运动规律可知轨道半径越大,速度越小,故变轨后动能变小,A、B选项错误;卫星由低轨道变轨到高轨道需要加速,即增加其机械能,也就是说卫星越高,需要的能量越大,所以轨道越高引力势能越大,故C选项错误,D选项正确.答案 D第Ⅱ卷(非选择题,共52分)二、实验题(本题共2小题,共18分)13.(12分)如图所示,某同学在研究平抛运动的实验中,在小方格纸上画出小球做平抛运动的轨迹以后,又在轨迹上取出a 、b 、c 、d 四个点(轨迹已擦去).已知小方格纸的边长L =2.5 cm ,g =10m/s 2.请你根据小方格纸上的信息,通过分析计算完成下面几个问题:(1)小球从a →b 、b →c 、c →d 所经历的时间________(填“相等”或“不相等”). (2)平抛运动在竖直方向上是自由落体运动,根据小球从a →b 、b →c 、c →d 的竖直方向位移差,求出小球从a →b 、b →c 、c →d 所经历的时间是________.(3)再根据水平位移,求出小球平抛运动的初速度v 0=________. (4)从抛出点到b 点所经历的时间是________.解析 (1)由于小球从a →b 、b →c 、c →d 的水平位移相等,所以所经历的时间相等. (2)根据Δh =g ΔT 2 h bc -h ab =g ΔT 2ΔT =h bc -h abg= L g= 2.5×10-210s =0.05s. (3)根据x =v 0tx ab =v 0ΔT v 0=x ab ΔT =2×2.5×10-20.05m/s =1m/s.(4)v by =h ac 2ΔT =3×2.5×10-22×0.05m/s =0.75m/sv by =gt ,得t =v by g =0.7510s =0.075s. 答案 (1)相等 (2)0.05s (3)1 m/s(4)0.075s14.(6分)在“验证机械能守恒定律”的实验中,质量m =1kg 的重锤自由下落,纸带上打出一系列的点,如图所示,相邻计数点时间间隔为0.02s ,长度单位为cm ,取g =9.8m/s 2.(1)打点计时器打下计数点B 时,重锤的速度v B =________(保留两位有效数字). (2)从点O 到打下计数点B 的过程中,重锤重力势能的减少量ΔE p =________,动能的增加量ΔE k =________(保留两位有效数字).解析 取AB 之间计数点为D , S DC =OC -OD =3.89 cm 所以B 点速度v B =S DC 2T =3.890.04cm/s =0.97m/s 从点O 到点B 重力势能减少量 ΔE p =mgh OB =9.8×0.0486 J =0.48 J动能增加量ΔE k =12m v 2B =121×0.972J =0.47 J.答案 (1)0.97m/s (2)0.48 J 0.47 J三、解答题(本题共3小题,共34分.解答时应写出必要的文字说明、方程式和重要演算步骤,只写出答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.(10分)如图所示,质量为m 的小木块以速度v 0滑上原来静止的质量为M 的木板,水平地面光滑,木板长为l ,当木块运动到木板的另一端时,它们的速度分别是v 1和v 2,木板位移为l 0,求此过程产生的内能.解析 用动能定理对m -μmg (l +l 0)=12m v 21-12m v 2①用动能定理对M μmgl 0=12M v 22②由①②得μmgl =12m v 20-(12m v 21+12M v 22)由能量守恒定律可知,系统机械能的减少量,一定等于系统作用过程中产生的内能. 即Q =12m v 20-(12m v 21+12M v 22).答案12m v 20-(12m v 21+12M v 22) 16.(10分)如图所示,跨过定滑轮的轻绳两端各系一个物体,B 物体的质量是A 物体质量的一半,在不计摩擦阻力的情况下,A 物体自H 高度处由静止开始下落,且B 物体始终在平台上,若以地面为参考平面,当物体A 的动能与其重力势能相等时,物体A 离地面的高度是多少?解析 以AB 系统为研究对象.系统机械能守恒,A 物体减少的重力势能等于系统增加的动能m A g (H -h )=12(m A +m B )v 2①由题可知A 物体的重力势能和动能相等. m A gh =12A v 2② 由题意可知m A =2m B③由①②③联立解得 h =25H .答案25H 17.(14分)一个玩滚轴的小孩(可视为质点)质量m =30kg ,他在左侧平台上滑行一段距离后做平抛运动,恰能沿AB 圆弧上A 点的切线由A 点进入光滑的竖直圆弧轨道,并沿轨道下滑,A 、B 为圆弧的两个端点,且AB 连线水平,如图所示.已知圆弧半径为R =1m ,其圆心角θ=106°,平台与AB 连线的高度差h =0.8m .求:(1)小孩做平抛运动的初速度大小;(2)小孩运动到圆弧轨道最低点O 时对轨道的压力;(3)小孩由轨道右侧的B 点离开轨道后,斜向上跃出,你认为他还能否上升到离开平台时的初始高度?(阐明你的结论,并用物理原理简述理由)(g =10m/s 2,sin53°=0.8,cos53°=0.6)解析 (1)由于小孩沿切线进入圆弧形轨道,即小孩落到A 点时速度方向沿A 点切线方向,即tan α=tan53°=v y v x =gt v 0.又由h =12gt 2,得t =2hg=0.4s , 则v 0=gttan α=3m/s. (2)设小孩到达最低点的速度为v ,由机械能守恒定律得mgh +mgR (1-cos53°)+12m v 20=12m v 2在最低点,由牛顿第二定律得F N -mg =m v 2R以上两式联立解得F N =1 290 N ,方向向上.由牛顿第三定律可知,小孩对轨道的压力大小为1 290 N ,方向竖直向下.(3)整个过程中机械能守恒,从抛出点抛出后在水平方向做匀速运动,到达最高点时只有水平速度,且与平抛时初速度相等,因此还能上升到离开平台时的初始高度.答案(1)3m/s(2)1 290 N(3)见解析。