测控设计高二数学北师大选修单元测评:第二章圆锥曲线与方程含解析
- 格式:pdf
- 大小:935.31 KB
- 文档页数:5
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( ) A .10 B .13 C .16 D .192.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y += B .22143x y += C .22152x y += D .22163x y += 3.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫ ⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B=-,求双曲线的离心率( )A B C D4.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A B C .2 D 5.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条 6.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( )A .165B .2C .85D .17.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF F B =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52 C .2 D .538.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分9.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .10.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( )A .230x y +-=B .210x y -+=C .210x y -+=D .20x y +-=11.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( )A .B .C .D .12.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( )A .25B .100C .9D .36 二、填空题13.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B 两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________. 16.设点P 是抛物线2:4C y x =上一动点,F 是抛物线的焦点,O 为坐标原点,则OP PF的最大值为___________.17.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b ,则椭圆C 的离心率为________.18.如果点12310,,,P P P P ,是抛物线22y x =上的点,它们的横坐标依次为12310,,,,x x x x ,F 是抛物线的焦点,若123105x x x x ++++=,则1210PF P F P F +++=___.19.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.20.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.三、解答题21.A B 是抛物线24y x =上两个不同的点,A 、B 纵坐标之和为4.(1)求直线AB 的斜率;(2)O 为原点,若OA OB ⊥,求直线AB 的方程.22.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,离心率为12. (1)求椭圆C 的标准方程;(2)直线l 与x 轴正半轴和y 轴分别交于点,Q P ,与椭圆分别交于点,M N ,各点均不重合且满足,PM MQ PN NQ λμ==.若4λμ+=-,证明:直线l 恒过定点.23.已知点3(-在椭圆2222:1(0)x y E a b a b +=>>上,E 3 (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围. 24.已知椭圆()2222:10x y C a b a b+=>>,A ,B 为椭圆的左、右顶点,点()0,2N -,连接BN 交椭圆C 于点Q ,ABN 为直角三角形,且:3:2NQ QB =(1)求椭圆的方程;(2)过A 点的直线l 与椭圆相交于另一点M ,线段AM 的垂直平分线与y 轴的交点P 满足154PA PM ⋅=,求点P 的坐标. 25.已知椭圆()2222:10x y M a b a b+=>>经过如下四个点中的三个,1132P ⎛⎫- ⎪⎝⎭,,()20,1P ,3132P ⎛⎫ ⎪⎝⎭,,()43P ,1. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆经过椭圆M 的右顶点C (A ,B 均不与点C 重合),证明:直线l 过定点. 26.如图,已知点P 是x 轴下方(不含x 轴)一点,抛物线2:C y x =上存在不同的两点A 、B 满足PD DA λ=,PE EB λ=,其中λ为常数,且D 、E 两点均在C 上,弦AB 的中点为M .(1)若P 点坐标为(1,2)-,3λ=时,求弦AB 所在的直线方程;(2)若直线PM 交抛物线C 于点Q ,求证:线段PQ 与QM 的比为定值,并求出该定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =;圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =, 设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号,即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.D解析:D【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果.【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==,设1122(,),(,)A x y B x y , 由22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+,因为P 为线段AB 的中点,O 为坐标原点, 所以1212(,)22x x y y P ++,12121212012202OP y y y y k x x x x +-+===-++-, 所以221222122(2)AB y y b b k x x a a-==-⋅-=-, 又,A B 在直线30x y -+=上,所以1AB k =,所以2221b a=,即222a b =,将其代入223a b -=,得23b =,26a =, 所以椭圆C 的方程为22163x y +=. 故选:D【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程;③作差变形并利用斜率公式和中点坐标公式求解.3.B解析:B【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F P F P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e +=-, 又1e >,解得:e =故选:B.【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率. 4.B解析:B【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率.【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y = 设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x b k a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩同理联立()y k x c b y x a ⎧=+⎪⎨=⎪⎩解之得B B kc x b k a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b b kc kc a a b b k k a a=+-,故3232b b k k a a +=- 解之得5b k a=- 直线为:()5b y x c a =-+ 则1212A B bc y y a -==,又()5A A b y x c a=-+ 故712A c x =- 又A 在双曲线上可得:2222491144144c c a a-= 得2213c a=故c a=故选:B【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.A解析:A【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论.【详解】抛物线26y x =的焦点为3,02F ⎛⎫ ⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =,1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=-⎪⎝⎭, 与抛物线交于()()1122,,,A x y B x y 两点, 由2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条.故选:A.【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.6.C解析:C【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解.【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =. 故选:C【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题. 7.C解析:C【分析】 设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率.【详解】 设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a =故4AB a =,25AF a =,23F B a =故2AF B 为直角三角形,290ABF ∠= 在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a == 故10e = 故选:C【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).8.D解析:D【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等,所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线.【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离,因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.9.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a 可求得该双曲线的渐近线的斜率. 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.10.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.11.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-, 联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =± 即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2 圆的方程为()2214x y -+=,令0x =,解得y =即圆被y轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.12.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=, 所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MFMF a '-=,不能混淆. 二、填空题13.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=- 故直线()2222:x PA y y x x y -=-- 化简得:222222y y y x x x -=-+即2222221x x y y x y +=+=同理有33:1PB x x y y +=又,PA PB 均过点()11,P x y ,有313131311,1x x y y x x y y +=+= 故直线11:1MN x x y y +=1111,m n x y == 221222111x x m n-=-= 故答案为:114.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解解析:7【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a =,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.16.【分析】设点则则可得出令利用二次函数的基本性质求出二次函数的最大值即可得出的最大值【详解】设点则则抛物线的准线方程为由抛物线的定义可得所以令当且仅当时函数取得最大值因此的最大值为故答案为:【点睛】方【分析】设点(),P x y ,则24y x =,则0x ≥,可得出OP PF=(]10,11t x =∈+,利用二次函数的基本性质求出二次函数2321y t t =-++的最大值,即可得出OPPF的最大值. 【详解】设点(),P x y ,则24y x =,则0x ≥,抛物线C 的准线方程为1x =-,由抛物线的定义可得1PF x =+,所以,OPPF ==== 0x ≥,令(]10,11t x =∈+,221443213333y t t t ⎛⎫=-++=--+≤ ⎪⎝⎭, 当且仅当13t =时,函数2321y t t =-++取得最大值43,因此,OP PF故答案为:3. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.17.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b ac =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221b e a=-;(3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.18.10【分析】利用抛物线上的点到焦点的距离把整体代入中即可求解【详解】解:由抛物线的定义可知抛物线上的点到焦点的距离在中所以故答案为:10【点睛】关键点点睛:利用抛物线的焦半径公式整体代入中是解决本题解析:10 【分析】利用抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,把123105x x x x ++++=整体代入1210PF P F P F +++中即可求解.【详解】解:由抛物线的定义可知,抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,在22y x =中,1p =,所以12121031055510PF P F P F x x x x p +++=+++++=+=.故答案为:10 【点睛】关键点点睛:利用抛物线的焦半径公式整体代入1210PF P F P F +++中是解决本题的关键.19.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-20.2【分析】法1:首先利用直线过焦点得再利用直线与抛物线方程联立利用根与系数的关系表示计算求得;法2:由已知求得的值再利用弦长公式求的值【详解】法1:由题意知直线即直线经过抛物线的焦点即直线的方程为设解析:2 【分析】法1:首先利用直线过焦点,得b p =-,再利用直线与抛物线方程联立,利用根与系数的关系表示12AB x x p =++,计算求得p ;法2:由已知tan 2θ=,求得sin θ的值,再利用弦长公式22sin pAB θ=,求p 的值. 【详解】法1:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-. 设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=,又5AB =,12552x p p x ∴++==,则2p =.法2:设直线的切斜角为θ,则tan 2k θ==,得sin 5θ=,∴22225sin p pAB θ===,得2p =.故答案为:2 【点睛】结论点睛:当直线过抛物线的焦点时,与抛物线交于,A B 两点,AB 称为焦点弦长,有如下的性质:直线与抛物线交于()()1122,,,A x y B x y ,①221212,4p y y p x x =-=;②12AB x x p =++;③11AF BF +为定值2p ;④弦长22sin p AB θ= (θ为直线AB 的倾斜角);⑤以AB 为直径的圆与准线相切;⑥焦点F 对,A B 在准线上射影的张角为90.三、解答题21.(1)1;(2)y x =或4y x =-. 【分析】(1)法一:设()11,A x y ,()22,B x y 代入抛物线方程相减结合斜率公式即可求得;法二:设直线方程与抛物线联立结合韦达定理求得结果;(2)由OA OB ⊥得0OA OB ⋅=即12120x x y y +=结合两根关系可求得m ,即可求直线方程. 【详解】(1)法一:设()11,A x y ,()22,B x y ,则2112224,4,y x y x ⎧=⎨=⎩两式相减得()()()1212124y y y y x x +-=-. ∵124y y +=,∴()()121244y y x x -=-. 根据题意可知12x x ≠,∴12121AB y y k x x -==-, ∴直线AB 的斜率为1.法二:据题意直线AB 斜率存在,可设直线AB 的方程为y kx m =+, 与24y x =联立得204k m y y -+=,则1244y y k+==, ∴1k =,∴直线AB 的斜率为1.(2)由(1)得,124y y +=,124y y m ⋅=, 由题意,0OA OB ⋅=,即()221212121214016x x y y y y y y m m +=+=+=, 解得,0m =或4m =-.所以,直线AB 的方程为y x =或4y x =-. 【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.22.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意可得122,2c c a ==,再由222b a c =-求出b 的值,从而可得椭圆C 的标准方程;(2)设()()(0,),(,0)(0),,,,M M N N P p Q q q M x y N x y >,从而得()()()(),,,,,,,M M M M N N N N PM x y p MQ q x y PN x y p NQ q x y =-=--=-=--,然后由,PM MQ PN NQ λμ==,可得()222312244120q p λλ--+-=和()222312244120qp μμ--+-=,由此可知,λμ为方程()222312244120qx x p --+-=的两不相等实数根,所以有2244312q λμ+==--,可求出q 的值,从而可得答案 【详解】(1)依题意,22,1c c =∴=.由12c a =,得2,a b =∴= 故椭圆方程为22143x y +=.(2)设()()(0,),(,0)(0),,,,M M N N P p Q q q M x y N x y >,()()()(),,,,,,,M M M M N N N N PM x y p MQ q x y PN x y p NQ q x y ∴=-=--=-=--.由PM MQ λ=,得()()M M M M x q x y p y λλ⎧=-⎪⎨-=-⎪⎩,11M M q x p y λλλ⎧=⎪⎪+∴⎨⎪=⎪+⎩.∵点M 在椭圆上,2211143q p λλλ⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭∴+=,整理得()222312244120qp λλ--+-=.同理,由PN NQ μ=可得()222312244120q p μμ--+-=.,λμ∴为方程()222312244120q x x p --+-=的两不相等实数根,2244312q λμ∴+==--. 22q ∴=.又0,q q >∴=∴直线l恒过定点Q .【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是由,PM MQ PN NQ λμ==,得到()222312244120q p λλ--+-=和()222312244120q p μμ--+-=,从而有,λμ为方程()222312244120qx x p --+-=的两不相等实数根,再利用根与系数的关系可得答案,考查数学转化思想,属于中档题23.(1)22:14x E y +=;(2)32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314a b +=,∴c ea ==由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k+=-+,1221214x x k ⋅=+, 由COB ∠为锐角, ∴2121212122122()414OC OB x x y y k x x k x x k ⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l 的斜率的范围是332,,2⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.24.(1)2214x y +=;(2)30,2⎛⎫± ⎪⎝⎭,310,⎛⎫± ⎪ ⎪⎝⎭. 【分析】(1)用待定系数法求椭圆方程;(2)设出直线l ,表示出M 的坐标,利用154PA PM ⋅=,求出点P 的坐标. 【详解】(1)由题意可得:三角形ABN 为等腰直角三角形,所以2a =4,即a =2. 又由()0,2N -,()2,0B ,:3:2NQ QB =所以64,55Q ⎛⎫⎪⎝⎭, 代入22221x y a b+=得:222264()()551a b +=,解得:b =1. 所以椭圆的方程为2214x y +=(2)由(1)可知()2,0A -.设M 点的坐标为()11,x y , 直线l 的斜率显然存在,设为k ,则直线l 的方程为()2y k x =+于是A ,B 两点的坐标满足方程组()22214y k x x y ⎧=+⎪⎨+=⎪⎩,由方程组消去y 并整理, 得()()222214161640kxk x k +++-=由212164214k x k --=+,得2122814k x k-=+,从而12414k y k =+,设线段AB 是中点为M ,则M 的坐标为22282,1414k k k k ⎛⎫- ⎪++⎝⎭以下分两种情况:①当0k =时,点M 的坐标为()2,0.线段AM 的垂直平分线为y 轴,于是()02,PA y =-,()02,PM y =-由154PA PM ⋅=得02y =± ②当0k ≠时,线段AM 的垂直平分线方程为2222181414k k y x k k k ⎛⎫--=+ ⎪++⎝⎭令0x =,解得02614ky k -=+()02,PA y =--,()110PM x y y =⋅- ()()210102222228646214141414k k k k PA PM x y y y k k k k --⎛⎫⋅=---=++ ⎪++++⎝⎭()()422241615115414k k k +-==+ 整理得12k =±,032y =±综上032y =±或0y =. 点P 的坐标是30,2⎛⎫± ⎪⎝⎭,0,2⎛⎫± ⎪ ⎪⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"坐标法"是解析几何中常见的基本方法,把题目中的条件用坐标翻译出来,把几何条件转化为代数运算.25.(1)2214x y +=;(2)证明见解析.【分析】(1)先分析椭圆M 经过P 1、P 3、P 2,用待定系数法求标准方程;(2)先用联立方程组,设而不求法把以AB 为直径的圆经过C,找到两个参数的关系,证明直线过定点. 【详解】(1)2214x y +=;由题意,点112P ⎛⎫ ⎪⎝⎭,与点312P ⎫⎪⎭,关于原点对称, 根据椭圆的对称性且椭圆过其中的三个点可知,点112P ⎛⎫ ⎪⎝⎭,和点312P ⎫⎪⎭,都在椭圆上, 又因为点312P ⎫⎪⎭,与点)4P 1不可能同时在椭圆上, 即椭圆过点112P ⎛⎫ ⎪⎝⎭,,312P ⎫⎪⎭,,()20,1P ,所以(2222121a b⎛⎫ ⎪⎝⎭+=, 且2222011a b+=, 故24a =,21b =,所以,椭圆M 的方程为2214x y +=.(2)直线l 恒过点6,05⎛⎫ ⎪⎝⎭.由题意,可设直线AB 的方程()2x ky m m =+≠,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x ,得()2224240k y kmy m +++-=,设()11,A x y ,()22,B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+① 又以线段AB 为直径的圆过椭圆的右顶点C ,0CA CB =∴⋅,由()112,CA x y =-,()222,CB x y =- 得()()1212220x x y y --+= , 将11x ky m =+,22x ky m =+代入上式得()()()()2212121220ky y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6,05⎛⎫⎪⎝⎭.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(3)证明直线过定点,通常有两类:①直线方程整理为斜截式y=kx+b ,过定点(0,b );②直线方程整理为点斜式y - y o =k (x- x 0),过定点(x 0,y 0) . 26.(1)230x y -+=;(2)证明见解析,定值为1λλ+.【分析】(1)设11(,)A x y ,22(,)B x y ,由3PD DA =,3PE EB =可得D 与E 坐标,代入抛物线方程可得1x 与2x ,即可求AB 所在的直线方程;(2)由设00(,)P x y ,PD DA λ=,PE EB λ=可得D 与E 坐标,代入抛物线方程可得1x 与2x 满足的方程220002(1)0x x x y x λλλ-++-=,通过计算得到直线PM 的方程为0x x =,即线段PQ 与QM 的比为Q P M Qy y y y --,计算化简得到定值.【详解】(1)设11(,)A x y ,22(,)B x y ,由3PD DA =,3PE EB =, 可得111323(,)44x y D +-+,221323(,)44x y E +-+, 由D 点在C 上可得:2112313()44y x -++=,化简得:211230x x --=,同理可得: 222230x x --=,∵A 、B 两点不同,不妨设(3,9)A ,(1,1)B -, ∴弦AB 所在的直线方程为230x y -+=.(2)设00(,)P x y ,211(,)A x x ,222(,)B x x ,由PD DA λ=,得20101(,)11x x y x D λλλλ++++,代入2yx ,化简得:22101002(1)0x x x y x λλλ-++-=, 同理可得:22202002(1)0x x x y x λλλ-++-=,显然12x x ≠,∴1x 、2x 是方程220002(1)0x x x y x λλλ-++-=的两个不同的根,∴1202x x x +=,20012(1)y x x x λλ+-⋅=,∴1202M x x x x +==,即直线PM 的方程为0x x =, ∵2220012(12)(1)2M x y x x y λλλ+-++==,20Q y x =,∴200(1)(1)M Q x y y y λλλ+-+-=,200Q P y y x y -=-,所以线段PQ 与QM 的比为200200(1)(1)1Q PM Q y y x y y x y y λλλλλ-==+-+--+∴线段PQ 与QM 的比为定值1λλ+.【点晴】思路点晴:由向量关系得到点,,A B P 坐标关系,求得直线PM 的方程为P x x =,所以M Q MQ y y =-,Q P QP y y =-,则线段PQ 与QM 的比为Q P M Qy y y y --,结合题意得比值.。
一、选择题1.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出,如图①,一个光学装置由有公共焦点1F 、2F 的椭圆Γ与双曲线Ω构成,现一光线从左焦点1F 发出,依次经Ω与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的Ω去掉,如图②,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若218t t =,则Γ与Ω的离心率之比为( )A .3:4B .2:3C .1:2D .22.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且23OM =12MF F △的面积是( )A .10B .11C .12D .133.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .22±C .8±D .23±4.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( ) A 2B 3C 5D 65.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .2D .26.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =7.已知椭圆222:14x y C b +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC .5D8.已知两定点()0,1M -,()0,1N ,直线l :y x =+,在l 上满足PM PN +=P 的个数为( )A .0B .1C .2D .0或1或29.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .810.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .611.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( )A .7B .7C .7D .712.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________. 14.在平面直角坐标系xOy中,1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的焦点.若椭圆C 上存在点P ,使得12|1|||2PO F F =,则椭圆C 的离心率的取值范围为________. 15.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.16.F 为抛物线2:4C y x =的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且||6PQ =,则||MF =__________.17.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.18.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________. 19.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.20.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.23.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率3e =,椭圆E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标, 24.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且经过点32,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB 的面积为4617,求直线l 的方程. 25.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.26.已知椭圆()2222:10x y C a b a b +=>>的离心率为22,过左顶点与上顶点的直线与圆2243x y +=相切.(1)求椭圆C 的方程﹔(2)已知斜率为k 的直线l 在y 轴上的截距为()0m m b <<,l 与椭圆交于,A B 两点,是否存在实数k 使得2OA OB k k k ⋅=成立?若存在,求出k 的值,若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a ,设光速为v ,推导出112a vt =,利用椭圆和双曲线的定义可得出1243a a =,由此可计算得出Γ与Ω的离心率之比. 【详解】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a , 在图②中,1CDF 的周长为111212124CF DF CD CF CF DF DF a vt ++=+++==,所以,1148a vt =,可得112a vt =,在图①中,由双曲线的定义可得2122AF AF a -=,由椭圆的定义可得1212BF BF a +=, 22AF BF AB =-,则2121111222AF AF BF AB AF a BF AB AF a -=--=---=,即()111222a AB AF BF a -++=,由题意可知,1ABF 的周长为111AB AF BF vt ++=,即112111322222a a a a vt a =-=-=, 所以,1243a a =. 因此,Γ与Ω的离心率之比为122112:::3:4c ce e a a a a ===. 故选:A.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,a c ==不妨设12(F F -,因为1212OM F F ==, 所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =, 设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =, 显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.4.B解析:B【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e = 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.5.D解析:D 【分析】 首先设直线22x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,12222y y a b+=+4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.6.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,b ∴=, 因此,双曲线C的渐近线方程为by x a=±=0y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 7.B解析:B 【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.8.B解析:B【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数. 【详解】∵PM PN +=2MN =,∴P 在以,M N为焦点,由于2a =,a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=+⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 点只有一个. 故选:B . 【点睛】关键点点睛:本题考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.9.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-,所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.10.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案.【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得7a =,则FAB的周长为47a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】先根据的面积和短轴长得出abc的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25, 58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB的面积和短轴长得出a,b,c的值,求得1PF的范围,再通分化简1211PF PF+为关于1PF的函数,利用二次函数求得最值,即得取值范围.【详解】由已知得28b=,故4b=,∵1F AB的面积为4,∴()142a c b-=,∴2a c-=,又()()22216a c a c a c b-=-+==,故8a c+=,∴5a=,3c=,∴12121211PF PFPF PF PF PF++=()()()22 1111111210101021010525aPF a PF PF PF PF PF PF====---+--+,又而1a c PF a c-≤≤+,即128PF≤≤,∴当15PF=时,()21525PF--+最大,为25;当12=PF或8时,()21525PF--+最小,为16,即()211652525PF≤--+≤,∴121011102516PF PF≤+≤,即12211558PF PF≤+≤.即1211PF PF +的取值范围为25,58⎡⎤⎢⎥⎣⎦. 故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】 关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c -≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】先分析出得到消去b 整理出ac 的齐次式求出离心率的范围【详解】由落在椭圆上则又得:∴由得:即解得:又∴故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构解析:⎫⎪⎪⎣⎭【分析】先分析出||b PO a ≤≤,得到b c a ≤<,消去b ,整理出a 、c 的齐次式,求出离心率的范围. 【详解】由P 落在椭圆2222:1(0)x y C a b a b +=>>上,则||b PO a ≤≤.又12|1|||2PO F F =得:||PO c = ∴b c a ≤<由b c ≤得:22b c ≤,即222a c c -≤,解得:2c e a =≥又1e <,∴12e ≤<故答案为:2⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.15.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得3==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.16.3【分析】先根据抛物线方程求出p 的值再由抛物线性质求出的垂直平分线方程即可得到答案【详解】∵抛物线∴p=2焦点F(10)可设直线l :P(x1y1)Q(x2y2)将代入抛物线得:∴设PQ 中点为N(x0解析:3 【分析】先根据抛物线方程求出p 的值,再由抛物线性质求出PQ 的垂直平分线方程,即可得到答案. 【详解】∵抛物线2:4C y x =,∴p =2,焦点F (1,0) 可设直线l :(1)y k x =-,P (x 1,y 1)、Q (x 2,y 2)将(1)y k x =-代入抛物线2:4C y x =得:2222(24)0k x k x k -++= ∴12242x x k +=+1224||226,PQ x x p k k =++=++=∴=设PQ 中点为N (x 0,y 0),则2120004242,(1)222x x k x y k x k ++=====-=所以线段PQ 的垂直平分线方程:1(2)y k x k-=-- 令y =0,可得x =4,所以||413MF =-= 故答案为:3 【点睛】坐标法是解析几何的基本方法,利用坐标法把几何关系转化为代数运算.17.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:17 【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE 设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =, ∴离心率17c e a ==. 17 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a =,221222ABFb Sc ba=⨯⨯=,得12c e a ==. 故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.19.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b ac =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221be a=-; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.20.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可. 【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列 所以2121224MF a MF F F c ===+,所以2a c =,3b c =故椭圆方程可设为2222143x y c c+=代(4,3)M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析. 【分析】(1)分析得出2AF x ⊥轴,进而可得出12122tan F F F AF AF ∠=,设122F AF θ∠=,求出tan θ的值,可得出直线l 的斜率,进而可得出直线l 的方程;(2)假设椭圆E 上存在关于直线l 对称的相异两点()11,M x y 、()22,N x y ,进而可设直线MN 的方程为2xy t =-+,与椭圆E 的方程联立,列出韦达定理,求出线段MN 的中点P 的坐标,根据点P 在直线l 上,求出t 的值,可得出点P 的坐标,由此可得出结论. 【详解】(1)在椭圆E 中,4a =,b =2c =,则()12,0F -、()22,0F ,因为222311612+=,即点A 在椭圆E 上,且2AF x ⊥轴,121224tan 3F F F AF AF ∠==,设122F AF θ∠=,则22tan 4tan 21tan 3θθθ==-,整理可得22tan 3tan 20θθ+-=, 易知θ为锐角,则tan 0θ>,解得1tan 2θ=, 设直线l 的倾斜角为α,则sin cos 12tan tan 22sin tan cos2πθπθαθπθθθ⎛⎫- ⎪⎛⎫⎝⎭=-==== ⎪⎛⎫⎝⎭- ⎪⎝⎭,因此,直线l 的方程为()322y x -=-,即210x y --=;(2)假设椭圆E 上是否存在关于直线l 对称的相异两点()11,M x y 、()22,N x y , 则直线MN 的斜率为12-,设直线MN 的方程为2xy t =-+, 联立22123448y x t x y ⎧=-+⎪⎨⎪+=⎩,整理可得22120x tx t -+-=, 由韦达定理可得12x x t +=,则()121213222y y x x t t +=-++=, 所以,线段MN 的中点为3,24t t P ⎛⎫⎪⎝⎭, 点P 在直线l 上,所以,32110244t t t⨯--=-=,解得4t =, 所以点()2,3P ,此时,点P 与点A 重合,不合乎题意. 因此,椭圆E 上不存在关于直线l 对称的相异两点. 【点睛】思路点睛:圆锥曲线中的探索性问题求解思路如下: 第一步:假设结论存在.第二步:结合已知条件进行推理求解.第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范.23.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同理求出222222,11m m D m m ⎛⎫-- ⎪++⎝⎭,若直线CD 经过定点()1,0N ,只需,,N C D 三点共线,利用向量共线的坐标表示即可求解. 【详解】(1)由椭圆的定义知12|||2|MF MF a =+,所以2122122MF MF MF MF a ⎛+⎫≤= ⎪⎝⎭,已知12||||4MF MF ≤,所以24a =,2a =.因为e =c = 因为222a b c =+,所以1b =,所以椭圆E 的方程为2214x y +=.(2)当点C 是椭圆上顶点时,直线AC 的方程为()122y x =+,可得()4,3P ,则()3:22PB l y x =-与2214x y +=联立解得83,55D ⎛⎫- ⎪⎝⎭,所以直线CD 的方程为:10x y +-=,由椭圆的对称性可知,直线CD 经过x 轴上的定点, 所以直线CD 经过定点()1,0N . 以下证明一般性:设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x 则直线PA 的方程为()26my x =+联立22(2)614m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得()2222944360m x m x m +++-=由韦达定理得2243629C m x m --=+,解得2221826,99m m C m m ⎛⎫- ⎪++⎝⎭因为直线PB 的方程为()22my x =- 联立22(2)214m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消去y 得()222214440m x m x m +-+-=由韦达定理得224421D m x m -=+,解得222222,11m m D m m ⎛⎫-- ⎪++⎝⎭ 直线CD 经过定点()1,0N ,即,,N C D 三点共线因为222936,99m m NC m m ⎛⎫-= ⎪++⎝⎭,22232,11m m ND m m ⎛⎫--= ⎪++⎝⎭ 因为222222932639191m m m m m m m m ---⨯-⨯++++ ()()()332218661891m m m m m m -+--=++0=所以//NC ND ,那么,,N C D 三点共线 所以直线CD 经过定点()1,0N , 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用点C 是椭圆上顶点时,求出定点()1,0N ,再证明一般性,借助,,N C D 三点共线求解,考查了运算求解能力.24.(1)22132x y +=;(2)22y x =±+或2y =+.【分析】(1)由离心率公式、将点3,22⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出S ==,求出k 的值得出直线l 的方程. 【详解】解:(1)因为椭圆的离心率为3,所以222213b a =-=⎝⎭.①又因为椭圆经过点3,22⎛⎝⎭,所以有2291142a b +=.②联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y +=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=即223S k ==+ 因为OAB,所以22317k=+,即()2232k =+. 化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以2k =±或k = 所以直线l 的方程为2y x =+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.25.(1)24y x =;(2)证明见解析. 【分析】(1)设直线l 的方程为2x my p =+,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,由题意可得出222122144y y x x p==,求出p 的值,进而可得出抛物线C 的方程; (2)设点()33,M x y 、()44,N x y ,可得出213y y p =-,224y y p =-,利用直线的斜率公式以及韦达定理可得出lMNk k 为定值. 【详解】(1)若直线l 与x 轴重合,则该直线与抛物线C 有且只有一个交点,不合乎题意. 设直线l 的方程为2x my p =+,代入22y px =得22240y pmy p --=,则()22440p m ∆=+>,且2124y y p =-,则22212122444y y x x p p⋅===, 0p >,解得1p =.∴抛物线C 的方程为24y x =;(2)证明:()33,M x y 、()44,N x y ,同(1)可知,直线AM 不可能与x 轴重合,设直线AM 的方程为2p x ty =+, 联立222p x ty y px⎧=+⎪⎨⎪=⎩,消去x 得2220y tpy p --=,由韦达定理可得213y y p =-,同理可得224y y p =-, 又直线l 的斜率12122212121222l y y y y pk y y x x y y p --===--+, 直线MN 的斜率3434342MN y y pk x x y y -==-+,()2221222341212212121212144l MN p y y p p k y y y y y y p p k y y y y y y y y p -+--++--∴======+++-, 故直线l 与直线MN 斜率之比为定值14. 【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.26.(1)22142x y +=;(2)存在,2k =±. 【分析】(1)根据题意可得2c e a ==,222b a c =-,根据相切列出方程,解得,,c a b 进而可得椭圆的方程.(2)假设存在实数k 满足题意,直线l 的方程为y kx m =+,设()()1122,,,A x y B x y ,联立直线与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得1212,x x x x +,化简计算2OA OB k k k ⋅=,即可解得k 的值. 【详解】 (1)2c e a ==,a ∴=又222,b a c =-,b c ∴=∴1yc+=,即0x -+=,=即2,c a b ===∴椭圆的方程为22142x y +=.(2)存在实数k 满足题意,理由如下:由题知m <且0m ≠,直线l 的方程为y kx m =+, 设()()1122,,,A x y B x y ,由22142y kx mx y =+⎧⎪⎨+=⎪⎩消去y ,得()222124240kxkmx m +++-=2121222424,1212km m x x x x k k-+=-=++ ()()()22222216412248420k m k m k m ∆=-+-=-+>恒成立.()()()2212121212121212OA OBkx m kx m k x x km x x m y y k k x x x x x x +++++⋅=== ()()22222222441224k m k m m k m -+++=-222424k m m -+=- 2222424k m k m -+∴=- ()22210k m ∴-=k ∴=所以存在实数2k =±,使得2OA OB k k k ⋅=成立. 【点睛】关键点睛:直线与圆锥曲线综合问题中,联立方程化简,通过韦达定理化简计算求解是解题的关键,同时注意0∆>.。
一、选择题1.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .3 C .12D .222.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .22±C .8±D .23±3.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A .22B .31- C .51- D .3 4.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B 2C .322D .325.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( ) A .2B 51C .1D 526.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .17.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F F MF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .28.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .9.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .12y x =±D .13y x =±10.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .11.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1012.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PFPF +的取值范围为___________. 14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.设1A 、2A 为椭圆()222210x y a b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A 的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 16.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______17.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.已知直线1:43120l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 距离之和的最小值是________.20.如果点12310,,,P P P P ,是抛物线22y x =上的点,它们的横坐标依次为12310,,,,x x x x ,F 是抛物线的焦点,若123105x x x x ++++=,则1210PF P F P F +++=___.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积. 22.已知直线y x b =+与抛物线22x y =交于A ,B 两点,且OA OB ⊥(O 为坐标原点).(Ⅰ)求b 的值; (Ⅱ)求AOB 的面积.23.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率为2,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,12F PF △的面积为1.(1)求椭圆C 的方程(2)设斜率存在的直线2PF ,与椭圆C 的另一个交点为Q .若存在(),0T t ,使得TP TQ =,求t 的取值范围24.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由. 25.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.26.已知抛物线24C y x =:的交点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点 (1)当直线l 的倾斜角为135°时,求AB(2)若过点P (1,2)的直线m 与抛物线C 相切,且直线//m 直线l ,求直线l 的方程【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.2.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =, 设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到4 9OMN OABABMNS SS+=梯形△△,结合图象,可求得9AB=,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.3.C解析:C【分析】作出图形,可知FAB是以FAB∠为直角的直角三角形,可得出0AF AB⋅=,可得出a、b、c的齐次等式,进而可求得椭圆C的离心率.【详解】如下图所示,可知AFB∠、ABF∠均为锐角,所以,FAB是以FAB∠为直角的直角三角形,由题意可知,点(),0F c-、()0,A b、(),0B a,则(),AF c b=--,(),AB a b=-,20AF AB ac b⋅=-+=,可得220a c ac--=,即220c ac a+-=,在等式220c ac a+-=的两边同时除以2a可得210e e+-=,01e<<,解得512e=.故选:C.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.C解析:C【分析】根据抛物线的定义和性质,可以求出A的坐标,再求出直线AB的方程,可求出点B的坐标,最后利用三角形的面积公式加以计算,即可得到AOB的面积.【详解】抛物线24y x=的焦点为(1,0)F,准线方程为1x=-,不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB的斜率为21=-∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OF y =+=+=⨯⨯⨯. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=. 故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.7.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为3y x =,得到3ba=.【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos 2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213F MF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MF O 为等边三角形,故双曲线C 的渐近线方程为3y x =±,则2212b e a=+=,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.8.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点,所以210k -≠,且2248(1)0k k ∆=+->,1k <, 解得12k <<,所以实数k 的取值范围为(1,2), 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案11.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25,58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB 的面积和短轴长得出a ,b ,c 的值,求得 1PF 的范围,再通分化简1211PF PF +为关于1PF 的函数,利用二次函数求得最值,即得取值范围. 【详解】由已知得28b =,故4b =,∵1F AB 的面积为4,∴()142a cb -=,∴2ac -=, 又()()22216a c a c a c b -=-+==,故8a c +=, ∴5a =,3c =, ∴12121211PF PF PF PF PF PF ++=()()()221111111210101021010525a PF a PF PF PF PF PF PF ====---+--+,又而1a c PF a c -≤≤+,即128PF ≤≤, ∴当15PF =时,()21525PF --+最大,为25;当12=PF 或8时,()21525PF --+最小,为16,即()211652525PF ≤--+≤,∴121011102516PF PF ≤+≤,即12211558PF PF ≤+≤. 即1211PF PF +的取值范围为25,58⎡⎤⎢⎥⎣⎦. 故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】 关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c -≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解 21 【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,227c a b =+= 依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=, 因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:⎫⎪⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c -==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c<<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<1e <<.因此,椭圆的离心率e 的取值范围是2⎛⎫⎪⎪⎝⎭.故答案为:,12⎛⎫⎪ ⎪⎝⎭.【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a 、c ,代入公式ce a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).16.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得()22224200002(14)4=+-=+-+d x ax a x a x ,令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a , 当对称轴24102a a -≤时,在0t =处取得最小值,此时d 的最小值为4=2=d , 当对称轴24102a a ->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦. 故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.17.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】作出图像根据抛物线定义和性质将距离之和转化为动点到直线和焦点距离之和最小值数形结合得焦点到直线的距离最小【详解】解:作出图像如下:根据抛物线定义有动点到直线和直线距离之和为当点位于图中的时取解析:165【分析】作出图像,根据抛物线定义和性质将距离之和转化为动点P 到直线1l 和焦点距离之和最小值,数形结合得焦点F 到直线1l 的距离最小. 【详解】解:作出图像如下:根据抛物线定义有动点P 到直线1l 和直线2l 距离之和为PA PB PB PF +=+ 当点P 位于图中的P '时取得最小值,此时最小值为焦点F 到直线1l 的距离, 由距离公式得:4121655d +== 故答案为:165【点睛】抛物线性质的应用技巧:(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程; (2)要结合图形分析,灵活运用平面图形的性质简化运算.20.10【分析】利用抛物线上的点到焦点的距离把整体代入中即可求解【详解】解:由抛物线的定义可知抛物线上的点到焦点的距离在中所以故答案为:10【点睛】关键点点睛:利用抛物线的焦半径公式整体代入中是解决本题解析:10 【分析】利用抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,把123105x x x x ++++=整体代入1210PF P F P F +++中即可求解.【详解】解:由抛物线的定义可知,抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,在22y x =中,1p =,所以12121031055510PF P F P F x x x x p +++=+++++=+=.故答案为:10 【点睛】关键点点睛:利用抛物线的焦半径公式整体代入1210PF P F P F +++中是解决本题的关键.三、解答题21.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y ,由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=,又点O 到直线20x y -+=的距离为d ==,所以OAB 的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积.22.(Ⅰ)2;(Ⅱ) 【分析】 (Ⅰ)联立22y x bx y =+⎧⎨=⎩,根据12120x x y y +=利用韦达定理列方程求解即可;(Ⅱ)利用弦长公式求出AB 的值,再利用点到直线距离公式求出三角形的高,进而可得答案 【详解】(Ⅰ)由题意可知,设()()1122,,,A x y B x y ,联立22y x bx y =+⎧⎨=⎩,消去y 得,2220x x b ,12122,2x x x x b ∴+==-,又1,480,2OA OB b b ⊥∆=+>∴>-且0b ≠,()()11220,,,,OA OB OA x y OB x y ∴⋅===, 12120x x y y ∴+=,()()()21212121220x x x b x b x x b x x b ∴+++=+++=,2420b b b ∴-++=,220b b ∴-=,0b ∴=或2b =,又12b >-且0b ≠,2b ∴=;(Ⅱ)由(Ⅰ)知2b =,则有122x x +=,124x x =-,12AB x x =-===直线A ,B 为2y x =+,O 到直线AB 的距离d == 1122AOBAB Sd ∴=⨯⨯== 【点睛】方法点睛:求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可. 23.(1)2212x y +=;(2)10,2⎡⎫⎪⎢⎣⎭.【分析】(1)根据离心率、12F PF △的面积为1及a 、b 、c 的关系,即可求得a 、b 、c 的值,即可得答案.(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k ,将直线与椭圆联立,根据韦达定理,可求得N 点坐标,根据题意,可得直线TN 为线段PQ 的垂直平分线,利用斜率的关系,即可求得t 的表达式,结合k 的范围,即可求得答案. 【详解】(1)由题可知椭圆离心率2,当P 为椭圆C 的上顶点时,12F PF △的面积为1.∴2221212c ab c b c a⎧=⎪⎪⎪⋅⋅=⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩, 故椭圆C 的方程为2212x y +=,(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k , 由(1)设直线PQ 的方程为()1y k x =-. 当0k =时,0t =符合题意.当0k ≠时,把()1y k x =-代入2212x y +=,得()2222124220k x k x k +-+-=,∴()()42221641222880k k k k ∆=-+-=+>,2122412k x x k+=+, ∴212022212x x k x k+==+,()002112k y k x k -=-=+, 即2222,1212k k N k k ⎛⎫- ⎪++⎝⎭. ∵TP TQ =,∴直线TN 为线段PQ 的垂直平分线, ∴TN PQ ⊥,即1TN k k ⋅=-.∴222121212k k k k t k-+⋅=--+, ∴22211122k t k k ==++.20k >,210k ∴> ,2122k+>, 2110122k ∴<<+,即10,2t ⎡⎫∈⎪⎢⎣⎭【点睛】解题的关键是根据韦达定理求得N 点坐标,将题干条件转化为直线TN 为线段PQ 的垂直平分线,根据斜率关系进行求解,考查计算化简的能力,属中档题.24.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)122843km x x k ∴+=-+,212241243m x x k -=+ 由ACD BCD ∠=∠得0AC BC k k +=31,2C ⎫⎛ ⎪⎝⎭,121212123333222201111y y kx m kx m x x x x --+-+-∴+=+=---- ()1212322302kx x m k x x m ⎫⎛∴+--+-+= ⎪⎝⎭22241238223043243m km k m k m k k -⎛⎫⎛⎫∴⋅+----+= ⎪⎪++⎝⎭⎝⎭整理得:(63)(223)0k k m -+-=2230k m ∴+-=或630k -=当2230k m +-=时,直线AB 过定点31,2C ⎛⎫⎪⎝⎭,不合题意 630k ∴-=,12k =,∴直线AB 的斜率是定值12另解:设直线AB 的方程为3(1)12m x n y ⎫⎛-+-= ⎪⎝⎭椭圆E 的方程即:22333[(1)1]41222x y ⎡⎤⎫⎛-++-+= ⎪⎢⎥⎝⎭⎣⎦即:22334126(1)3(1)022y y x x ⎫⎫⎛⎛-+-+-+-= ⎪ ⎪⎝⎝⎭⎭ 联立得:233(412)(126)22n y m n y ⎫⎫⎛⎛+-++- ⎪ ⎪⎝⎝⎭⎭2(1)(63)(1)0x m x -++-=即23322(412)(126)(63)011y y n m n m x x ⎛⎫-- ⎪+++++= ⎪-- ⎪⎝⎭ ∴由ACD BCD ∠=∠得121233(126)22011(412)AC BCy y m n k k x x n --++=+=-=--+即:2n m =- ∴直线AB 的斜率为12m n -=,是定值. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)证明见解析;(2)证明见解析. 【分析】 (1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭,联立直线与抛物线方程,消元、列出韦达定理,即可得到0OA OB ⋅=,从而得证;(2)对函数求导,利用导数的几何意义求出过点A 、B 的切线1l 、1l 的方程,即可得到12122y x x ==-,即可得证; 【详解】 解:(1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭, 把2y kx =+代入212y x =,得2240x kx --=. 由韦达定理得122x x k +=,124x x =-.()22211221212111,,0224OA OB x x x x x x x x ⎛⎫⎛⎫∴⋅=⋅=+= ⎪ ⎪⎝⎭⎝⎭. 所以OA OB ⊥ (2)212y x =,y x '∴=, 故经过点211,12A x x ⎛⎫ ⎪⎝⎭的切线1l 的方程为:()211112y x x x x -=-,即21112y x x x =-,①同理,经过点222,12B x x ⎛⎫ ⎪⎝⎭的切线2l 的方程为:22212y x x x =-,②21x x ⨯-⨯①②,得12122y x x ==-. 即点M 在直线:2l y =-上. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 26.(1)8;(2)1y x =-. 【分析】(1)抛物线的焦点弦的弦长12||AB x x p =++即可求出AB ;(2)设直线m 的方程为()21y k x -=-,用设而不求法求出直线m 的斜率,即可求出直线方程. 【详解】解:(1)焦点F 的坐标为()1,0由直线l 的倾斜角为135︒, 可知直线l 的斜率为1-,可得直线l 的方程为1y x =-+, 设点A ,B 的坐标分别为()11,x y ,()22,x y ,联立方程241y xy x ⎧=⎨=-+⎩,消去y 后整理为:2610x x -+=,有126x x +=,121=x x ,由抛物线的性质有12||2628AB x x =++=+=.(2)设直线m 的斜率为k ,可得直线m 的方程为()21y k x -=-, 整理为2y kx k =+-,联立242y x y kx k⎧=⎨=+-⎩,消去x 后整理为2204k y y k -+-=,有14(2)04kk ∆=-⨯-=,得1k =. 由直线l ∥直线m ,可得直线l 的方程为1y x =-.【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.。
第二章单元质量评估本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)答题表只有一项是符合要求的)1.若方程x 2|k |-3+y 24-k =1表示双曲线,则实数k 的取值范围是( )A .k <-3或3<k <4B .-3<k <4C .k <-3或k >4D .-3<k <3或k >42.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)3.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程是( )A.x 216-y 248=1 B.x 29-y 227=1 C.x 216-y 248=1或y 29-x 227=1 D .以上都不对5.若抛物线y 2=4x 上一点P 到焦点F 的距离为10,则P 点坐标为( ) A .(9,6) B .(9,±6) C .(6,9)D .(6,±9)6.双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A.25B.45C.255D.4557.抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形面积等于( )A .3 3B .2 3C .2D. 38.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 39.已知抛物线y 2=4x 的准线过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,且准线与椭圆交于A 、B 两点,O 为坐标原点,△AOB 的面积为32,则椭圆的离心率为( )A.32B.12C.13D.1410.过点P (x ,y )的直线分别与x 轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2PA →且OQ →·AB →=1,则点P 的轨迹方程是( )A .3x 2+32y 2=1(x >0,y >0)B .3x 2-32y 2=1(x >0,y >0)C.32x 2-3y 2=1(x >0,y >0) D.32x 2+3y 2=1(x >0,y >0) 11.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2B .2 3C.303D.36212.(2016·新课标全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34答案1.D 若方程表示双曲线,则⎩⎪⎨⎪⎧|k |-3>0,4-k <0或⎩⎪⎨⎪⎧|k |-3<0,4-k >0,解得-3<k <3或k >4,故选D.2.D 将椭圆方程变为x 22+y 22k=1,由题意,得2k>2,解得0<k <1.3.D 椭圆的顶点和焦点分别是x 24-y 212=-1的焦点和顶点,∴椭圆的长半轴长为4,半焦距为23,且焦点在y 轴上,故所求方程为y 216+x 24=1.4.C 当双曲线的顶点为(±4,0)时,a =4,由e =2知,c =8,b =43,双曲线的方程为x 216-y 248=1;当双曲线的顶点为(0,±3)时,a =3,由e =2知,c =6,b =33,双曲线的方程为y 29-x 227=1,故选C.5.B 抛物线的焦点坐标为(1,0),准线为x =-1. ∵P 到F 的距离为10,设P 为(x ,y ), ∴x +1=10,∴x =9.又P 在抛物线上, ∴y 2=36,y =±6,∴P 点坐标为(9,±6).6.C 双曲线x 24-y 2=1的一个顶点为(2,0),一条渐近线为x +2y =0,故由双曲线的对称性知顶点到渐近线的距离d =|2|12+22=25=255,选C.7.A 由题意知,抛物线的准线为x =3,双曲线的渐近线为y =±33x ,因此求得三角形面积为33,故选A.8.B 根据已知条件得c =16-m 2,则点M ⎝ ⎛⎭⎪⎫16-m 2,2·16-m 22在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m22m2=1,可得m =2 2.9.B 抛物线y 2=4x 的准线方程为x =-1,∵抛物线y 2=4x 的准线过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,∴椭圆的左焦点为(-1,0),∴c =1.∵O 为坐标原点,△AOB 的面积为32,∴12×2b 2a ×1=32,∴b 2a =a 2-1a =32,整理,得2a 2-3a -2=0,解得a =2或a =-12(舍),∴e =c a =12.故选B. 10.D 因为Q 与P (x ,y )关于y 轴对称,所以Q (-x ,y ),由BP →=2PA →,得A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y )所以AB →=⎝ ⎛⎭⎪⎫-32x ,3y .从而由OQ →·AB →=(-x ,y )·⎝ ⎛⎭⎪⎫-32x ,3y =1,得32x 2+3y 2=1,其中x >0,y >0,故选D.11.C 设弦端点为A (x 1,y 1)、B (x 2,y 2),则x 21+2y 21=4,x 22+2y 22=4,∴x 21-x 22=-2(y 21-y 22),∴此弦的斜率k =y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12,∴此弦所在的直线方程为y -1=-12(x -1),即y =-12x +32.代入x 2+2y 2=4,整理,得3x 2-6x +1=0,∴x 1·x 2=13,x 1+x 2=2,∴|AB |=x 1+x 22-4x 1x 2·1+k 2=4-4×13·1+14=303. 12.A 设E (0,m ),则直线AE 的方程为-x a +ym =1,由题意可知M (-c ,m -mc a),(0,m 2)和B (a,0)三点共线,则m -mc a -m 2-c =m 2-a ,化简得a =3c ,则C 的离心率e =c a =13. ————————————————————————————第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.设中心在原点的椭圆与双曲线2x 2-2y 2=1有相同的焦点,且它们的离心率互为倒数,则该椭圆的方程是________.14.过抛物线C :y 2=2px (p >0)的焦点F 作倾斜角为60°的直线与抛物线分别交于A ,B两点(点A 在x 轴上方),则|AF ||BF |=________. 15.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.16.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知椭圆的中心在原点,且经过点P (3,0),离心率e =223,求椭圆的标准方程.18.(12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→.答案13.x 22+y 2=1解析:双曲线的焦点坐标为(-1,0),(1,0),离心率为 2.设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则e =c a =22.因为c =1,所以a = 2.所以b =a 2-c 2=1.故所求椭圆的方程为x 22+y 2=1. 14.3解析:记|AF |=a ,|BF |=b ,准线为l , 分别过A ,B 作AA 1⊥l ,BB 1⊥l , 则|AA 1|=|AF |=a ,|BB 1|=|BF |=b ,再过B 作BM ⊥AA 1于M .在Rt △BMA 中,∠ABM =30°,AM =a -b ,AB =a +b ,于是a +b =2(a -b ),a =3b ,故所求为3.15.22解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,①x 22a 2+y 22b2=1.② ①、②两式相减并整理得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.把已知条件代入上式得,-12=-b 2a 2×22,∴b 2a 2=12,故椭圆的离心率e =1-b 2a 2=22.16.102解析:如图,设双曲线的右焦点为F 1,连接OE ,PF 1.∵O 为FF 1的中点,E 为PF 的中点,∴OE ∥PF 1且|OE |=12|PF 1|,∴|PF 1|=2|OE |=a .∵|PF |-|PF 1|=2a ,∴|PF |=3a . 又OE ⊥FP ,∴FP ⊥PF 1, ∴(3a )2+a 2=4c 2,故e =102. 17.解:(1)当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).∵离心率e =223,∴c a =223. 又∵a 2=b 2+c 2,∴a =3b .又∵椭圆经过点P (3,0),∴9a 2+0b2=1,∴a 2=9,b 2=1.∴椭圆的标准方程为x 29+y 2=1.(2)当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).同理可得a =3b .又∵椭圆过点P (3,0),∴0a 2+9b2=1,∴b 2=9,a 2=81.∴椭圆的标准方程为y 281+x 29=1.综上可知,椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.18.解:(1)∵双曲线的一条渐近线方程为y =x , ∴设双曲线的方程为x 2-y 2=λ(λ≠0).把点(4,-10)代入双曲线的方程得42-(-10)2=λ,∴λ=6.∴所求双曲线的方程为x 2-y 2=6. (2)由(1)知双曲线的方程为x 2-y 2=6.∴c =23,不妨令F 1(-23,0)、F 2(23,0). ∵点M 在双曲线上, ∴32-m 2=6,∴m 2=3.∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m ) =(-3)2-(23)2+m 2=-3+3=0.————————————————————————————19.(12分)如图,已知抛物线C 1:x 2+by =b 2经过椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的两个焦点.(1)求椭圆C 2的离心率;(2)设点Q (3,b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,若△QMN 的重心在抛物线C 1上,求C 1和C 2的方程.20.(12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .答案19.解:(1)因为抛物线C 1经过椭圆C 2的两个焦点F 1(-c,0),F 2(c,0),所以c 2+b ×0=b 2,即c 2=b 2.由a 2=b 2+c 2=2c 2,得椭圆C 2的离心率e =22. (2)由(1)可知a 2=2b 2,则椭圆C 2的方程为x 22b 2+y 2b2=1. 联立抛物线C 1的方程x 2+by =b 2得 2y 2-by -b 2=0,解得y =-b2或y =b (舍去),所以x =±62b , 即M ⎝ ⎛⎭⎪⎫-62b ,-b 2,N ⎝ ⎛⎭⎪⎫62b ,-b 2. 所以△QMN 的重心坐标为(1,0).因为重心在抛物线C 1上,所以12+b ×0=b 2, 得b =1.所以a 2=2.所以抛物线C 1的方程为x 2+y =1,椭圆C 2的方程为x 22+y 2=1.20.解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a ,①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28.故a =7,b =27.————————————————————————————21.(12分)(2016·四川卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝⎛⎭⎪⎫3,12在椭圆E 上. (1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.22.(12分)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.答案21.解:(1)由已知,a =2b .又椭圆x 2a 2+y 2b 2=1(a >b >0)过点P (3,12),故34b 2+14b2=1,解得b 2=1,所以椭圆E 的方程是x 24+y 2=1.(2)设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2),由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0, ①方程①的判别式为Δ=4(2-m 2),由Δ>0,得2-m 2>0,解得-2<m < 2. 由①得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点的坐标为(-m ,m 2),直线OM 的方程为y =-12x ,由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C (-2,22),D (2,-22)或C (2,-22),D (-2,22). 所以|MC |·|MD |=52(-m +2)·52(2+m )=54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2]=516[4m 2-4(2m 2-2)]=54(2-m 2),所以|MA |·|MB |=|MC |·|MD |.22.解:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0, 即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2| =4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.。
一、选择题1.直线3y x与曲线2||194y x x -=的公共点的个数是( )A .1B .2C .3D .42.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±3.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .45.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 6.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤ 7.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( ) A .3B .33C .6D .98.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .129.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .313e <<B .23e C .3e >D .13e <<10.顶点在原点,经过点()3,6-,且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( )A .12B .2C .34D .45二、填空题13.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n -=___________. 14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.16.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.17.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.18.已知椭圆22:1168x y C +=的左、右焦点分别为12,F F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得12AF F △为等腰直角三角形; ②存在唯一一个m ,使得1ABF 为等腰直角三角形; ③存在m ,使1ABF 的周长最大. 其中,所有真命题的序号为_________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.设A 、B 是双曲线22221(0,0)x y a b a b-=>>的左、右顶点,F 是右焦点,M 是双曲线上异于A 、B 的动点,过点B 作x 轴的垂线与直线MA 交于点P ,若直线OP 与BM 的斜率之积为4,则双曲线的离心率为_________.三、解答题21.已知P 是圆224x y +=上任意一点,过点P 作x 轴的垂线,垂足为D ,点M 满足12DM DP =.当点P 在圆上运动时,点M 的轨迹为曲线Γ. (1)求曲线Γ的方程; (2)设()2,0A -,()2,0B ,Q 是曲线Γ上不同于A 、B 的任意一点.求证:直线QA 、QB 的斜率之积为定值.22.已知椭圆()2222:10x y C a b a b+=>>左右焦点分别为()12(,0),,0F c F c -,点Р为椭圆C 上一点,满足1290F PF ∠=︒,且12F PF △的面积为2c .(1)求椭圆C 的离心率; (2)已知直线()122y x =-与椭圆C 交于,M N 两点,点Q 坐标为()2,0,若3MQ NQ =,求椭圆C 的方程.23.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.24.设命题:p 方程22137x ya a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.25.设抛物线2:4C y x =,点()4,0A ,()4,0B -,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.26.已知椭圆C :22221x y a b +=(0a b >>) 2.(1)求椭圆C 的标准方程;(2)过点(1,0)P 的直线l 与椭圆C 交于A ,B 两点若ABO 的面积为35(O 为坐标原点),求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由于已知曲线函数中含有绝对值符号, 将x 以0为分界进行分类讨论,当x ≥0时,曲线为焦点在y 轴上的双曲线,当x <0时,曲线为焦点在y 轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数. 【详解】当0x ≥时,曲线2194x xy -=的方程为22194y x -=当0x <时,曲线2194x xy -=的方程为22194y x +=,∴曲线2194x xy -=的图象如图,在同一坐标系中作出直线3y x的图象,可得直线与曲线交点个数为3个.故选:C 【点晴】本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.2.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =,设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=,从而284AB x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.3.C解析:C 【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b ⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.4.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个. 故选:D. 【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.5.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率.||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c by x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.7.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.8.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=,由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =, 所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.9.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线b y x a =的倾斜角α满足30α>,则12tan 3b PF F a >∠=因此,该双曲线的离心率为3c e a ====>. 故选:B. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.10.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(m =⋅,m =-2y =-,或设方程为22x ny =,则2(26n =⨯,14n =,方程为212x y =.所以抛物线方程为2y =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点,所以210k -≠,且2248(1)0k k ∆=+->,1k <, 解得12k <<,所以实数k 的取值范围为(1,2), 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.B解析:B 【分析】设直线2a x c=交x轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.二、填空题13.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=- 故直线()2222:x PA y y x x y -=-- 化简得:222222y y y x x x -=-+即2222221x x y y x y +=+=同理有33:1PB x x y y +=又,PA PB 均过点()11,P x y ,有313131311,1x x y y x x y y +=+= 故直线11:1MN x x y y +=1111,m n x y == 221222111x x m n-=-= 故答案为:114.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解解析:7【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值.【详解】解:因为双曲线22:143x y C -=,所以2a =,227c a b =+= 依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,7QN AB F F MN <>===故答案为:21【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 解析:223【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y , 联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m . 由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得m =,因此,直线l 的斜率为13k m ===.故答案为:3. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.16.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积解析:7【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0, ∴121269,77y y y y +=-=-12211111|||22|222F AB S F F y y -∴=⨯=⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 17.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题解析:4【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入e =即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则||AD =因为||||AD AB =2a =,即2238b a =,故222214b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.18.①③【分析】首先根据题意得到设对①分类讨论和以及即可判断①为真命题对②根据椭圆的对称性可知利用解方程即可判断②为假命题对③利用椭圆的定义即可判断③为真命题【详解】由题知:设对①若则此时则所以满足为等解析:①③ 【分析】首先根据题意得到4a =,22b c ==()122,0F -,()222,0F ,设(),A m y ,(),B m y -.对①,分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,即可判断①为真命题.对②,根据椭圆的对称性可知,11AF BF =,利用1122AF k m ==+,解方程即可判断②为假命题,对③,利用椭圆的定义即可判断③为真命题. 【详解】由题知:4a =,22b c ==()122,0F -,()222,0F , 设(),A m y ,(),B m y -.对①,若12AF AF =,则0m =,此时(0,22A .1221022AF k ==+,2221022AF k ==--,则121AF AF k k ⋅=-,所以1290F AF ∠=,满足12AF F △为等腰直角三角形. 若1290AF F ∠=,则()22,2A -,此时12AF =,12F F =.若2190AF F ∠=,则()2A ,此时22AF =,12F F =.所以存在唯一一个m ,使得12AF F △为等腰直角三角形,故①为真命题. 对②,根据椭圆的对称性可知,11AF BF =,满足等腰三角形. 当190AF B ∠=时,根据椭圆的对称性可知:直线1AF 的倾斜角为45,11AF k ==,即y m =+又因为221168m y +=,所以(22216m m ++=,解得0m =或3m =-,都在44m -<<内, 故存在唯一一个m ,使得1ABF 为等腰直角三角形为假命题. 对③,1ABF 的周长为11AB AF BF ++, 又因为128AF AF =-,128BF BF =-, 所以()112216AF BF AF BF +=-+, 即1ABF 的周长为()2216AB AF BF +-+,又因为22AF BF AB +≥,当且仅当m =时取等号, 所以()22AF BF AB -+≤-,即1ABF 的周长为()22161616AB AF BF AB AB +-+≤+-=.当且仅当m =时,1ABF 的周长最大. 故③为真命题. 故答案为:①③ 【点睛】关键点点睛:本题主要考查椭圆的定义,解决本题①的关键为分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,②的关键为代入椭圆的对称性,③的关键为椭圆的定义,属于中档题.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭,因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】设代入双曲线方程变形为再根据MPA 共线利用斜率相等求得点P 然后再直线与的斜率之积为4得到ab 的关系求解【详解】设则即设又且MPA 共线所以解得则的斜率为的斜率为又直线与的斜率之积为4所以即所以【分析】设(),M m n ,代入双曲线方程变形为22222n b m a a=-,再根据M ,P ,A 共线,利用斜率相等,求得点P ,然后再直线OP 与BM 的斜率之积为4,得到a ,b 的关系求解. 【详解】设(),M m n ,则22221m n a b -=,即22222n b m a a=-, 设(),P a t ,又(),0A a -,且M ,P ,A 共线, 所以2n tm a a=+, 解得2ant m a=+, 则OP 的斜率为2nm a+, BM 的斜率为nm a-, 又直线OP 与BM 的斜率之积为4,所以22222224a n b m a ==-,即222b a =,所以c e a ===【点睛】本题主要考查双曲线的离心率的求法以及点的双曲线上和斜率公式的应用,还考查了运算求解的能力,属于中档题.三、解答题21.(1)2214x y +=;(2)证明见解析.【分析】(1)令()00,P x y ,(),M x y ,则()0,0D x ,由已知条件,结合向量的坐标表示有002x x y y=⎧⎨=⎩,由P 是圆224x y +=上一点,即可求Γ的方程; (2)由(1)知Q 是曲线Γ上不同于A 、B 的任意一点,则存在QA k 、QB k ,令()11,Q x y 即可得21214QA QB y k k x ⋅=-,即可证斜率之积为定值. 【详解】解:(1)设()00,P x y ,(),M x y ,则()0,0D x , 由12DM DP =得:002x x y y =⎧⎨=⎩.由题意,22004x y +=,得2244x y +=.所以,曲线的方程为2214x y +=.(2)证明:设()11,Q x y ,则221114x y +=.由题意知:QA k 、QB k 存在. ∴112QA y k x =+,112QB y k x =-.∴2121144QA QBy k k x ⋅==--, ∴直线QA 、QB 的斜率之积为定值14-. 【点睛】 关键点点睛:(1)应用向量的坐标表示,找到M 点坐标与点P 的坐标间的数量关系,由P 是圆224x y +=上求M 的轨迹方程.(2)由已知,根据直线斜率的坐标表示可得QA QB k k ⋅关于Q 坐标的数量关系,进而可证结论. 22.(1;(2)答案见解析. 【分析】(1)利用椭圆定义122PF PF a +=和1290F PF ∠=︒求得2122PF PF b =,再根据12F PF △的面积为2c 求解;(2)椭圆方程2222x y a +=与直线1(2)2y x =-联立,由韦达定理得到2121244,36a y y y y -+=-=,再根据3MQ NQ =,分3MQ NQ =和3MQ NQ =-求解. 【详解】(1)由椭圆定义可得122PF PF a +=,① 又1290F PF ∠=,所以222124PF PF c +=,②①和②可得2122PF PF b ⋅=,所以12F PF △的面积为2b ,所以22b c =,即222a c =,所以椭圆C ; (2)椭圆方程可化为2222x y a +=,与1(2)2y x =-联立可得: 226840y y a ++-=,由()2642440a ∆=-->可得243a >,设()()1122,,,M x y N x y ,所以2121244,36a y y y y -+=-=,③又直线1(2)2y x =-过点Q ,且3MQ NQ =,()112,MQ x y =--,()222,NQ x y =--.(i )当3MQ NQ =时,即123y y =时,则122443y y y +==-,可得213y =-,则2212214336a y y y -===,可得2423a =>,所以椭圆C 的方程为2212x y +=;(ii )当3MQ NQ =-,即123y y =-时,则122423y y y +=-=-,则223y =,可得22212224433336a y y y -⎛⎫=-=-⨯=-= ⎪⎝⎭,解得24123a =>,所以椭圆C 的方程为221126x y +=.【点睛】方法点睛:求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定2a 、2b 的值,结合焦点位置可写出椭圆方程;②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a 、b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为()2210,0,Ax By A B A B +=>>≠.23.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =,联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=,由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1-,半径为2, 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.24.(Ⅰ)(,3)a ∈-∞;(Ⅱ)(,7][1,3)a ∈-∞-⋃. 【分析】(Ⅰ)分别求出命题,p q 为真时a 的范围,然后由或命题为真的真值表求解; (Ⅱ)命题p q ∨为真,命题p q ∧为假,则,p q 是一真一假,由此可得参数范围. 【详解】(Ⅰ)当命题p 为真时,由题意()()370a a -+<,解得73a -<<. 当命题q 为真时,由题意可得min1a x ⎛⎫<⎪⎝⎭,由此可得1a <. 若命题p q ∨为真命题,则73a -<<或1a <, 即(,3)a ∈-∞.(Ⅱ)命题p q ∨为真,命题p q ∧为假,则p ,q 一真一假.p 真q 假时,73,1,a a -<<⎧⎨≥⎩13a ∴≤<,p 假q 真时,7?3,?1,a a a ≤-≥⎧⎨<⎩或7a ∴≤-,综上,(,7][1,3)a ∈-∞-⋃. 【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:25.(1)122y x =+或122y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点A ,求得直线l 的方程为4x =,代入抛物线方程求得点M 的坐标为()4,4或()4,4-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为4x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线。
2016-2017学年高中数学第二章圆锥曲线与方程2.3.1 双曲线及其标准方程学业分层测评(含解析)北师大版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章圆锥曲线与方程2.3.1 双曲线及其标准方程学业分层测评(含解析)北师大版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章圆锥曲线与方程2.3.1 双曲线及其标准方程学业分层测评(含解析)北师大版选修1-1的全部内容。
2。
3。
1 双曲线及其标准方程(建议用时:45分钟)[学业达标]一、选择题1.已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P的轨迹是( )A.双曲线B.双曲线的左支C.一条射线D.双曲线的右支【解析】本题容易犯片面性错误,从而根据双曲线的定义而得出错误结果.由于|PM|-|PN|=4,恰好等于这两个定点间的距离,故其轨迹是一条射线.【答案】C2.已知双曲线中心在原点且一个焦点F2(-错误!,0),点P位于该双曲线上,线段PF2的中点坐标为(0,2),则该双曲线方程为()A。
错误!-y2=1 B.x2-错误!=1C.错误!-错误!=1 D.错误!-错误!=1【解析】易知点P的坐标为(错误!,4),把点P的坐标代入选项中的方程只有B适合.【答案】B3.已知P是双曲线x24-错误!=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|等于()A.1或5 B.6C.7 D.9【解析】由题意a=2,∴||PF1|-|PF2||=4。
∴|PF2|=7。
一、选择题1.设O 为坐标原点,1F ,2F 是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且OP ,则该椭圆的离心率为( )A .12B .14C .12D .22.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 3.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 4.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A B .12C D 5.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 26.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A 3B .2C 5D 27.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若3OA b =,则该双曲线的离心率为( )A 2B .233C .2D 5 8.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .26⎝⎭C .222⎝⎭D .323⎫⎪⎪⎝⎭9.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B .1222+ C 51 D 3110.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .(42,6)B .(6,8)C .(42,8)D .(6,10)11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A .4877B .2477C .48147D .2414712.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.15.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.16.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.17.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为6,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______. 20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于A B 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.22.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N两点,当MN 与x 轴垂直时,MNF 的周长为9. (1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.23.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率e =E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标, 24.已知点M 是圆222:(2)(2)C x y r r -+=>与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使弦MN 的中点恰好落在y 轴上. (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,延长NO 交直线2x =-于点A ,延长NC 交曲线E 于点B ,曲线E 在点B 处的切线交y 轴于点D ,求证:AD BD ⊥.25.设命题:p 方程22137xy a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.26.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据中线向量可得()1212PO PF PF =+,平方后结合椭圆的定义可得212PF PF a ⋅=,在焦点三角形中再利用余弦定理可得224c a =,从而可求离心率. 【详解】因为O 为12F F 的中点,故()1212PO PF PF =+, 所以()2221212124PO PF PF PF PF =++⋅,故22212123112442a PF PF PF PF ⎛⎫=++⋅⋅ ⎪⎝⎭, 故()2222121212123a PF PF PF PF PF PF PF PF =++⋅=+-⋅,所以212PF PF a ⋅=,又22212121422c PF PF PF PF =+-⋅⋅, 故()2222212124343c PF PF PF PF a a a =+-⋅=-=,故12e =. 故选:A. 【点睛】方法点睛:与焦点三角形有关的计算问题,注意利用椭圆的定义来转化,还要注意利用余弦定理和向量的有关方法来计算长度、角度等.2.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF=,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F ,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OPOF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PFF F +==故()2222220a ++=. 可得1a =ce a == 故选:D 【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k -+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以B C A D += 令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22t t =+-令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以13AB CD y ⎡+=∈⎢⎢⎣, 综上AB CD +的取值范围是⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.4.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y ,设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则16MF a =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=, 则222||MF b a b==+,2222||OM OF MF a =-=,166MF a =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有3==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴23c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=, 利用2112sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<21624πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是262⎛ ⎝⎭, 故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.9.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得101e +=(110-舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.10.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PF PF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,2P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得7a =,则FAB的周长为47a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点, 所以20a ->,即2a >,此时圆半径为2r ==>.因此当2r >时,圆无法触及抛物线的顶点O .故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得3==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解解析:2【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t -=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.15.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.16.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析:做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有223b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.17.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD 的斜解析:221306x y +=先利用点D 坐标和垂直关系求得直线l 的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b 的关系式,再结合焦距的关系式解出22,a b ,即得方程. 【详解】依题意,椭圆的焦距为46,即246c =,26c =,即2224a b -=,由点D 的坐标为()2,1,知直线OD 的斜率101202OD k -==-,又⊥OD AB ,知直线l 的斜率为2-,即直线l 的方程为12(2)y x -=--,即52y x =-.设()()1122,,,A x y B x y 联立方程2222152x y a b y x ⎧+=⎪⎨⎪=-⎩得()2222222420250ab x a x a a b +-+-=,故2222121222222025,44a a a b x x x x a b a b-+==++, 即()()()12121212525225104y y x x x x x x =--=-++2222222222222202525425104444a a a b b a b a b a b a b--=-⨯+⨯=+++, 由OA OB ⊥知,12120OA OB x x y y ⋅=+=,即222222222225254044a a b b a b a b a b--+=++, 所以222255a b a b +=,又2224a b -=,消去2a 得,42141200b b +-=,解得26b =或220b =-(舍去),故2230,6a b ==,椭圆C 的方程为221306x y +=.故答案为:221306x y +=.【点睛】 思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④. 【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭; 若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -,由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭. 【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.22.(1)22y x =;(2)存在,P 点坐标为()2,0-. 【分析】(1)利用焦半径公式表示||||MF NF =,代入坐标2x =,求MN 的长度,并表示MNF 的周长,求p ;(2)假设存在点()0,0P x ,设:2l x my =+,与抛物线方程联立,利用根与系数的关系表示0MP NP k k +=,求定点0x 的值. 【详解】(1)当MN 与x 轴垂直时,||||22pMF NF ==+,||MN =,从而有49p ++= 解得1p =,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设:2l x my =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=, 而121020MP NP y y k k x x x x +=+--12102022y y my x my x =++-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入,从而得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-, 因此存在点P 满足题意,P 点坐标为()2,0-. 【点睛】思路点睛:定点问题解决步骤:(1)设直线代入二次曲线方程,整理成一元二次方程; (2)韦达定理列出两根和及两根积;(3)写出定点满足的关系,整体代入两根和及两根积; (4)整理(3)所得表达式探求其恒成立的条件.23.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率。
(二) 圆锥曲线与方程章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2【解析】 双曲线方程可化为x 24-y 28=1,所以a 2=4,a =2,2a =4.【答案】 C2.(2016·临沂高二检测)若抛物线的准线方程为x =-7,则此抛物线的标准方程为( )A .x 2=-28y B .y 2=28x C .y 2=-28xD .x 2=28y【解析】 抛物线准线方程x =-p2=-7,∴p =14,焦点在x 轴上,标准方程为y 2=28x .【答案】 B3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,则双曲线的离心率为( )A.53 B .213 C.54D .72【解析】 由题意双曲线焦点在x 轴上,故b a =43,∴e =c a=1+b 2a2=1+169=53.【答案】 A4.若椭圆x 23m +y 22m +1=1的焦点在y 轴上,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,1 B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫-12,12 【解析】 由题意得3m >0,2m +1>0且2m +1>3m ,解得0<m <1.【答案】 B5.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=( )A.10 B .210 C. 5D .2 5【解析】 设点P (x ,y ),由PF 1→·PF 2→=0,得点P 满足在以F 1F 2为直径的圆上,即x 2+y 2=10.又PF 1→+PF 2→=2PO →=(-2x ,-2y ),∴|PF 1→+PF 2→|=210. 【答案】 B6.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为( )A .y 2=16x B .y 2=-16x C .y 2=8xD .y 2=-8x【解析】 因为双曲线x 216-y 29=1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x .【答案】 A7.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)【解析】 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k 4.又e ∈(1,2),∴1<1-k4<4.∴-12<k <0.【答案】 B8.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( )A.y 28+x 24=1B .y 210+x 26=1C.y 24+x 28=1 D .y 26+x 210=1【解析】 ∵椭圆的两个焦点为(-2,0),(2,0), ∴c =2.又椭圆过点⎝ ⎛⎭⎪⎫52,-32,∴2a =⎝ ⎛⎭⎪⎫52+22+⎝ ⎛⎭⎪⎫-32-02+⎝ ⎛⎭⎪⎫52-22+⎝ ⎛⎭⎪⎫-32-02=210. ∴a =10. ∴b 2=a 2-c 2=6.∴椭圆的方程为x 210+y 26=1.【答案】 D9.一动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .圆【解析】 圆C 的方程即(x -3)2+y 2=1,圆C 与圆O 相离,设动圆P 的半径为R . ∵圆P 与圆O 外切而与圆C 内切,∴R >1,且|PO |=R +1,|PC |=R -1,又|OC |=3,∴|PO |-|PC |=2<|OC |,即点P 在以O ,C 为焦点的双曲线的右支上. 【答案】 A10.如图1,过抛物线y 2=3x 的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则|AB |=( )图1A .4B .6C .8D .10【解析】 如图,分别过点A ,B 作AA 1,BB 1垂直于准线l ,垂足分别为A 1,B 1,由抛物线的定义得|BF |=|BB 1|,∵|BC |=2|BF |, ∴|BC |=2|BB 1|,∴∠BCB 1=30°,又|AA 1|=|AF |=3, ∴|AC |=2|AA 1|=6,∴|CF |=|AC |-|AF |=6-3=3, ∴|BF |=1,|AB |=4. 【答案】 A11.设F 1、F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P 满足|PF 2|=|F 1F 2|,且cos ∠PF 1F 2=45,则双曲线的渐近线方程为( )A .3x ±4y =0B .3x ±5y =0C .4x ±3y =0D .5x ±4y =0【解析】 ∵|PF 1|-|PF 2|=2a , ∴|PF 1|=|PF 2|+2a =2a +2c . 由余弦定理得45=2a +2c2+4c 2-4c 22×2c ×2a +2c ,∴c a =53.∴ba =c 2-a 2a 2=43.∴渐近线方程为y =±43x , 即4x ±3y =0. 【答案】 C12.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )A .2或-1B .-1C .2D .1± 5【解析】 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,故Δ=[-4(k +2)]2-4k 2×4=64(1+k )>0,解得k >-1,且x 1+x 2=4k +2k 2. 由|AF |=x 1+p 2=x 1+2,|BF |=x 2+p2=x 2+2,且|AF |,4,|BF |成等差数列,得x 1+2+x 2+2=8,得x 1+x 2=4,所以4k +2k 2=4,解得k =-1或k =2,又k >-1,故k =2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上) 13.若抛物线y 2=mx 与椭圆x 29+y 25=1有一个共同的焦点,则m =________.【解析】 椭圆的焦点为(±2,0).由m4=±2得m =±8.【答案】 ±814.已知双曲线的左、右焦点分别为F 1,F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是________.【解析】 由双曲线的定义|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a , ∴|AF 2|+|BF 2|-|AB |=4a ,∴△ABF 2的周长为4a +2|AB |=26. 【答案】 2615.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.【解析】 由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.【答案】 ⎝ ⎛⎭⎪⎫x -322+y 2=25416.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,则y 21+y 22的最小值是________.【解析】 若k 不存在,则y 21+y 22=32.若k 存在,设直线AB 的斜率为k ,当k =0时,直线AB 的方程为y =0,不合题意,故k ≠0.由题意设直线AB 的方程为y =k (x -4)(k ≠0),由⎩⎪⎨⎪⎧y =k x -4,y 2=4x得ky 2-4y -16k =0,∴y 1+y 2=4k,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=⎝ ⎛⎭⎪⎫4k 2+32>32. ∴y 21+y 22的最小值为32. 【答案】 32三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y2=100上,求双曲线方程.【解】 ∵双曲线的渐近线方程为y =±43x ,∴设双曲线方程为x 232-y 242=λ(λ≠0).又焦点在圆x 2+y 2=100上,∴c 2=100. 则(3|λ|)2+(4|λ|)2=100,解得λ=±4. ∴所求双曲线方程为x 29-y 216=±4,即x 236-y 264=±1. 18.(本小题满分12分)已知F 1、F 2是椭圆的两个焦点,点P 在椭圆上,∠F 1PF 2=60°,求椭圆离心率的取值范围.【解】 ∵|PF 1|+|PF 2|=2a ,|F 1F 2|=2c ,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即|F 1F 2|2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|≥(|PF 1|+|PF 2|)2-3⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22, ∴(2c )2≥(2a )2-3a 2,∴a 2≤4c 2.∴c a ≥12,∴e ∈⎣⎢⎡⎭⎪⎫12,1.19.(本小题满分12分)已知点P (6,8)是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2为椭圆的两焦点,若PF 1→·PF 2→=0.试求:(1)椭圆的方程; (2)求sin∠PF 1F 2的值.【解】 (1)因为PF 1→·PF 2→=0,所以-(c +6)(c -6)+64=0,所以c =10, 所以F 1(-10,0),F 2(10,0), 所以2a =|PF 1|+|PF 2| =6+102+82+6-102+82=125,所以a =65,b 2=80. 所以椭圆方程为x 2180+y 280=1.(2)因为PF 1⊥PF 2,所以S △PF 1F 2=12|PF 1|·|PF 2|=12|F 1F 2|·y P =80,所以|PF 1|·|PF 2|=160, 又|PF 1|+|PF 2|=125, 所以|PF 2|=45,所以sin∠PF 1F 2=|PF 2||F 1F 2|=4520=55.20.(本小题满分12分)如图2所示,已知抛物线y 2=4x 的焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.图2【解】 设M (x ,y ),P (x 1,y 1),Q (x 2,y 2),易求y 2=4x 的焦点F 的坐标为(1,0). ∵M 是FQ 的中点,∴⎩⎪⎨⎪⎧x =1+x22,y =y22,即⎩⎪⎨⎪⎧x 2=2x -1,y 2=2y .又∵Q 是OP 的中点,∴⎩⎪⎨⎪⎧x 2=x 12,y 2=y12,即⎩⎪⎨⎪⎧x 1=2x 2=4x -2,y 1=2y 2=4y ,∵P 在抛物线y 2=4x 上, ∴(4y )2=4(4x -2), 整理得,y 2=x -12.故M 点的轨迹方程为y 2=x -12.21.(本小题满分12分)(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【解】 (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.22.(本小题满分12分)已知抛物线C 1的焦点与椭圆C 2:x 26+y 25=1的右焦点重合,抛物线C 1的顶点在坐标原点,过点M (4,0)的直线l 与抛物线C 1交于A ,B 两点.(1)写出抛物线C 1的标准方程; (2)求△ABO 面积的最小值.【解】 (1)椭圆C 2:x 26+y 25=1的右焦点为(1,0),即为抛物线C 1的焦点,又抛物线C 1的顶点在坐标原点,所以抛物线的标准方程为y 2=4x .(2)当直线AB 的斜率不存在时,直线方程为x =4,此时|AB |=8,△ABO 的面积S =12×8×4=16.当直线AB 的斜率存在时,设AB 的方程为y =k (x -4)(k ≠0),联立⎩⎪⎨⎪⎧y =k x -4,y 2=4x消去x ,得ky 2-4y -16k =0,Δ=16+64k 2>0, 设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=4k,y 1·y 2=-16,∴S △AOB =S △AOM +S △BOM =12|OM ||y 1-y 2|=216k2+64>16,综上所述,△ABO 面积的最小值为16.。
高二数学选修21第2章圆锥曲线与方程单元检测(含答案)题型归纳圆锥曲线与方程是高二数学最常考察的知识点,以下是第2章圆锥曲线与方程单元检测,希望对大家有帮助。
一、填空题1.已知A-12,0,B是圆F:_-122+y2=4 (F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹为________.2.方程5(_+2)2+(y-1)2=|3_+4y-12|所表示的曲线是________.3.F1、F2是椭圆的两个焦点,M是椭圆上任一点,从焦点F2向△F1MF2顶点M 的外角平分线引垂线,垂足为P,延长F2P交F1M的延长线于G,则P点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向_轴作垂线段PP,则线段PP的中点M的轨迹是____________.5.一圆形纸片的圆心为O,点Q是圆内异于O点的一定点,点A是圆周上一点,把纸片折叠使点A与点Q重合,然后抹平纸片,折痕CD与OA交于P点.当点A运动时点P的轨迹是________.6.若点P到F(4,0)的距离比它到直线_+5=0的距离小1,则点P的轨迹表示的曲线是________.7.已知两点F1(-5,0),F2(5,0),到它们的距离的差的绝对值是6的点M的轨迹是__________.8.一动圆与⊙C1:_2+y2=1外切,与⊙C2:_2+y2-8_+12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A:(_+3)2+y2=100,圆A内一定点B(3,0),动圆P过B点且与圆A内切,求证:圆心P的轨迹是椭圆.10.已知△ABC中,BC=2,且sinB-sinC=12sinA,求△ABC的顶点A的轨迹.能力提升11.如图所示,在正方体ABCDA1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(_+c)2+y2=4a2上一动点,Q(c,0)为定点(c0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数F1F2不可忽视,若常数2.双曲线定义中,若常数F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.3.抛物线定义中Fl,若Fl,则点的轨迹是经过点F,且垂直于l的直线.第2章圆锥曲线与方程2.1 圆锥曲线知识梳理3.两个定点F1,F2的距离的和焦点焦距4.两个定点F1,F2距离的差的绝对值焦点焦距5.到一个定点F和一条定直线l(F不在l上)的距离相等的点定点F 定直线l6.圆锥曲线作业设计1.椭圆解析由已知,得PA=PB,PF+BP=2,PA+PF=2,且PA+PFAF,即动点P的轨迹是以A、F为焦点的椭圆.2.抛物线解析由题意知(_+2)2+(y-1)2=|3_+4y-12|5.左侧表示(_,y)到定点(-2,1)的距离,右侧表示(_,y)到定直线3_+4y-12=0的距离,故动点轨迹为抛物线.3.①解析∵F2MP=GMP,且F2PMP,F2P=GP,MG=MF2.取F1F2中点O,连结OP,则OP为△GF1F2的中位线.OP=12F1G=12(F1M+MG)=12(F1M+MF2).又M在椭圆上,MF1+MF2=常数,设常数为2a,则OP=a,即P在以F1F2的中点为圆心,a为半径的圆上.4.椭圆5.椭圆6.抛物线解析由题意知P到F的距离与到直线_=-4的距离相等,所以点P的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明设PB=r.∵圆P与圆A内切,圆A的半径为10,两圆的圆心距PA=10-r,即PA+PB=10(大于AB).点P的轨迹是以A、B两点为焦点的椭圆.10.解由正弦定理得:sinA=a2R,sinB=b2R,sinC=c2R.代入sinB-sinC=12sinA得:b-c=12a,即b-c=1,即AC-AB=1 (A的轨迹是以B、C为焦点且靠近B的双曲线的一支,并去掉与BC的交点.11.④解析∵D1C1面BCC1B1,C1P平面BCC1B1,D1C1C1P,点P到直线C1D1的距离即为C1P的长度,由题意知,点P到点C1的距离与点P到直线BC的距离相等,这恰符合抛物线的定义.12.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a点M的轨迹是以R、Q为两焦点,实轴长为2a的双曲线右支.第2章圆锥曲线与方程单元检测的全部内容就是这些,预祝大家新学期可以取得更好的成绩。
一、选择题1.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .3 C .12D .222.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭3.若1F ,2F 是双曲线22221(0,0)y xa b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( ) A .22y x =±B .24y x =±C .73y x =±D .377y x =±4.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若16MF OM =,则E 的离心率为( )A 3B .2C 5D 25.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条6.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( )A .165B .2C .85D .17.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1168.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .49.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±10.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B .3C .2D 11.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .12+ B .12+ C 1 D 112.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .23y x =B .23y x =C .28x y =D .216x y =二、填空题13.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.14.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.15.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 16.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.18.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.19.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.20.双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,A 、B 分别为C 的左,右支上的点,O 为坐标原点,若四边形ABOF 为菱形,则C 的离心率为______.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点1,2A ⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知抛物线2:2(0)C y px p =>的焦点F 到直线:l y x =的距离为2,2A B ,为抛物线C 上两个动点,满足线段AB 的中点M 在直线l 上,点(0,2)N .(1)求抛物线C 的方程; (2)求NAB △面积的取值范围.23.已知椭圆()2222:10x y C a b a b+=>>左右焦点分别为()12(,0),,0F c F c -,点Р为椭圆C 上一点,满足1290F PF ∠=︒,且12F PF △的面积为2c .(1)求椭圆C 的离心率; (2)已知直线()122y x =-与椭圆C 交于,M N 两点,点Q 坐标为()2,0,若3MQ NQ =,求椭圆C 的方程.24.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心6,12MF F△2. (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程.25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且椭圆C 经过点32,22A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)椭圆C 的右焦点为F ,过点A 作两条倾斜角互补的直线分别交椭圆于B ,C 两点,证明://BC AF .26.如图,已知抛物线2:2(0)M x py p =>的焦点为(0,1)F ,过焦点F 作直线交抛物线于A ,B 两点,在A ,B 两点处的切线相交于N ,再分别过A ,B 两点作准线的垂线,垂足分别为C ,D .(1)求证:点N 在定直线上;(2)是否存在点N ,使得BDN 的面积是ACN △的面积和ABN 的面积的等差中项,若存在,请求出点N 的坐标,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =,在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.2.C解析:C 【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.故选:C. 【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.3.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a =,b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得b =,所以该双曲线的渐近线方程为4a y x x b =±==±, 故选:B 【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F △为等腰三角形和椭圆的定义求出21,PF PF 的值,属于中档题4.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.A解析:A 【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论. 【详解】抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =, 1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=- ⎪⎝⎭, 与抛物线交于()()1122,,,A x y B x y 两点,由2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条. 故选:A. 【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.6.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解.【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.7.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y , 则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+ ⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭,故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 8.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.9.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程.【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:b y x x a =±=, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.10.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得12QF OA ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =,又O 是12F F 中点,所以1//QF AO ,且12QF OA ==,又11122QF PF PQ PF PF a =-=-=,∴2a =,222233()a b c a ==-,∴3c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.11.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得101e +=110-舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.12.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 二、填空题13.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线解析:【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭,2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.14.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 15.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()222122P a c b PF c c c a +=--=+=,2221422b a PF PF a a +=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++, 当123cos 5F PF ∠=时,28235e =+,17e =, 当123cos 5F PF ∠=-时,28835e =+,2e =,172 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.16.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程 解析:28y x =【分析】 推导出OBE EBF △△,求出tan BOE ∠,可得出直线AO 的方程,联立直线AO 与抛物线C 的方程,求出点A 的坐标,利用抛物线的定义求出p 的值,即可得出抛物线C 的标准方程. 【详解】因为BOE BEF ∠=∠,90OBE EBF ∠=∠=,OBEEBF ∴△△,OB BE BE BF ∴=,即2222p p BE OB BF p =⋅=⨯=,22BE p ∴=,所以tan 2BEBOE OB∠==AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得()2A p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可. 【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.19.4【分析】设出的坐标写出坐标满足的关系式根据题意写出直线的方程求出的横坐标计算得出的值【详解】解:设则则所以直线的方程为令可得同理有直线的方程为令可得则故答案为:【点睛】圆锥曲线中求定值问题常见的方解析:4 【分析】设出,,M N P 的坐标,写出坐标满足的关系式.根据题意,写出直线PM ,PN 的方程,求出,A B 的横坐标,计算得出mn 的值. 【详解】解:设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+则222222 ad bc ad bc a db cmnd b d b d b-+-⎛⎫⎛⎫==⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c ac a⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=⎛⎫---⎪⎝⎭()2222414a ca c-==-故答案为:4【点睛】圆锥曲线中求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【分析】先根据四边形为菱形及双曲线的性质求的度数再根据双曲线的定义找的关系最后由离心率的计算公式求结论【详解】设右焦点为连接过作轴于因为双曲线关于轴对称四边形为菱形所以所以所以所以根据双曲线的定义可解析:31+.【分析】先根据四边形ABOF为菱形,及双曲线的性质,求AFO∠的度数,再根据双曲线的定义找,a c的关系,最后由离心率的计算公式求结论.【详解】设右焦点为'F,连接'AF,过A作AH x⊥轴于H,因为双曲线C关于y轴对称,四边形ABOF为菱形,所以AB OF AF c===,2cOH FH==,所以60AFO∠=︒,所以'AF AF⊥,所以'3AF c=,根据双曲线的定义可得'32AF AF c c a-=-=,所以3131e==+-,1. 【点睛】方法点睛:该题考查的是有关双曲线离心率的求解问题,对于求解圆锥曲线离心率的值或范围的解题方法如下:(1)一般不直接求出的值,而是根据题目给出的圆锥曲线的集合特征建立关于参数,,c a b 的方程组或不等式组,通过解方程组或不等组求得离心率的值或范围; (2)通常从两个方面入手研究,一是考虑几何关系,二是考虑代数关系; (3)注意用好定义.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=, 联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 22.(1)24y x =;(2)(0,4]. 【分析】(1)利用抛物线焦点F 到直线l 的距离为2,求出抛物线方程; (2)设出直线AB 的方程与抛物线方程联立,由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法得出NAB △面积的取值范围. 【详解】 (1),02p F ⎛⎫⎪⎝⎭由2pd ==,解得2p = 所以抛物线方程为24y x =(2)设直线AB 的方程为:221212,,,,44y y x my t A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭联立方程组24y x x my t⎧=⎨=+⎩,消去x 得2440y my t --=所以121244y y my y t+=⎧⎨=-⎩,得(2,2)M m m有2212444y y m +=,即()21212216y y y y m +-= 所以222t m m =-点N 到AB 的距离h =||AB ==所以1||2|2|2NABSAB h m t =⋅⋅=+42m m =-令u =u =由24y x y x=⎧⎨=⎩,得l 与抛物线的两交点坐标为(0,0),(4,4), 因点M 在l 上可得(0,2)m ∈所以(0,1]μ∈ 得34(0,4]NABSu =∈【点睛】关键点点睛:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查面积公式,解决本题的关键点是由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法和函数的性质得出NAB △的面积的取值范围,考查了学生计算能力,属于中档题.23.(1)2;(2)答案见解析. 【分析】(1)利用椭圆定义122PF PF a +=和1290F PF ∠=︒求得2122PF PF b =,再根据12F PF △的面积为2c 求解;(2)椭圆方程2222x y a +=与直线1(2)2y x =-联立,由韦达定理得到2121244,36a y y y y -+=-=,再根据3MQ NQ =,分3MQ NQ =和3MQ NQ =-求解. 【详解】(1)由椭圆定义可得122PF PF a +=,① 又1290F PF ∠=,所以222124PF PF c +=,②①和②可得2122PF PF b ⋅=,所以12F PF △的面积为2b ,所以22b c =,即222a c =,所以椭圆C ; (2)椭圆方程可化为2222x y a +=,与1(2)2y x =-联立可得: 226840y y a ++-=,由()2642440a ∆=-->可得243a >,设()()1122,,,M x y N x y ,所以2121244,36a y y y y -+=-=,③又直线1(2)2y x =-过点Q ,且3MQ NQ =,()112,MQ x y =--,()222,NQ x y =--.(i )当3MQ NQ =时,即123y y =时,则122443y y y +==-,可得213y =-,则2212214336a y y y -===,可得2423a =>,所以椭圆C 的方程为2212x y +=;(ii )当3MQ NQ =-,即123y y =-时,则122423y y y +=-=-,则223y =,可得22212224433336a y y y -⎛⎫=-=-⨯=-= ⎪⎝⎭,解得24123a =>,所以椭圆C 的方程为221126x y +=.【点睛】方法点睛:求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定2a 、2b 的值,结合焦点位置可写出椭圆方程; ②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a 、b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为()2210,0,Ax By A B A B +=>>≠.24.(1)2213x y +=;(2)0x y -=或0x y +=.【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y ,:l x ty =+11212AF BF F AF F BSSS=+,结合基本不等式,可得答案.【详解】(1)∵3c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=.(2)()1F ,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0,设直线l:x ty =+2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F BSSF F y y+=-=因为2312t =≤+=,即1t =±时等号成立,所以直线l 的方程为0x y --=或0x y +=. 【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F AF F BSS+并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力.25.(1)22132x y+=;(2)证明见解析.【分析】(1,且经过点322A ⎛⎫ ⎪ ⎪⎝⎭.,可用待定系数法求椭圆的标准方程; (2)分别表示出直线AB、AC ,用“设而不求法”后分别表示出BC 、AF 的斜率,从而证明//BC AF【详解】(1)解:因为椭圆C 的离心率为3, c e a ==,2232a b =,即2222:132x y C b b +=, 又因为椭圆C 过点3,22A ⎛ ⎝⎭,所以229124213b b ⋅+=,解得22b =椭圆C 的方程为22132x y +=.(2)证明:设直线AB 的方程为322y k x ⎛⎫=-+ ⎪⎝⎭.因为直线AB 与直线AC 的倾斜角互补,所以直线AC的方程可设为322y k x ⎛⎫=--+⎪⎝⎭.联立2232132y k x x y ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩得()222323(9)36022k x k x k ⎛++-++-+-= ⎝⎭. 设()11,B x y ,()22,C x y,则21239223k x k -++=-+,∴221229393223223k k x k k ---+=--=++.同理可得22293223k x k +-=+. ()22212121212229612332323BCk k k k k x x k y y k x x x x k k ---+--=====--++又02312AF k -==-,∴BC AF k k =,所以//BC AF . 【点睛】 结论点睛:(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.26.(1)证明见解析;(2)存在,12N ⎛⎫±- ⎪ ⎪⎝⎭. 【分析】(1)由题意设直线:1AB y kx =+,()11,A x y ,()22,B x y ,将直线与抛物线方程联立求出两根之和、两根之积,求出直线121:24x x AN y x =-以及直线222:24x x BN y x =-,将两直线联立求出交点即证.(2)由(1)知点N 为CD 的中点,取AB 的中点E ,则2AC BDEN +=,利用抛物线的定义可得2AB EN =,ABNAENBENSSS=+,2ACNAF CNS⋅=,2BDNBF CNS ⋅=,根据2BDN ACN ABN S S S =+△△△,可得2BF AF AB =+,即212x x =-,结合韦达定理即可求解. 【详解】解(1)由题知2p = 所以2:4M x y =设直线:1AB y kx =+,()11,A x y ,()22,B x y 联立214y kx x y=+⎧⎨=⎩得2440x kx --= 所以121244x x k x x +=⎧⎨=-⎩对24x y =求导得2x y '=所以直线AN 的斜率为12AN x k =所以直线()111:2x AN y y x x -=-即121:24x x AN y x =-① 同理直线222:24x x BN y x =-② 联立①和②得12122214x x x k x x y +⎧==⎪⎪⎨⎪==-⎪⎩所以点N 的坐标为(2,1)k -,即点N 在定直线1y =-上 (2)由(1)知点N 为CD 的中点 取AB 的中点E ,则2AC BDEN += 由题知AC BD AB += 所以2AB EN =所以22222ABN AEN BEN EN CN EN DN EN CN AB CNS S S ⋅⋅⋅⋅=+=+=⨯=△△△ 而22ACN AC CN AF CN S ⋅⋅==△,22BDN BD DN BF CNS ⋅⋅==△ 若存在点N 满足题意则2BDN ACN ABN S S S =+△△△ 即2BF AF AB =+所以()2121200x x x x -=-+-即212x x =-③ 又因为121244x x kx x +=⎧⎨=-⎩④将③代入④解得=4k ±由(1)知(2,1)N k -即12N ⎛⎫±- ⎪ ⎪⎝⎭经检验,存在12N ⎛⎫±- ⎪ ⎪⎝⎭满足题意.【点睛】关键点点睛:本题考查了直线与抛物线的位置关系,解题的关键是由()11,A x y ,()22,B x y ,求出点N 的坐标为(2,1)k -以及212x x =-,考查了计算能力、推理能力.。