高二数学导数大题练习(详细复习资料)
- 格式:doc
- 大小:1.14 MB
- 文档页数:10
高二数学导数大题练习题及答案一、解答题1.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数. (1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.2.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.3.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 4.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围. 5.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 6.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.7.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.8.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.9.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)10.已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 2.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x-+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.3.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦,即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x a x a x a af x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.4.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案. (2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0x x x g x x-++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.5.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】 【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-, 设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3. 6.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln xf x x=,得()()2ln 1ln x f x x -'=,直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.7.(1)在(0,)+∞单调递增;(2)1b ≤【解析】【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围.(1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x '-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x 4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x 222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x ,当44≤b ,即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意. 当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减;此时()(1)0g x g <=这与()0>g x 恒成立矛盾.综上:1b ≤.【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.8.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--,因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-,故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 9.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点;②利用独立重复试验的期望公式代入可求出答案.(1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯. 故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关.(2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.10.(1)单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦ 【解析】【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围.(1)()()()()221422(0)e e x x mx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>, 当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数,即()()max min 242()2,()1e e m m f x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立 ()224e 24e e m -+∴≥ 即24e m ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
导数专练答案一、选择题1.下列函数求导运算正确的个数为( )①(3x)′=3xlog 3e ;②(log 2x )′=1x ·ln 2;③(e x)′=e x ;④⎝ ⎛⎭⎪⎪⎫1ln x ′=x ;⑤(x ·e x )′=e x +1. A .1 B .2 C .3 D .4 【解析】 ①(3x)′=3xln 3;②(log 2x )′=1x ln 2;③(e x)′=e x;④⎝ ⎛⎭⎪⎪⎫1ln x ′=-1x(ln x )2=-1x ·(ln x )2;⑤(x ·e x )′=e x +x ·e x =e x(x +1),故选B.2. 曲线221y x =+在点(1,3)P -处的切线方程为()A .41y x =--B .47y x =--C .41y x =-D .47y x =+3.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个4.(2012·辽宁高考)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【解析】 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].【答案】 B 5.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( ) A .x=12是f(x)极大值点 B .x=12是f(x)极小值点 C .x=2是 f(x)极大值点 D .x=2是 f(x)极小值点 【解析】()22212'x f x x x x-=-+=,令()'0f x =,则2x =. 当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的.所以2x =是()f x 的极小值点.故选D .6. 若函数3()3f x x x a =--在区间[0,3]上的最大值、最小值分别为M 、N ,则M N -的值为( )A .2B .4C .18D .207.(山东省烟台市2014届高三3月)函数f(x)=1nx-212x 的图像大致是( )【答案】函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得, 01x <<,即增区间为(0,1).由21'()0x f x x-=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选B.8. (临沂市2014届高三5月)曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为(A)()11,e -- (B)()0,1 (C)()1,e (D)()0,2 【答案】B 直线30x y -+=的斜率为1,所以切线的斜率为1,因为'x y e =,所以由'1x y e ==,解得0x =,此时01y e ==,即点A 的坐标为()0,1,选B.9、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3]10.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 二、填空题11. .曲线sin x y x=在点(,0)M π处的切线方程为12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________.13.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是14.(山东省实验中学2014届高三第二次诊断)若函数a x x x f +-=3)(3有三个不同的零点,则实数a 的取值范围是____________.【答案】(2,2)-【解析】由3()30f x x x a =-+=,得2'()33f x x =-,当2'()330f x x =-=,得1x =±,由图象可知(1)=2(1)=2f a f a -+-极大值极小值,,要使函数a x x x f +-=3)(3有三个不同的零点,则有(1)=20,(1)=20f a f a -+>-<极大值极小值,即22a -<<,所以实数a 的取值范围是(2,2)-.15.(山东省泰安市2014届高三上学期期末)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示若函数()y f x a =-有4个零点,则a 的取值范围为__________. 【答案】[1,2)【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值.由()0y f x a =-=得()f x a =.由图象可知,要使函数()y f x a =-有4个零点,由图象可知12a ≤<,所以a 的取值范围为12a ≤<,即[1,2). 三、解答题16.[2014·重庆卷] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值; (2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.17、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ; 解: (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .18.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知函数()()12ln 2(0)f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性;【答案】解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x xxx x -'=+=-=> 由()2210x f x x -'=>,解得12x > ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞ ⎪⎝⎭上是增函数∴()f x 的极小值为122ln 22f ⎛⎫=- ⎪⎝⎭,无极大值(2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==>①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;②当2a =-时,()f x 在()0,+∞上是减函数;③当2a <-时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数19.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知2()1,f x x ax nx a R =+-∈.(1)若a=0时,求函数()y f x =在点(1,()f x )处的切线方程; (2)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围;(3)令2()(),g x f x x =-是否存在实数a,当(0,](x e e ∈是自然对数的底)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.20.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知函数a f (x )ln x x=-.(I)若a >0,试判断f (x )在定义域内的单调性; (Ⅱ)若f (x )在[1,e]上的最小值为32,求a 的值; (III)若2f (x )x <在(1,+∞)上恒成立,求a 的取值范围 【答案】解 (I)由题意知f (x )的定义域为(0,+∞), 且f ′(x )=1x +a x 2=x +a x2∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数(II)由(I)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去)②若a ≤-e,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去)③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上为增函数, ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =-e .综上所述,a =-e(Ⅲ)∵f (x )<x 2,∴ln x -a x<x 2.又x >0,∴a >x ln x -x 3令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1x -6x =1-6x 2x.∵x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减函数. ∴h (x )<h (1)=-2<0,即g ′(x )<0, ∴g (x )在(1,+∞)上也是减函数. g (x )<g (1)=-1,∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立21. (14分)(2014·淄博模拟)已知f(x)=ax -ln x ,a ∈R. (1)当a =2时,求曲线f(x)在点(1,f(1))处的切线方程; (2)若f(x)在x =1处有极值,求f(x)的单调递增区间; (3)是否存在实数a ,使f(x)在区间(0,e]的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)由已知得f(x)的定义域为(0,+∞),∵f(x)=ax -ln x ,∴f ′(x)=a -1x ,当a =2时, f(x)=2x -ln x ,∴f(1)=2, ∵f ′(x)=2-1x ,∴f ′(1)=2-11=1 .(2分)∴曲线f(x)在点(1,f(1))处的切线方程为y -2=f ′(1)(x -1),即 x -y +1=0.(4分)(2)∵f(x)在x =1处有极值,∴f ′(1)=0,由(1)知 f ′(1)=a -1,∴a =1,经检验,a =1时f(x)在x =1处有极值.(6分)∴f(x)=x -ln x ,令f ′(x)=1-1x >0,解得x >1或x <0; ∵f(x)的定义域为(0,+∞),∴f ′(x)>0的解集为(1,+∞),即f(x)的单调递增区间为(1,+∞).(8分)(3)假设存在实数a ,使f(x)=ax -ln x(x ∈(0,e])有最小值3, ①当a ≤0时,∵x ∈(0,e],∴f ′(x)<0,∴f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).(10分)②当0<1a <e 时,f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增, f(x)min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2,满足条件.(12分)③当1a ≥e 时,∵x ∈(0,e],∴f ′(x)<0,∴ f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).综上,存在实数a =e 2,使得当x ∈(0,e]时,f(x)有最小值3.(14分)。
高二数学导数大题练习题(含答案)一、解答题1.已知函数()()2e 1=-+xf x ax x (a ∈R ,e 为自然对数的底数). (1)若()f x 在x=0处的切线与直线y=ax 垂直,求a 的值; (2)讨论函数()f x 的单调性; (3)当21ea ≥时,求证:()2ln 2x x f x x ---≥. 2.已知函数()ln x f x x=. (1)求曲线()y f x =在点11,e e f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线方程;(2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >.3.已知函数()32f x x ax bx =++的图象在点(0,(0))f 处的切线斜率为4-,且2x =-时,()y f x =有极值. (1)求()f x 的解析式;(2)求()f x 在3,2上的最大值和最小值. 4.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.5.己知函数()2ln ,f x x ax a R =-∈.(1)当0a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)设函数()()ln 21g x f x x x =--+,若()0g x ≤在其定义域内恒成立,求实数a 的最小值;(3)若关于x 的方程()2ln f x x x =+恰有两个相异的实根12,x x ,求实数a 的取值范围,并证明121x x >.6.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<. 7.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围.8.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.9.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a ,b ,c 的值. (2)求函数的递减区间.10.设函数()223ln 1f x a x ax x =+-+,其中0a >.(1)求()f x 的单调区间;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【参考答案】一、解答题1.(1)1a = (2)答案见解析 (3)证明见解析 【解析】 【分析】(1)由导数的几何意义求出切线的斜率,再由直线的位置关系可求解;(2)由于()()(1)e 2xf x x a =+-',令()0f x '=,得1x =-或2ln x a=,通过比较两个值分类讨论得到单调区间;(3)方法一:通过单调性,根据求最值证明;方法二:运用放缩及同构的方法证明. (1)()()(1)e 2x f x x a =+-',则(0)2f a '=-,由已知(2)1a a -=-,解得1a = (2)()()(1)e 2x f x x a =+-'(ⅰ)当0a ≤时,e 20x a -<,所以()01f x x '>⇒<-,()01f x x '<⇒>-,则()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减; (ⅱ)当0a >时,令e 20x a -=,得2ln x a=, ①02e a <<时,2ln 1a>-,所以()01f x x '>⇒<-或2ln x a >,()012ln af x x <⇒-<<',则()f x 在(,1)-∞-上单调递增,在21,ln a⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;②2e a =时,()1()2(1)e 10x f x x +=+'-≥,则()f x 在(,)-∞+∞上单调递增;③2e a >时,2ln 1a<-,所以2ln ()0x a f x >⇒<'或1x >-,2ln ()01f x ax <⇒<<-',则()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增.综上,0a ≤时,()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减;02e a <<时,()f x 在(,1)-∞-上单调递增,在21,ln a ⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;2e a =时,()f x 在(,)-∞+∞上单调递增;2e a >时,()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a ⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增. (3) 方法一:2()ln 2(0)f x x x x x ≥--->等价于e ln 10(0)x ax x x x --+≥>当21ea ≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 令221()e ln 1,()(1)e x x g x x x x g x x x --⎛⎫=--+=+- ⎝'⎪⎭ 令21()ex h x x-=-,则()h x 在区间(0,)+∞上单调递增 ∵11(1)10,(2)02h h e=-<=>, ∴存在0(1,2)x ∈,使得()00h x =,即020001e,2ln x x x x -=-=- 当()00,x x ∈时,()0g x '<,则()g x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0g x '>,则()g x 在()0,x +∞上单调递增∴()02min 000000001()e ln 1210x g x g x x x x x x x x -==--+=⋅+--+= ∴()0g x ≥,故2()ln 2f x x x x ≥--- 方法二: 当21a e≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 2ln 2()e ln 1e (ln 2)1x x x g x x x x x x -+-=--+=-+--令ln 2t x x =+-,则t R ∈, 令()e 1t k t t =--,则()e 1t k t =-'当0t <时,()0k t '<;当0t >时,()0k t '>∴()k t 在区间(,0)-∞上单调递减,(0,)+∞上单调递增. ∴()(0)0k t k ≥=,即()0g x ≥ ∴2()ln 2f x x x x ≥---, 【关键点点睛】解决本题的关键:一是导数几何意义的运用,二是通过导函数等于零,比较方程的根对问题分类讨论,三是隐零点的运用及放缩法的运用. 2.(1)22e 3e 0x y --=; (2)证明见解析 【解析】 【分析】(1)求导,计算1e f ⎛⎫⎪⎝⎭'和1ef ⎛⎫ ⎪⎝⎭,再由点斜式代入写出切线方程;(2)设120x x >>,由题意得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,将证明212e x x >转化为证明()1212122lnx x x x x x ->+,令12x t x =,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,求导判断单调性即可证明. (1)由题意,()21ln x f x x -'=,则212e e f ⎛⎫'= ⎪⎝⎭,1e e f ⎛⎫=- ⎪⎝⎭, 所以函数()y f x =在点11,e e f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为()21e 2e e y x ⎛⎫--=- ⎪⎝⎭,即22e 3e 0x y --=. (2)设120x x >>,由题意,()()120g x g x ==, 所以1122ln 0,ln 0x kx x kx -=-=,可得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,要证明212e x x >,只需证12ln ln 2x x +>,即()122k x x +>,因为1212ln ln x x k x x -=-,所以可转化为证明121212ln ln 2x x x x x x ->-+, 即()1212122lnx x x x x x ->+,令12x t x =,则1t >,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,则()()()()222114011t h t t t t t -'=-=>++, 所以函数()h t 在()1,+∞上是增函数,所以()()211ln1011h t ⨯->-=+, 即()21ln 1t t t ->+得证,所以212e x x >.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 3.(1)32()24f x x x x =+- (2)最大值为8,最小值为4027-. 【解析】 【分析】(1)由题意可得(0)4, (2)1240,f b f a b ==-⎧⎨-=-+=''⎩从而可求出,a b ,即可求出()f x 的解析式,(2)令()0f x '=,求出x 的值,列表可得(),()f x f x '的值随x 的变化情况,从而可求出函数的最值 (1)由题意可得,2()32f x x ax b '=++.由(0)4, (2)1240,f b f a b ==-⎧⎨-=-+=''⎩解得2,4.a b =⎧⎨=-⎩ 经检验得2x =-时,()y f x =有极大值. 所以32()24f x x x x =+-. (2)由(1)知,2()344(2)(32)f x x x x x '=+-=+-. 令()0f x '=,得12x =-,223x =,()'f x ,()f x 的值随x 的变化情况如下表:由表可知()f x 在[3,2]-上的最大值为8,最小值为27-. 4.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x-+-'=--=,且()10f =, 由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min 11e e g x g ⎛⎫==- ⎪⎝⎭,当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<,当10,e x ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-. 设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦,令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x xx x --'=-=--,当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>,所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <, 故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 5.(1)22y x =- (2)1-(3)(),1-∞-;证明见解析. 【解析】 【分析】(1)根据题意,()2ln f x x =,分别求出()1f 和()1f '求解即可;(2)条件等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+求解最大值即可; (3)令()()ln 0xm x x a x x=-->,求出()m x 的单调性,得到()()11max m x m a ==--, 根据题意求解a 的范围即可;不妨设12x x <,则1201x x <<<,2101x <<,题设即证明()121m x m x ⎛⎫>⎪⎝⎭成立,构造()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭, 求解单调性得到()()10x ϕϕ>=即可求解. (1)当0a =时,()2ln f x x =,所以()2l 01n1=f =,()2f x x'=,所以()12f '=, 所以曲线()y f x =在()()1,1f 处的切线方程为:()021y x -=-,即22y x =- (2)由题意得,()ln 21g x x ax x =--+,因为()0g x ≤在其定义域内恒成立, 所以ln 210x ax x --+≤在()0,∞+恒成立,即ln 12x a x++≥在()0,∞+恒成立, 等价于ln 12maxx a x +⎛⎫+≥⎪⎝⎭,令()ln 1x h x x +=()0,∞+,所以()2ln xh x x -'=, 令()0h x '>解得01x <<,令()0h x '<解得1x >,所以函数()h x 在()0,1单调递增, 在()1,+∞单调递减,所以()()1=1h x h ≤,所以21a +≥,即1a ≥-,故a 的最小值为1-.(3)先证明必要性:由()2ln f x x x =+得2ln x ax x -=,即ln 0xx a x--=, 令()()ln 0x m x x a x x =-->,则()221ln x x m x x --'=, 设()21ln t x x x =--,则()12t x x x'=--,因为0x >,所以()0t x '<恒成立,函数()t x 在()0,∞+单调递减,而()10t =,故在()0,1上()0t x >,()0m x '>,()m x 单调递增,在()1,+∞上()0t x <,()0m x '<,()m x 单调递减,所以()()11max m x m a ==--.故方程()2ln f x x x =+恰有两个相异的实根只需:10a -->,所以实数a 的取值范围是(),1-∞-; 再证明充分性:当(),1a ∞∈--时,方程()2ln f x x x =+恰有两个相异的实根,条件等价于2ln x ax x -=,即ln x x a x -=,即y a =与ln x y x x=-, 当1a <-,0x >时有两个不同的交点,所以221ln x xy x --'=,由上面必要性的证明可知函数在()0,1单调递增,在()1,+∞单调递减,所以ln x y x x =-在0x >时的最大值为:ln11=11y =--,最小值趋近于负无穷, 所以当(),1a ∞∈--时,程()2ln f x x x =+恰有两个相异的实根,即充分性成立.下证:121x x >,不妨设12x x <,则1201x x <<<,2101x <<,所以()121122111x x x m x m x x ⎛⎫>⇔>⇔> ⎪⎝⎭,因为()()120m x m x ==, 所以()()22122222221ln ln 1111x x m x m m x m x a a x x x x x ⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭ 2222222222221lnln ln 11ln 1x x x x x x x x x x x x =--+=-++2222211ln x x x x x ⎛⎫=+-+ ⎪⎝⎭,令()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭,则()211ln 0x x xϕ⎛⎫'=-> ⎪⎝⎭,所以()x ϕ在()1,+∞上单调递增,所以当1x >时,()()10x ϕϕ>=,即2222211ln 0x x x x x ⎛⎫+-+> ⎪⎝⎭,所以()121m x m x ⎛⎫> ⎪⎝⎭,所以121x x >. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义, 往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.6.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值;(2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142nn n -+<⇒<<.①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<.7.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1xxxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e x g x a x a x x '=+->+-,e ee 0e e a a g a a a ⎛⎫'>⋅+-=> ⎪⎝⎭,又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+. 8.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解. 9.(1)3,0a b c =-==; (2)(0,2). 【解析】 【分析】(1)由题得到三个方程,解方程即得解; (2)解不等式()'f x <0即得函数的单调递减区间. (1)解:由题意知(0)0f = ,∴c =0 .∴()f x =x 3+ax 2+bx , 所以()'f x =3x 2+2ax +b 由题得(0)f '=b =0,∴()'f x =3x 2+2ax =0,故极小值点为x 23a =-, ∴f (23a -)=﹣4,∴323a ⎛⎫-+ ⎪⎝⎭a 223a ⎛⎫-=- ⎪⎝⎭4,解得a =﹣3.故3,0a b c =-==. (2)解:令()'f x <0 即3x 2﹣6x <0,解得0<x <2, ∴函数的递减区间为(0,2).10.(1)在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a⎛⎫+∞ ⎪⎝⎭上单调递增(2)1,e⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)求导,根据定义域和a 的范围,讨论导数符号可得单调区间; (2)由(1)中单调性可得函数最小值,由最小值大于0可解. (1)函数()f x 的定义域为()0+∞,, ()()()222231323'2ax ax a x ax f x a x a x x x+-+-=+-==由于0a >且()0x ∈+∞,,所以230ax +>,令()'0f x =,解得1x a=, 当10x a ⎛⎫∈ ⎪⎝⎭,,()'0f x <,函数()f x 单调递减,当1x a⎛⎫∈+∞ ⎪⎝⎭,,()'0f x >,函数()f x 单调递增, ()f x ∴在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (2)要使()y f x =的图像与x 轴没有公共点,所以只需min ()0f x >即可,由(1)知min 111()113ln 133ln 33ln 0f x f a a a a ⎛⎫==+-+=-=+> ⎪⎝⎭,解得1e >a ,即a 的取值范围为1(,)e+∞。
高二数学导数大题练习详细答案一、解答题1.已知函数()ln f x x x x =-,()2ln 1g x a x x =-+. (1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值; (3)证明:1111232022e 2023+++⋅⋅⋅+>,e 是自然对数的底数. 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()2ln 1f x x x mx nx =+++在点()()1,1f 处的切线方程是10x y +-=.(1)记()f x 的导函数为()g x ,求()g x 的最大值; (2)如果()12,0,x x ∈+∞,且121x x ⋅>,求证()()120f x f x +<. 4.已知函数()()()1111ln k knk x f x x k-=-⋅-=-∑.(1)分别求n=1和n=2的函数()f x 的单调性; (2)求函数()f x 的零点个数.5.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数.6.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 7.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.8.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 9.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程; (2)令()()f x g x x=,求()g x a ≥在4e,e ⎡⎤⎣⎦恒成立,求a 的取值范围 10.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a ,b ,c 的值. (2)求函数的递减区间.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)求导求单调性即可求解;(2)()()220a x g x x x-'=>,分类讨论单调性得到()ln 1222max g x a a a =-+,要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤, 又由(1)可得到ln 10222a a a -+≥,所以ln 10222a a a -+=,即可求解;(3)由(2)知()22ln 1g x x x =≤-得到22ln 1x x ≤-,所以ln 1t t ≤-,所以e 1xx ≥+,即11e >nn n+,代入证明即可. (1)()f x 的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,当(1,)x ∈+∞时,()0,f x '> 故()f x 在()01,上单调递减,在(1,)+∞上单调递增. 所以()()11min f x f ==-. (2)()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾.当0a >时,x ∈时,()0g x '>,)x ∈+∞时,()0g x '<,故()g x 在上单调递增,在)+∞上单调递减,所以()1ln 12222max a a a ag g x a ==+=-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤又由(1)知()ln 1f x x x x =-≥-,即ln 1x x x -≥-,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 10222a a a -+=且12a = 所以2a =. (3)证明:由(2)知()22ln 1g x x x =≤-得22ln 1x x ≤-(当且仅当1x =时等号成立),令)0x t =>,则ln 1t t ≤-(当且仅当1t =时等号成立),令e x t =,所以ln e e 1x x ≤-,即e 1x x ≥+(当且仅当0x =时等号成立),令()*10x n N n =>∈,则111e >1n n n n++=从而有11111320212022223420222023e e eee>12320212022⋅⋅⋅⨯⨯⨯⨯⨯ 所以111112320212022e 2023.+++⋯++> 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x-+-'=--=,且()10f =, 由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数,因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min11e e g x g ⎛⎫==- ⎪⎝⎭, 当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦,令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11e x <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)ln2-; (2)证明见解析. 【解析】 【分析】(1)根据导数的几何意义,结合导数的性质进行求解即可; (2)根据对数的运算性质,结合(1)中的结论进行证明即可. (1)由题意:()ln 21f x x mx n =+++',则()1211f m n =++=-', 又()10f =,得10++=m n ,解得:1,0m n =-=;()2ln 1f x x x x ∴=-+()()()112ln 21,2x g x f x x x g x x x-∴==-+==''- 所以()g x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()11ln ln222g x g ⎛⎫≤==- ⎪⎝⎭所以函数()g x 的最大值为ln2-; (2)由(1)可知,()()ln20f x g x =≤-<', 所以()f x 在()0,∞+上单调递减;121x x <<与121x x >,可得:()1122111x f f x x x ⎛⎫<⇒> ⎪⎭<⎝,故()()()22122222222222222211111ln ln 2ln f x f x f x f x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫+<+=---+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需要证明:22222211ln 0x x x x x ⎛⎫⎛⎫---< ⎪ ⎪⎝⎭⎝⎭,化为2221ln 0x x x ⎛⎫--< ⎪⎝⎭,2222ln 10x x x -+<,即()20f x <因为()f x 在区间()0,∞+上单调递减,而21>x ,则()()210f x f <=,得证不等式成立. 【点睛】关键点睛:利用分析法证明22222211ln 0x x x x x ⎛⎫⎛⎫---< ⎪ ⎪⎝⎭⎝⎭是解题的关键.4.(1)当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;当2n =时,()f x 在()0,∞+上单调递增; (2)1个. 【解析】 【分析】(1)利用导数求函数的单调区间得解;(2)求出()()1nx f x x-'=,再对n 分奇数和偶数两种情况讨论得解.(1)解:由已知,得()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦. ①当1n =时,()()ln 1f x x x =--,()11f x x'=-.由()110f x x '=->,得01x <<;由()110'=-<f x x,得1x >.因此,当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.②当2n =时,()()()21ln 12x f x x x ⎡⎤-=---⎢⎥⎢⎥⎣⎦,()()()21111x f x x x x -'=-+-=.因为()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增. (2)解:由()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦, 得()()()()()()()()211111111111111nnn n x x f x x x x x x x x-----⎡⎤'=---+-++--=-=⎣⎦--. 当n 为偶数时,()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增.因为()10f =,所以()f x 有唯一零点1x =. 当n 为奇数时,由()()10nx f x x-'=>,得01x <<;由()()10nx f x x-'=<,得1x >.因此,()f x 在()0,1上单调递增,在()1,+∞上单调递减. 因为()10f =,所以()f x 有唯一零点1x =.综上,函数()f x 有唯一零点1x =,即函数()f x 的零点个数为1. 5.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x++-=,令()()221ln 24x F x x x +=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+- 即2212211ln 1x x x x x -=-+-,即221221ln 20xx x x x -++-=由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x x x x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x+---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.6.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增, 又()()00,0,f x =∴∈+∞时,()0f x >,符合题意;③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-, 当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意. 综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解.7.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x x x x =+--;(3)'y ()551ln 3x =-⋅.【解析】【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果.(1) 因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x ------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x x x x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅.8.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值(2)3【解析】【分析】(1)由导数分析单调性后求解(2)参变分离后,转化为最值问题求解(1)函数()()1ln f x x x =+的定义域为(0,)+∞,由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-, 函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值(2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x x m x +<-, 设ln ()1x x x g x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x =->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -=当()01,x x ∈时,()0g x '<,函数ln ()1x x x g x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x x g x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <,∴ m 的最大值为3.9.(1)1ey x =;(2)4e 4a ≤. 【解析】【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x 在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t ,因为()1f x x '=,则()1k f t t'== 所以切线方程为()1ln y t x t t -=-即1ln 1y x t t =+-由题得ln 10t -=则e t =∴切线l 的方程为1e y x =.(2)解:()21ln x g x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g =,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 10.(1)3,0a b c =-==;(2)(0,2).【解析】【分析】(1)由题得到三个方程,解方程即得解;(2)解不等式()'f x <0即得函数的单调递减区间.(1)解:由题意知(0)0f = ,∴c =0 .∴()f x =x 3+ax 2+bx , 所以()'f x =3x 2+2ax +b由题得(0)f '=b =0,∴()'f x =3x 2+2ax =0,故极小值点为x 23a =-,∴f (23a -)=﹣4,∴323a ⎛⎫-+ ⎪⎝⎭a 223a ⎛⎫-=- ⎪⎝⎭4,解得a =﹣3. 故3,0a b c =-==.(2)解:令()'f x <0 即3x 2﹣6x <0,解得0<x <2, ∴函数的递减区间为(0,2).。
高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高二数学导数试题1.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.当所做的铁盒的容积最大时,在四角截去的正方形的边长为()A.12B.10C.8D.6【答案】C【解析】设在四角截去的正方形的边长为,则铁盒容积为,而,即的单调递增区间为,单调递减区间为,所以在时V有极大值.【考点】导函数的应用、函数思想.2.已知函数在处有极大值,则=()A.6B.C.2或6D.-2或6【答案】A【解析】根据题意,由于函数在处有极大值,则可知f’(2)=0,12-8c+=0,c=4.则可知=6,当c=2不符合题意,故答案为A.【考点】函数的极值点评:主要是考查了函数极值的运用,属于基础题。
3.对于R上的可导的任意函数,若满足,则函数在区间上必有()A.B.C.D.或【答案】A【解析】根据题意,由于对于R上的可导的任意函数,若满足1<x<2时,则可知函数f(x)递增,故可知函数在区间上必有成立,故答案为A.【考点】函数的单调性点评:主要是考查了函数单调性的运用,属于基础题。
4.若函数的导函数在区间上是增函数,则函数在区间上的图象可能是()【答案】A【解析】根据题意,由于函数的导函数在区间上是增函数,函数在区间上的图象对于A,递增,的导数值从小的正数开始增大,成立,对于B,由于函数递增,导数的值逐渐减小,对于C,导数值不变,对于D,导数值先增大再减小,故选A.【考点】导数的概念点评:主要是考查了导数的几何意义的运用,属于基础题。
5.已知函数(1)当时,求的极小值;(2)若直线对任意的都不是曲线的切线,求的取值范围;(3)设,求的最大值的解析式.【答案】(1)-2(2)(3)【解析】(1) 1分当时,时,,2分的极小值是 3分(2)法1:,直线即,依题意,切线斜率,即无解 4分6分法2:, 4分要使直线对任意的都不是曲线的切线,当且仅当时成立, 6分(3)因故只要求在上的最大值. 7分①当时,9分②当时,(ⅰ)当在上单调递增,此时 10分(ⅱ)当时,在单调递增;1°当时,;2°当(ⅰ)当(ⅱ)当 13分综上 14分【考点】导数的几何意义及函数极值最值点评:利用函数在某一点处的导数值等于过改点的切线斜率可确定第二问中导数值不可能为,求函数极值最值首先求得导数,当导数等于0时得到极值点,确定单调区间从而确定是极大值还是极小值,第三问求最值要分情况讨论在区间上的单调性,对于分情况讨论题是一个难点内容6.已知点在曲线上,为曲线在点处的切线的倾斜角,则取值范围是A.B.C.D.【答案】D【解析】,设,所以斜率的范围倾斜角的范围【考点】函数导数计算与几何意义点评:函数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,均值不等式求最值时要注意一正二定三相等的条件7.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(Ⅰ) (Ⅱ) 直线的方程为,切点坐标为【解析】(Ⅰ) 1分在点处的切线的斜率, 2分切线的方程为. 4分(Ⅱ)设切点为,则直线的斜率为,直线的方程为:. 6分又直线过点,,整理,得,,,的斜率, 10分直线的方程为,切点坐标为. 12分【考点】导数的几何意义及直线方程点评:几何意义:函数在某一点处的导数值等于该点处的切线斜率,在求切线方程时要从切点入手,找到切点满足的条件即可求得其坐标8.曲线上的点到直线的最短距离是__________.【答案】【解析】直线y=2x+3在曲线y=ln(2x+1)上方,把直线平行下移到与曲线相切,切点到直线2x-y+3=0的距离即为所求的最短距离.由直线2x-y+3=0的斜率,令曲线方程的导函数等于已知直线的斜率即可求出切点的横坐标,把求出的横坐标代入曲线方程即可求出切点的纵坐标,然后利用点到直线的距离公式求出切点到已知直线的距离即可.解:因为直线2x-y+3=0的斜率为2,所以令y′==2,解得:x=1,把x=1代入曲线方程得:y=0,即曲线上过(1,0)的切线斜率为2,则(1,0)到直线2x-y+3=0的距离d=即曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是故答案为:【考点】点到直线的距离点评:在曲线上找出斜率和已知直线斜率相等的点的坐标是解本题的关键.同时要求学生掌握求导法则及点到直线的距离公式的运用.9.已知函数,若,则实数的值为()A.B.C.D.【答案】A【解析】根据题意,由于函数,若,则实数的值为2,故答案为A.【考点】导数的概念点评:主要是考查了导数的概念的运用,属于基础题。
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
高二数学导数局部大题练习1.函数f(x) ax3bx2(c 3a 2b)x d的图象如图所示.〔I〕求c,d的值;〔II〕假设函数f(x)在x2处的切线方程为3xy110,求函数f(x)的解析式;〔III〕在〔II〕的条件下,函数y f(x)与y 1f(x)5xm的3图象有三个不同的交点,求m的取值范围.2.函数f(x)alnx ax3(aR).〔I〕求函数f(x)的单调区间;〔II〕函数f(x)的图象的在x4处切线的斜率为3,假设函数2g(x)1x3x2[f'(x)m]在区间〔1,3〕上不是单调函数,求m的取值范围.323.函数f(x)x3ax2bxc的图象经过坐标原点,且在x1处取得极大值.〔I〕求实数a的取值范围;〔II〕假设方程f(x)(2a3)2恰好有两个不同的根,求f(x)的解析式;9〔III〕对于〔II〕中的函数f(x),对任意、R,求证:|f(2sin)f(2sin)|81.(4.常数a0,e为自然对数的底数,函数f(x) e x x,g(x)x2alnx.(I〕写出f(x)的单调递增区间,并证明e a a;(I I〕讨论函数yg(x)在区间(1,e a)上零点的个数.高二数学导数局部大题练习5.函数f(x) l n(x 1) k(x 1) 1.I 〕当k1时,求函数f(x)的最大值;II 〕假设函数f(x)没有零点,求实数k 的取值范围;( 6.x 2是函数f(x)(x 2 ax 2a 3)e x 的一个极值点〔e〕.(I 〕求实数a 的值;( I I 〕求函数f(x)在x[3,3]的最大值和最小值.27.函数f(x) x 2 4x (2 a)lnx,(a R,a 0) I 〕当a=18时,求函数f(x)的单调区间; II 〕求函数f(x)在区间[e,e 2]上的最小值.8.函数f(x)x(x6)alnx 在x(2,)上不具有单调性....〔I 〕求实数a 的取值范围;〔II 〕假设f(x)是f(x)的导函数,设g(x)f(x) 622,试证明:对任意两个不相38x等正数x 1、x 2,不等式|g(x 1)g(x 2)||x 1x 2|恒成立.27高二数学导数局部大题练习9.函数f(x)1x 2 ax(a1)lnx,a1.2〔I 〕讨论函数f(x)的单调性;〔II 〕证明:假设a5,那么对任意x 1,x 2(0,),x 1x 2 f(x 1)f(x 2),有1.x 1 x 210.函数f(x)1 x2 alnx,g(x)(a1)x,a1.2( I 〕假设函数f(x),g(x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; 〔II 〕假设 a(1,e](e),设F(x) f(x)g(x),求证:当x,x [1,a]时,不1 2等式|F(x 1)F(x 2)|1成立.11.设曲线C :f(x) lnx ex 〔e〕,f(x)表示f(x)导函数.〔I 〕求函数f(x)的极值;〔II 〕对于曲线C 上的不同两点A(x 1,y 1),B(x 2,y 2) x 0 (x 1,x 2),使直线AB 的斜率等于 f(x 0).,x 1x 2,求证:存在唯一的12.定义F(x,y)(1x)y ,x,y(0,),〔I 〕令函数f(x)F(3,log 2(2xx 2 4)),写出函数f(x)的定义域;使得〔II 〕令函数g(x)F(1,log 2(x 3ax 2bx1))的图象为曲线,假设存在实数bC曲线C 在x 0(4 x 01)处有斜率为-8的切线,求实数a 的取值范围;〔III 〕当x,yN*且xy 时,求证F(x,y)F(y,x).高二数学导数局部大题练习 答案1.解:函数f(x)的导函数为f '(x)3ax 2 2bxc3a 2b 〔I 〕由图可知函数f(x)的图象过点〔0,3〕,且f '(1)〔2分〕得d 3d33a2b c3a 2b 0c〔II 〕依题意f '(2) 3 且f(2) 5〔4分〕12a 4b 3a 2b 38a 4b 6a 4b 35解得a 1,b 6 所以f () x 3 6 x 29 x 3 〔8分〕 x〔III 〕f(x) 3x 2 12x 9.可转化为:x 3 6x 2 9x3 x 2 4x35xm 有三个不等实根,即:gx x 3 7x 2 8x m 与x 轴有三个交点;gx3x 214x83x2x4,x,22 2,44,3343g x+-+ gx增极大值减极小值增g268 m,g4 16 m .〔10分〕327当且仅当g268 m 0且g 416 m 0时,有三个交点,327故而,16 m68为所求.〔12分〕272.解:〔I 〕f'(x)a(1 x)(x 0)〔2分〕x当a0时,f(x)的单调增区间为0,1,减区间为1, 1,,减区间为0,1;当a=1时,f(x)不是单调函数〔5分〕〔II 〕f'(4) 3a 3得a 2,f(x)2lnx2x34 2g(x)1 x 3(m2)x 2 2x, g'(x) x 2 (m4)x 2〔6分〕3 2g(x)在区间(1,3)上不是单调函数,且g'(0) 2g'(1) 0, g'(3)0.m 3, 19,3)〔8分〕m19,〔10分〕m(33〔12分〕3.解:〔I 〕 f (0)0c 0,f (x) 3x 2 2ax b,f(1)0b2a3 f(x)3x 2 2ax (2a 3) (x 1)(3x 2a 3), 由f(x)x1或x2a3,因为当 x1时取得极大值,3高二数学导数局部大题练习所以2a31a3,所以a 的取值范围是:(,3) ;3〔II 〕由下表:x(,1)1 2a32a 32a3(1,3 )3(, )3f(x)+ 0 --极大极小值f(x)递增值递减递增a6(2a3)2a227依题意得:a6(2a3)2(2a 3)2 ,解得:a927 9 所以函数f(x)的解析式是:f(x) x 3 9x 2 15x〔III 〕对任意的实数,都有22sin2,22sin2,在区间[-2,2]有:f(2) 8363074,f(1)7,f(2)836302f(x)的最大值是f(1)7, f(x)的最小值是f(2)8363074函数f(x)在区间[2,2]上的最大值与最小值的差等于81,所以|f(2sin ) f(2sin )| 81.4.解:〔I 〕f(x)e x1 0,得f(x)的单调递增区间是(0, ),〔2分〕∵a0,∴f(a) f(0) 1,∴e aa 1 a ,即e aa .〔4分〕〔II 〕g(x)a2(x2a)(x2a )2a,列表2x2x2,由g(x)0 ,得xx2x (0, 2a )2a( 2a ,)222g(x)-+g(x)单调递减极小值单调递增当x2a时,函数yg(x)取极小值g( 2a )a (1 ln a),无极大值.2222由〔I 〕e ae 2ae aa,∴e a2aa ,∵aa,∴e 2a222g(1)10,g(e a)e 2a〔i 〕当2a 1,即02〔ii 〕当2a 1,即a2假设a(1 ln a) 0 ,即2 2假设a(1 ln a) 0 ,即2 2 假设a(1 ln a)0,即22a 2 (e a a)(e a a) 0〔8分〕a2时,函数y g(x)在区间(1,e a )不存在零点时2 a2e 时,函数yg(x)在区间(1,e a )不存在零点a 2e 时,函数y g(x)在区间(1,e a )存在一个零点x e ;a 2e 时,函数y g(x)在区间(1,e a )存在两个零点;综上所述, y g(x)在(1,e a )上,我们有结论:高二数学导数局部大题练习当0a2e 时,函数f(x)无零点;当a2e 时,函数f(x)有一个零点;当a2e 时,函数f(x)有两个零点.5.解:〔I 〕当k 1时,f (x)2 xx 1f(x)定义域为〔1,+〕,令f (x)0,得x2,∵当x(1,2)时,f(x)0,当x (2, )时,f (x) 0, ∴f(x)在(1,2)内是增函数,在(2, )上是减函数 ∴当x 2时,f(x)取最大值f(2)0〔II 〕①当k 0时,函数y ln(x 1)图象与函数y k(x1) 1图象有公共点,∴函数f(x)有零点,不合要求;②当k0时,11 k kx k(x1 k ) f(x)kk〔6分〕1x1x令x1f (x)0,得xk1,∵xk1时,f (x) 0,x1, ) 时,f(x)0,k(1,k ) (1∴11k在(1,1) 内是增函数, 在[1)上是减函数,f(x)k,1k∴f(x)的最大值是f(1lnk ,)k∵函数f(x)没有零点,∴lnk 0,k 1,因此,假设函数f(x)没有零点,那么实数k 的取值范围k (1, )6.解:〔I 〕由f(x)(x 2ax 2a 3)e x 可得f (x)(2x a)e x (x 2ax2a3)e x[x 2(2a)xa3]e x 〔4分〕∵x2是函数f(x)的一个极值点,∴f(2) 0∴(a 5)e 2 0 ,解得a5〔II 〕由f () ( x 2)( x 1) e x 0,得f(x)在( ,1)递增,在(2,)递增,x由f(x)0,得f(x)在在(1,2)递减∴f(2)e 2是f(x)在x[3 ,3]的最小值;〔8分〕e 232e 23 e 23f( 3 ) 7 ,f(3)e 3∵f(3)f(3 ) e 37 1 (4ee7)0,f(3)f( 3 )2 42442∴f(x)在x[3,3]的最大值是f(3)e 3.27.解:〔Ⅰ〕f(x)x 24x16lnx ,f'(x)2x4162(x2)(x4)2分x x由f'(x) 0 得(x 2)(x 4) 0,解得x4或x 2注意到x 0,所以函数 由f'(x) 0得(x 2)(x 4) 注意到x 0,所以函数 f(x)的单调递增区间是〔 4,+∞〕 0,解得-2<x <4,f(x)的单调递减区间是 (0,4].高二数学导数局部大题练习综上所述,函数f(x)的单调增区间是〔4,+∞〕,单调减区间是(0,4] 6分〔Ⅱ〕在x [e,e 2]时,f(x) x 2 4x (2a)lnx 所以f'(x)2x42a2x 2 4x2a ,设g(x)2x 2xx 4x2a当a0时,有△=16+4×2(2 a) 8a0,此时g(x)0,所以f'(x) 0,f(x)在[e,e 2]上单调递增,所以f(x)min f(e) e 24e2 a 8分当a0时,△=16 4 2(2 a)8a0,令f'(x) 0,即2x 2 4x 2a 0,解得x 令f'(x) 0,即2x 24x2a0,①假设12a≥e 2,即a ≥2(e 2 1)2时,2f(x)在区间[e,e 2]单调递减,所以f(x)min ②假设e12a e 2,即2(e1)2a2(e 2212a 或x1 2a ;22解得12a x12a .2 2f(e 2) e 4 4e 2 4 2a .1)2时间,f(x)在区间[e,12a]上单调递减,在区间[12a,e 2]上单调递增,22所以f(x)minf(12a ) a 2a3 (2 a)ln(12a).222③假设 1 2a e(e1)2时, f(x)在区间 [e,e 2 ]单调递增,2 ≤,即0a ≤2所以f(x)min f(e)e 2 4e 2a综上所述,当a ≥2(e 2 1)2时,f(x)mina 4 4e 2 42a ;当2(e1)2a 2(e 2 1)2时, 当 ≤ 1)2时, f(x)min e 2a2(e8.解:〔I 〕 f(x)2xa 2x 26xf(x)mina 2a3(2a)ln(12a );2 24e2 a14分6x a ,x∵f(x)在x(2,)上不具有单调性,∴在x(2,)上f(x)有正也有负也有0,...即二次函数y2x 26x a 在x(2, )上有零点 〔4分〕∵y2x 2 6xa 是对称轴是x3,开口向上的抛物线,∴y22262a2的实数a 的取值范围(,4)〔II 〕由〔I 〕g(x)2x a22 ,x x方法1:g(x)f(x)2 6 2xa 2 (x 0),x 2x x 2高二数学导数局部大题练习∵a4,∴g(x)2a4 2442x 34x 4 ,〔8分〕x2x3x 2x 3x3设h(x)24 4 ,h(x)8 12 4(2x 3)x 2x3x 3x 4x 4h(x)在(0, 3 )是减函数,在( 3 , )增函数,当x3时,h(x)取最小值382 2 227∴从而g(x) 38,∴(g(x) 380 ,函数yg(x) 38x 是增函数,x)27 27 27x 1、x 2是两个不相等正数,不妨设x 1x 2,那么g(x 2)38 38 x 2g(x 1) x 12727∴g(x 2)g(x 1)38(x 2x 1),∵x 2x 1 0,∴g(x 1)g(x 2)3827x 1 x 227∴g(x 1)g(x 2)38 ,即|g(x 1)g(x 2)| 38 x 2|〔12分〕x 1x 227 |x 127方法2:M(x 1,g(x 1))、N(x 2,g(x 2))是曲线yg(x)上任意两相异点,g(x 1)g(x 2)22(x 1 x 2) a ,12212,x 1 x 2x 12x 22x 1x 2Qx xxxa42(x 1 x 2)a(4a44〔8分〕2x 12x 22x 1x 22x 1x 2)3x 1x 22(x 1x 2)3x 1x 2设t1 ,t 0,令k MNu(t)2 4t3 4t 2,u(t)4t(3t2) ,x 1x 2 由u(t)0,得t2,由u(t)得0t2,232 3u(t)在(0, )上是减函数,在( ,)上是增函数,33u(t)在t2 处取极小值38,u(t)38,∴所以g(x 1)g(x 2) 383 2727x 1x 227即|g(x)g(x)|38|xx 2 |1227 1x 29.〔1〕f(x)的定义域为(0,),f'(x)x a a1axa1 (x1)(x1a)xxx〔i 〕假设a1 1,即a2 ,那么f'(x) (x 1)2 .故f(x)在(0, )单调增加.〔ii 〕假设a x1 1,而a 1,故1 a 2,那么当x (a 1,1)时,f'(x)0.当x (0,a1)及x (1,)时,f'(x)0,故f(x)在(a 1,1)单调减少,在〔0,a-1〕,(1,)单调增加.〔iii 〕假设a1 1,即a 2,同理可得f(x)在(1,a1)单调减少,在(0,1),(a1, )单调增加.〔II 〕考虑函数g(x)f(x) x1x 2 ax(a 1)lnxx.2由g'(x)x(a1)a1 2xa1(a1)1(a11)2.x x由于a a5,故g'(x)0,即g(x)在(0,)单调增加,从而当x 1x 2 0时有g(x 1)g(x 2)0,即f(x 1)f(x 2)x 1x 20,高二数学导数局部大题练习故f(x 1)f(x 2) 1 ,当0 x 1x 2 时,有f(x 1) f(x 2) f(x 2)f(x 1) 1x 1x 2x 1x 2x 2x 110.解:〔I 〕f(x)aa1,x,g(x)x∵函数f(x),g(x)在区间[1,3]上都是单调函数且它们的单调性相同,∴当x[1,3]时,f (x) g(x) (a1)(x 2a)0恒成立,即(a 1)(x 2a)0恒x成立, ∴∵a 1在x[1,3]时恒成立,或a 1在x [1,3]时恒成立,ax 2 ax 2 9 x1,∴a1或a9〔II 〕F(x)1 x 2alnx, (a 1)x ,F(x)x a (a 1)(xa)(x1)2x x∵F(x)定义域是(0, ),a (1,e],即a 1∴F(x)在 (0,1) 是增函数,在 (1,a) 实际减函数,在(a,)是增函数 ∴当x 1 时,F(x)取极大值MF(1)a 1,2当xa 时,F(x)取极小值mF(a)alna1 a2 a ,2∵x 1,x 2[1,a],∴|F(x 1)F(x 2)||Mm| M m设G(a)Mm1a 2 alna 1,那么G(a)alna1,22∴[G(a)]11,∵a(1,e],∴[G(a)]a∴G(a) alna1在a (1,e]是增函数,∴G(a)G(1)∴G(a)1 a 2alna1在a (1,e]也是增函数221)2∴G(a)G(e),即G(a)1e 2 e 1 (e 1,2 2 2而1e 2e 1(e1)21(31)211,∴G(a)Mm1 222 2∴当x 1,x 2[1,a]时,不等式|F(x 1) F(x 2)|1 成立.11.解:〔I 〕f (x)1e 1 ex0,得x1xx e当x 变化时,f (x)与f(x)变化情况如下表:x(0,1)e1(1,)eef(x)+-f(x) 单调递增 极大值 单调递减 ∴当x1 时,f(x)取得极大值f(1)2,没有极小值;ee〔II 〕〔方法 1〕∵f(x 0)k AB ,∴1e lnx 2lnx 1e(x 2x 1),∴xx2x1ln20x0x1高二数学导数局部大题练习即x 0 lnx2(x 2x 1)x 1g(x 1)x 1lnx 2(x 2x 1∵x 1x 2,∴g(x 1)0,设g(x)xlnx 2(x 2 x 1)x 1/ln x 2x 1),g(x 1)x 110 ,g(x 1)是x 1的增函数,x 1g(x 2)x 2lnx 2(x 2 x 2)0;x 2g(x 2)x 2lnx 2(x 2/lnx 2 1 0,g(x 2)是x 2的增函数,x 1),g(x 2)x2x 1x 1∵x 1x 2,∴g(x 2)g(x 1)x 1lnx 1(x 1 x 1)0,x 1∴函数g(x)xlnx 2(x 2 x 1)在(x 1,x 2)内有零点x 0,x 1又∵x 21,lnx 2 0,函数 g(x)xln x 2(xx)在1 2)是增函数,x 1x 1x 121(x,x∴函数g(x)x 2 x 1 ln x 2在(x 1,x 2)内有唯一零点x 0,命题成立x x 1〔方法2〕∵f(x 0)kAB,∴1e lnx 2lnx 1 e(x 2x 1),x 0x 2 x 1 即x 0lnx 2x 0lnx 1 x 1 x 2 0,x 0 (x 1,x 2),且x 0唯一设g(x)xlnx 2 xlnx 1x 1 x 2,那么g(x 1)x 1lnx 2x 1lnx 1x 1x 2, 再设h(x)xlnx 2 xlnxxx 2,0xx 2,∴h(x)lnx 2 lnx0∴h(x) xlnx 2 xlnxx x 2在0xx 2 是增函数∴g(x 1)h(x 1)h(x 2) 0 ,同理g(x 2) 0∴方程xlnx 2 xlnx 1x 1 x 2 0 在x 0 (x 1,x 2)有解∵一次函数在(x 1,x 2)g(x)(lnx 2lnx 1)xx 1 x 2是增函数∴方程xlnx 2xlnx 1x 1 x 20 在x 0 (x 1,x 2)有唯一解,命题成立〔12分〕注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.解:〔I 〕log 2(2x x 2 4) 0,即2x x 2 4 1得函数f(x)的定义域是( 1,3), 〔II 〕g(x) F(1,log 2(x 2 ax 2 bx 1)) x 3 ax 2 bx 1,设曲线C 在x 0(4 x 01)处有斜率为-8的切线,又由题设log 2(x 3ax 2bx1)0,g(x)3x 22axb,3x 02 2ax 0 b8∴存在实数b 使得①4 x 01②有解,由①得x 03ax 02bx 01③1b8 3x 02 2ax 0,代入③得2x 02 ax 08 0 ,由2x 02 ax 08 0有4 x 01解, 〔8分〕高二数学导数局部大题练习方法1:a2(x)8,因为4x01,所以2(x0)8[8,10),(x0)(x0)当a10时,存在实数b,使得曲线C在x0(4x01)处有斜率为-8的切线方法2:得2(4)2〔10分〕a(4)80或2(1)2a(1)80,a10或a10,a10.方法3:是2(4)2a(4)80的补集,即a102(1)2a(1)80ln(1x)xln(1x)〔III〕令h(x),x1,由h(x)1xx2x又令p(x)x ln(1x),x0,p(x)11x0,x(1x)21x(1x)21p(x)在[0,)单调递减.〔12〕分当x0时有p(x)p(0)0,当x1时有h(x)0,h(x)在[1,)单调递减,1x y时,有ln(1x)ln(1y),yln(1x)xln(1y),(1x)y(1y)x,x y当x,y N且x y时F(x,y)F(y,x).。
期末专题02导数及其应用大题综合(精选30题)1.(22-23高二下·江西·期末)已知函数()()2ln 21f x x x f x '=+.(1)求()1f '的值;(2)求()f x 在点()()22e ,ef 处的切线方程.【答案】(1)2-(2)222e 0x y --=【分析】(1)求出函数的导函数,再代入1x =计算可得;(2)由(1)可得()2ln 4f x x x x =-,求出()2e f ,()2e f ',再由点斜式求出切线方程.【详解】(1)因为()()2ln 21f x x x f x '=+,所以()2ln 22(1)f x x f ''=++,代入1x =得:()()()12ln1221221f f f '''=++=+,所以()12f '=-.(2)由(1)可得()2ln 4f x x x x =-,则()2ln 2f x x '=-所以()22222e ln e 4e 0e f =-=,()222ln e 22f =-=,所以切线方程为202(e )y x -=-,即222e 0x y --=.2.(22-23高二下·安徽亳州·期末)设函数()3e ax bf x x x +=-,曲线()y f x =在点()()1,1f 处的切线方程为1y x =-+.(1)求a b ,的值;(2)设函数()()g x f x '=,求()g x 的极值点;【答案】(1)1,1a b =-=(2)()g x 的极大值点为0和33【分析】(1)求出函数()f x 的导数,再利用导数的几何意义列式求解作答.(2)利用(1)的结论求出()g x ,再利用导数求出极值点作答.【详解】(1)函数3R ()e ,ax b f x x x x +=-∈,求导得()()2313e ax bf x a x x ++'=-,因为()f x 在(1,(1))f 处的切线方程为1y x =-+,于是(1)110f =-+=,(1)1f '=-,则()311e 013e 1a ba ba ++⎧-⨯=⎪⎨-+=-⎪⎩,解得11a b =-⎧⎨=⎩,所以1,1a b =-=.(2)由(1)得()()()23113e x f x x g x x -+='-=-,求导得()()1266e x x g x x x -+'+-=-,令2660x x -+=,解得3x =±1e 0x -+>成立,由()0g x '<,得03x <<3x >+,函数()g x 递减;由()0g x '>,得0x <或33x <<,函数()g x 递增,所以()g x 的极大值点为0和33.3.(22-23高二下·安徽合肥·期末)函数()e ln x f x x =-,()f x '是()f x 的导函数:(1)求()f x '的单调区间;(2)证明:()2f x >.【答案】(1)()f x '单调递增区间为()0,∞+,无递减区间(2)证明见解析【分析】(1)对()()g x f x '=求导后,由导数的正负可求出函数的单调区间;(2)由(1)知()f x '单调递增区间为()0,∞+,然后根据零点存在性定理可得存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0xf x x '=-=,从而可求得()f x 的单调区间和最小值,进而可证得结论.【详解】(1)由()e ln x f x x =-,得()()1e 0xf x x x '=->,令()()()1e 0xg x f x x x '==->,则()210x g x x'=+>e 恒成立,所以()f x '单调递增区间为()0,∞+,无递减区间;(2)由(1)知()()1e 0xf x x x'=->,()f x '单调递增区间为()0,∞+,因为121e 202f ⎛⎫'=-< ⎪⎝⎭,()1e 10f '=->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0xf x x '=-=,所以当00x x <<时,()0f x '<,当0x x >时,()0f x ¢>,所以()f x 在区间()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0000min 01e 2ln x f x f x x x x ==-=+≥,当且仅当001x x =,即01x =时取等号,因为01,12x ⎛⎫∈ ⎪⎝⎭,所以等号取不到,所以()2f x >,得证.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间和最值,第(2)问解题的关键是根据函数的单调性结合零点存在性定理可求得函数的最值,考查数学转化思想,属于中档题.4.(22-23高二下·河北石家庄·期末)已知函数32()f x x x ax b =-++,若曲线()y f x =在(0,(0))f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)讨论函数()y f x =在区间()2,2-上的单调性.【答案】(1)1a =-;1b =(2)在12,3⎛⎫-- ⎪⎝⎭和()1,2上单调递增,在1,13⎛⎫- ⎪⎝⎭上单调递减【分析】(1)根据函数的切线方程即可求得参数值;(2)先求函数的导函数,判断函数单调性.【详解】(1)令0x =,由1y x =-+,则()10y f ==,由()32f x x x ax b =-++,可得(0)1==f b .又2()32f x x x a '=-+,所以(0)1f a '==-.(2)由(1)可知32()1f x x x x =--+,()()2()321311f x x x x x '=--=+-,令()0f x '>,解得13x <-或1x >;令()0f x '<,解得113-<<x ,所以()f x 在1(2,)3--和(1,2)上单调递增,在1,13⎛⎫- ⎪⎝⎭上单调递减.5.(22-23高二下·安徽合肥·期末)已知函数()sin 2()f x x ax a =--∈R .(1)当12a =时,讨论()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调性;(2)若当0x ≥时,()e cos 0xf x x ++≥,求a 的取值范围.【答案】(1)()f x 在π0,3⎡⎤⎢⎥⎣⎦上单调递增,在ππ,32⎛⎤⎥⎝⎦上单调递减(2)(,2]-∞【分析】(1)求导,由导数正负即可求解(2)利用导数求证e 1x x ≥+和sin x x ≥,即可结合零点存在性定理求解.【详解】(1)当12a =时,1()sin 22f x x x =--,1()cos 2f x x '=-,当ππ32x <≤时,()0f x '<;当π03x ≤≤时,()0f x '≥.所以()f x 在π0,3⎡⎤⎢⎥⎣⎦上单调递增,在ππ,32⎛⎤ ⎥⎝⎦上单调递减.(2)设()e sin cos 2x h x x x ax =++--,由题意知当0x ≥时,()0h x ≥.求导得()e cos sin x h x x x a '=+--.设()e cos sin x x x x a ϕ=+--,则()e sin cos x x x ϕ=--,令e 1x y x =--,则e 1x y '=-,当0,0,x y '>>当0,0,x y '<<故函数e 1x y x =--在()0,∞+单调递增,在(),0∞-单调递减,所以e 1x x ≥+;令()sin m x x x =-,可得()1cos 0m x x '=-≥,故()m x 在0x ≥单调递增时,sin x x ≥.所以当0x ≥时,()e sin cos 1cos 1cos 0x x x x x x x x ϕ'=--≥+--=-≥.故()ϕx 在[0,)+∞上单调递增,当0x ≥时,min ()(0)2x a ϕϕ==-,且当x →+∞时,()x ϕ→+∞.若2a ≤,则()()0h x x ϕ'=≥,函数()h x 在[0,)+∞上单调递增,因此[0,)x ∀∈+∞,()(0)0h x h ≥=,符合条件.若2a >,则存在0[0,)x ∈+∞,使得()00x ϕ=,即()00h x '=,当00x x <<时,()0h x '<,则()h x 在()00,x 上单调递减,此时()(0)0h x h <=,不符合条件.综上,实数a 的取值范围是(,2]-∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.6.(22-23高二下·吉林白城·期末)已知函数()e xf x ax =+在()()0,0f 处的切线与直线l :240x y -+=垂直.(1)求()f x 的单调区间;(2)若对任意实数x ,()232f x x b ≥--+恒成立,求整数b 的最大值.【答案】(1)单调递减区间为(),ln 3-∞,单调递增区间为()ln 3,+∞.(2)1【分析】(1)利用导数的几何意义得出3a =-,再利用导数判断单调区间即可;(2)分离参数将问题转化为2e 332x x b ++≥恒成立,利用导数求最值结合隐零点计算即可.【详解】(1)由()e xf x a '=+,得()01k f a '==+,又切线与直线l :240x y -+=垂直,所以2k =-,即3a =-.所以()e 3xf x '=-,令()0f x '=,得ln3x =,当ln3x <时,()0f x '<,()f x 单调递减;当ln3x >时,()0f x ¢>,()f x 单调递增.所以()f x 的单调递减区间为(),ln 3-∞,单调递增区间为()ln 3,+∞.(2)对任意实数x ,()232f x x b ≥--+恒成立,即对任意实数2,e 332x x x x b +-+≥恒成立.设()2e 33x g x x x =+-+,即()min 12b g x ≤.()e 23x g x x =+-',令()()e 23x h x g x x '==+-,所以()e 20'=+>xh x 恒成立,所以()e 23x g x x =+-'在R 上单调递增.又1202g ⎛⎫'=< ⎪⎝⎭,()1e 10g '=->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,即00e 230xx +-=,所以00e 32xx =-.当()0,x x ∈-∞时,()00g x '<,()g x 单调递减;当()0,x x ∈+∞时,()00g x '>,()g x 单调递增.所以()()02000min e 33x g x g x x x ==+-+2220000005132335624x x x x x x ⎛⎫=-+-+=-+=-- ⎪⎝⎭,当01,12x ⎛⎫∈ ⎪⎝⎭时,200152564x x <-+<,所以()01151,28g x ⎛⎫∈ ⎪⎝⎭,由题意知()012b g x ≤且b ∈Z所以1b ≤,即整数b 的最大值为1.7.(22-23高二下·福建福州·期末)已知函数2()2ln f x a x x a =-+,R a ∈.(1)讨论函数()f x 的单调性;(2)证明:()*11112ln 1(2341)n n n +>++++∈+N .【答案】(1)答案见解析(2)证明见解析【分析】(1)求得()222x af x x-+=',分0a ≤和0a >,两种情况讨论,结合导数的符号,进而求得函数()f x 的单调区间;(2)由(1),根据题意,得到()()max10f x f ==,即22ln 1x x ≤-,当n ∈*N 时,结合22ln 111n n n n ⎛⎫⎛⎫<- ⎪ ⎪++⎝⎭⎝⎭,2112ln 1n n n n --⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,L ,2112ln 122⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,将不等式累加后,即可求解.【详解】(1)解:由函数2()2ln f x a x x a =-+,可得()f x 的定义域为(0,)+∞,且()22222a x a f x x x x-='+=-若0a ≤,可得()0f x '<,()f x 在(0,)+∞上单调递减;若0a >,令()0f x '=,因为0x >,可得x =当(x ∈时,()0f x ¢>,()f x 单调递增;当)x ∈+∞时,()0f x '<,()f x 单调递减,综上可得:当0a ≤时,()f x 在(0,)+∞上单调递减;当0a >时,()f x的递增区间为(,递减区间为)+∞.(2)证明:由(1)知,当1a =时,()f x 的递增区间为()01,,递减区间为()1,+∞,所以()()max 10f x f ==,所以()0f x ≤,即22ln 1x x ≤-,当n ∈*N 时,可得:2222ln 111112ln 1112ln 122n n n n n n n n ⎧⎛⎫⎛⎫<-⎪ ⎪ ⎪++⎝⎭⎝⎭⎪⎪--⎛⎫⎛⎫⎪<-⎪ ⎪ ⎨⎝⎭⎝⎭⎪⎪⎪⎛⎫⎛⎫⎪<- ⎪ ⎪⎪⎝⎭⎝⎭⎩,将不等式累加后,可得222111112ln 11212n n n n n n n n n n n --⎛⎫⎛⎫⎛⎫⎛⎫<+++-<+++- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111212n n n n⎫=-+-++--=-++⎪+⎝⎭ ,即()11112ln 12341n n +>+++++ .8.(22-23高二下·吉林长春·期末)已知函数()ln x f x a x a=-,()e xg x ax a =-.(e 2.71828=⋅⋅⋅为自然对数的底数)(1)当1a =时,求函数()y f x =的极大值;(2)已知1x ,()20,x ∈+∞,且满足()()12f x g x >,求证:21e 2xx a a +>.【答案】(1)1-(2)证明见解析【分析】(1)运用导数研究()f x 的单调性,进而求得其最大值.(2)同构函数()ln h x x x =-,转化为()21e x x h h a ⎛⎫> ⎪⎝⎭,结合换元法2112,e xx t t a ==,分别讨论11t ≥与101t <<,当11t ≥时运用不等式性质即可证得结果,当101t <<时运用极值点偏移即可证得结果.【详解】(1)当1a =时,()ln f x x x =-,定义域为()0,∞+,则()111xf x x x-'=-=,()001f x x '>⇒<<,()01f x x '<⇒>,所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,故()f x 的极大值为()11f =-;(2)由题意知,0a >,由()()12f x g x >可得2112ln e x x a x ax a a->-,所以2211lnln e e x x x x a a->-,令()ln h x x x =-,由(1)可知,()h x 在()0,1上单调递增,在()1,+∞上单调递减,则()21e xx h h a ⎛⎫> ⎪⎝⎭,令11x t a=,22e xt =,又1>0x ,20x >,所以10t >,21t >,则()()12h t h t >,①若11t ≥,则122t t +>,即21e 2x x a+>,所以21e 2x x a a +>;②若101t <<,设()31,t ∈+∞,且满足()()31h t h t =,如图所示,则()()()312h t h t h t =>,所以321t t <<,下证:312t t +>.令()()()()2ln ln 222F x h x h x x x x =--=---+,()0,1x ∈,则()()()221112022x F x x x x x -'=+-=>--,所以()()()2F x h x h x x =--在()0,1x ∈上单调递增,所以()()10F x f <=,所以()()()11120F t h t h t =--<,即()()112h t h t <-,又因为()()31h t h t =,所以()()312h t h t <-,3t ,()121,t -∈+∞,所以312t t >-,即312t t +>,又因为321t t <<,所以122t t +>,即21e 2xx a a +>.由①②可知,21e 2xx a a +>得证.【点睛】方法点睛:极值点偏移问题的一般题设形式:1.若函数()f x 存在两个零点12,x x 且12x x ≠,求证:1202x x x +>(0x 为函数()f x 的极值点);2.若函数()f x 中存在12,x x 且12x x ≠满足2()()1f x f x =,求证:1202x x x +>(0x 为函数()f x 的极值点);3.若函数()f x 存在两个零点12,x x 且12x x ≠,令1202x x x +=,求证:()00f x '>;4.若函数()f x 中存在12,x x 且12x x ≠满足2()()1f x f x =,令1202x x x +=,求证:()00f x '>.9.(22-23高二下·广西南宁·期末)已知函数()ln 1f x a x ax =-+(a ∈R ,且0a ≠).(1)讨论a 的值,求函数()f x 的单调区间;(2)求证:当2n ≥时,1111ln 2ln 3ln n n n-+++> .【答案】(1)见解析(2)证明见解析【分析】(1)求出函数导数,分0,0a a ><分类讨论即可得解;(2)当1a =时利用函数单调性可得ln 1≤-x x ,放缩可得()110ln 1x x x >>-,根据裂项相消法求和即可得证.【详解】(1)由()ln 1f x a x ax =-+知函数定义域为(0,)+∞,()()1a x af x a x x-'=-=,①当0a >时,若01x <<,则()0f x '>,若1x >,()0f x '<,所以()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞;②当a<0时,若01x <<,则()0f x '<,若1x >,()0f x '>,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)令1a =,则()ln 1f x x x =-+,所以(1)0f =,由(1)可知()f x 在[1,)+∞上单调递减,故()(1)0f x f ≤=,(当1x =时取等号),所以()ln 10f x x x =-+≤,即ln 1≤-x x ,当2x ≥时,0ln 1(1)x x x x <<-<-,即0ln 1)(x x x <<-,即()110ln 1x x x >>-令x n =,则()1111ln 11n n n n n>=---,所以11111111111ln 2ln 3ln 1223341n n n +++>-+-+-++-- 111n n n-=-=,故当2n ≥时,1111ln 2ln 3ln n n n-+++> .【点睛】关键点点睛:1a =时,利用函数单调性得出ln 1≤-x x ,当2x ≥时,放缩得出0ln 1)(x x x <<-,变形得出()110ln 1x x x >>-是解题的关键,再由裂项相消法及不等式的性质即可得解.10.(22-23高二下·山东德州·期末)已知函数()1ln 2f x a x x x=--,a ∈R .(1)当1a =时,判断()f x 的零点个数;(2)若()1e 2e xf x x x+++≥恒成立,求实数a 的值.【答案】(1)()f x 的零点个数为0(2)a e=-【分析】(1)求导得函数的单调性,即可由单调性求解最值,进而可判断,(2)将问题转化为e ln e x a x +≥,构造函数()e ln x F x a x =+和()e xg x x a =+,()0,x ∈+∞,利用导数求解函数的单调性,分类讨论并结合零点存在性定理即可求解.【详解】(1)当1a =时,()()1ln 20f x x x x x=-->,则()()()2222222111121212x x x x x x f x x x x x x +--++--=+-==-=-',当()0,1x ∈,()0f x ¢>,函数()f x 在()0,1上单调递增,当()1,x ∈+∞,()0f x '<,函数()f x 在()1,+∞上单调递减,所以()()max 11230f x f ==--=-<,所以()f x 的零点个数为0.(2)不等式()1e 2e xf x x x+++≥,即为e ln e x a x +≥,设()e ln xF x a x =+,()0,x ∈+∞,则()e e x x a x aF x x x+=+=',设()e xg x x a =+,()0,x ∈+∞,当0a ≥时,()0g x >,可得()0F x '>,则()F x 单调递增,此时当()1,1e,x F ==而当01x <<时,()e F x <,故不满足题意;当0a <时,由()()1e 0xg x x '=+>,()g x 单调递增,当x 无限趋近0时,()g x 无限趋近于负数a ,当x 无限趋近正无穷大时,()g x 无限趋近于正无穷大,故()0g x =有唯一的零点0x ,即00e 0xx a +=,则00e x ax =-,()00ln ln x x a +=-,当()00,x x ∈时,()0g x <,可得()0F x '<,()F x 单调递减;当()0,x x ∈+∞时,()0g x >,可得()0F x '>,()F x 单调递增,所以()()()0000min 0e ln ln x aF x F x a x a a x x ⎡⎤==+=-+--⎣⎦()()00001ln ln a a a ax a a a x x x ⎛⎫=---=--+ ⎪⎝⎭,因为00x >,可得0012x x +≥,当且仅当01x =时,等号成立,所以()()001ln ln 2a a a x a a ax ⎛⎫--+≥-- ⎪⎝⎭因为()e F x ≥恒成立,即()ln 2e a a a --≥恒成立,令()()ln 2h a a a a =--,(),0a ∈-∞,可得()()()ln 12ln 1h a a a =-='-+--,当(),e a ∈-∞-时,()0h a '>,()h a 单调递增;当()e,0a ∈-时,()0h a '<,()h a 单调递减,所以()()e e h a h ≤-=,即()e h a ≤又由()e h a ≥恒成立,则()()ln 2e h a a a a =--=,所以a e =-.【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.11.(22-23高二下·河北张家口·期末)已知函数()ln f x x x =.(1)求函数()f x 的单调区间和极值;(2)若方程()21f x x =-的两个解为1x 、2x ,求证:122e x x +>.【答案】(1)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭,极小值为11e e f ⎛⎫=- ⎪⎝⎭,无极大值;(2)证明见解析【分析】(1)求出函数()f x 的定义域与导数,利用函数的单调性、极值与导数的关系可得出结果;(2)设()()21h x f x x =-+,利用导数分析函数()h x 的单调性与极值,分析可知120e x x <<<,要证122e x x +>,即证()()112e h x h x >-,构造函数()()()2e p x h x h x =--,其中0e x <<,利用导数分析函数()p x 在()0,e 上的单调性,证明出()0p x >对任意的()0,e x ∈恒成立,即可证得结论成立.【详解】(1)解:函数()ln f x x x =的定义域为()0,∞+,且()ln 1f x x '=+,令()0f x '=可得1ex =,列表如下:x10,e ⎛⎫ ⎪⎝⎭1e1,e ⎛⎫+∞ ⎪⎝⎭()f x '-+()f x 减极小值增所以,函数()f x 的减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭,极小值为11e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)解:设()()21ln 21h x f x x x x x =-+=-+,其中0x >,则()ln 1h x x '=-,令()0h x '<,可得0e x <<,此时,函数()h x 在()0,e 上单调递减,令()0h x '>,可得e x >,此时,函数()h x 在()e,+∞上单调递增,所以,e x =是函数()h x 的极小值点,因为函数()h x 有两个零点1x 、2x ,设12x x <,则120e x x <<<,即()()120h x h x ==且120e x x <<<,要证122e x x +>,即证21e 2e x x >->,因为函数()h x 在()e,+∞上单调递增,所以,只需证明:()()212e h x h x >-,即证()()112e h x h x >-,令()()()()()2e ln 2e ln 2e 44e p x h x h x x x x x x =--=----+,其中0e x <<,则()()()2ln ln 2e 2ln 2e 2p x x x x x '=+--=--,因为0e x <<,则()()22222e e e 0,e x x x -=--+∈,所以,()()22ln 2e 2ln e 20p x x x '=--<-=,故函数()p x 在()0,e 上为减函数,又因为()e 0p =,所以,()0p x >对任意的()0,e x ∈恒成立,则()()()1112e 0p x h x h x =-->,即()()112e h x h x >-,故122e x x <+成立.【点睛】方法点睛:证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()2f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3121212ln ln 2x x x xx x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.12.(22-23高二下·湖南·期末)已知函数()()2e 3xf x a x a =-+∈R .(1)若方程()0f x =有3个零点,求实数a 的取值范围;(2)若()()224x x x f x ϕ=-++-有两个零点()1212,x x x x <,求证:0ea <<2121e e x x x x --<+.【答案】(1)36(0,e(2)证明见解析【分析】(1)将问题转化为y a =与()23e xx g x -=有三个不同的交点,利用导数研究函数()g x 的性质,从而结合图象即可求得实数a 的范围;(2)利用导数求得函数()x ϕ的单调性,再利用零点存在定理证得0a <2121221e 1ex x x x x x ++-<+,构造函数()e 2e 1t h t t =--,利用导数证得()()00H t H >=即可得证.【详解】(1)解:令()0f x =,即得2e 30xa x -+=,即23ex x a -=方程有三个零点,即直线y a =与曲线()23ex x g x -=有三个不同的交点,可得()()()22132323e e e x x xx x x x x x g x +--+--==-=-',所以当(),1x ∈-∞-或()3,x ∈+∞时,()0g x '<,()g x 单调递减;当()1,3x ∈-时,()0g x '>,()g x 单调递增,所以当=1x -时,()g x 有极小值为()2e g x =-,当3x =时,()g x 有极大值为()36e g x =,当x →+∞时,()0g x →,且当x ≥()0g x >,所以作出函数()23e xx g x -=的图象如图所示,所以数形结合可知360e a <<,即实数a 的取值范围为36(0,)e.(2)解:因为()()22421e xx x x f x x a ϕ=-++-=+-,当0a ≤时,()x ϕ单调递增,不可能有两个零点,所以0a >,此时()2e xx a ϕ=-',令()0x ϕ'=,得2lnx a =,所以当2,ln x a ⎛⎫∈-∞ ⎪⎝⎭时,()0x ϕ'>;当2ln ,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0x ϕ'<,故()x ϕ在区间2,ln a ∞⎛⎫- ⎪⎝⎭上单调递增,在区间2ln ,a ∞⎛⎫+ ⎪⎝⎭上单调递减,所以222ln 2ln 122ln 1a a a ϕ⎛⎫=+-=- ⎪⎝⎭,若()x ϕ有两个零点,则2ln 0a ϕ⎛⎫> ⎪⎝⎭21ln 2a >,所以0ea <<,当0a <<时,2ln 0a ϕ⎛⎫> ⎪⎝⎭,121e 02a ϕ-⎛⎫-=-< ⎪⎝⎭,211ln 22a >>-,故存在112,ln 2x a ⎛⎫∈- ⎪⎝⎭,使得()10f x =,又当x 趋向于+∞时,()x ϕ趋向于-∞,故存在22ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,使得()20f x =,故0a <<,则满足121221e 21ex x x a x a ⎧+=⎨+=⎩,可得212121e 21x x x x -+=+212e x x -=,2121e e x x x x --<+,只需证2121221e e e x x x x x x ---<+,两边同乘以1e x ,可得2121221e 1ex x x x x x ++-<+,因为112x >-,221ln 2x a >>,所以120x x +>,令1202x x t +=>,即证2e 1e 2t tt-<,即证2e 2e 10t t t -->,令()2e 2e 1(0)t t h t t t =-->,可得()()()22e 21e 2e e 1t t t th t t t =-+=--',令()()e 10t H t t t =-->,()e 10tH t =->',故()H t 在区间()0,∞+上单调递增,故()()00H t H >=,因此()0h t '>,所以()h t 在区间()0,∞+上单调递增,故()()00h t h >=,因此原不等式成立.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.13.(22-23高二下·湖南长沙·期末)已知函数2()ln f x x x x =-+.(1)证明()0f x ≤;(2)关于x 的不等式222ln 0ee x axx xx ax x -+-+≤恒成立,求实数a 的取值范围.【答案】(1)证明见解析(2)[1,)+∞【分析】(1)根据题意,求得并化简得到(21)(1)()x x f x x+-'=-,得出函数()f x 的单调区间,结合()()1≤f x f ,即可可证;(2)根据题意把不等式转化为22ln 2ln e 2ln e ln x ax x x x ax x x --+≤-+-,根据()e x g x x =+为增函数,转化为2ln x x a x +≥恒成立,令2ln ()x x h x x +=,求得312ln ()x xh x x --'=,得出函数()h x 的单调区间和最大值(1)1h =,即可求解.【详解】(1)由函数2()ln f x x x x =-+,可得1(21)(1)()21x x f x x x x'+-=-+=-,令()0f x '>,可得01x <<;令()0f x '<,可得1x >,所以()f x 在区间()0,1上单调递增,在区间(1,)+∞上单调递减,所以()()10f x f ≤=,即()0f x ≤.(2)由不等式222ln 0e ex axx x x ax x -+-+≤,可得22ln 2ln e 2ln e ln x ax x x x ax x x --+≤-+-,因为()e x g x x =+为增函数,则22ln ln x ax x x ≤--,即2ln x xa x +≥在(0,)+∞恒成立,令2ln ()x x h x x +=,可得312ln ()x xh x x --'=,再令()12ln m x x x =--,可得()210m x x'=--<,所以()m x 单调递减,又因为()10m =,所以当()0,1x ∈时,()0m x >,()0h x '>,函数()h x 在()0,1上单调递增;当()1,x ∈+∞时,()0m x <,()0h x '<,函数()h x 在()1,+∞上单调递减,即()h x 在区间()0,1上单调递增,在区间(1,)+∞上单调递减,所以()h x 最大值为(1)1h =,所以实数a 的取值范围为[1,)+∞.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.14.(22-23高二下·福建莆田·期末)已知函数()2ln f x ax x =--,其中a ∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x ,2x ,且213x x ≥,求12x x 的最小值.【答案】(1)答案见解析(2)49e 【分析】(1)求出函数的导函数,再分0a ≤、0a >两种情况讨论,分别求出函数的单调性;(2)依题意可得11222ln 02ln 0ax x ax x --=⎧⎨--=⎩,即可得到12121212ln ln ln ln 4x x x x a x x x x -++==-+,从而得到()121121221ln 4ln 1x x x x x x x x ++=-,令12x t x =,10,3t ⎛⎤∈ ⎥⎝⎦,令()1ln 1t g t t t +=-,10,3t ⎛⎤∈ ⎥⎝⎦,利用导数求出()g t 的最小值,即可求出12x x 的最小值.【详解】(1)()2ln f x ax x =--定义域为()0,∞+,且()11ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,所以()f x 在()0,∞+上单调递减;当0a >时,令()0f x '=得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上可得:当0a ≤时()f x 在()0,∞+上单调递减;当0a >时()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)因为()()120f x f x ==,所以11222ln 02ln 0ax x ax x --=⎧⎨--=⎩,所以()1212ln ln a x x x x -=-,()1212ln ln 4a x x x +=++,所以12121212ln ln ln ln 4x x x x a x x x x -++==-+,所以()112121121122221ln 4ln ln 1x x x x x xx x x x x x x x +++==--,令12xt x =,因为213x x ≥,所以1213x x ≤,即103t <≤,所以()121ln 4ln 1t x x t t ++=-,10,3t ⎛⎤∈ ⎥⎝⎦,令()1ln 1t g t t t +=-,10,3t ⎛⎤∈ ⎝⎦,则()()()()()2211ln 11ln 2ln 11t t t t t t tt t g t t t +⎛⎫+--+-- ⎪⎝⎭'==--,令()12ln h t t t t=--,()0,1t ∈,则()()22211210t h t t t t-=+-=>',所以()h t 在()0,1上单调递增,又()10h =,所以()0h t <,即()0g t '<,所以()g t 在10,3⎛⎤⎥⎝⎦上单调递减,所以()12ln 33g t g ⎛⎫≥= ⎪⎝⎭,所以()12ln 42ln 3x x +≥,即2ln 3412e x x -≥,即1249e x x ≥,当且仅当2112439e x x x x =⎧⎪⎨=⎪⎩,即1223e x x ==时等号成立,所以12x x 的最小值为49e .【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.15.(22-23高二下·贵州黔东南·期末)已知函数()ln ,R f x ax x a =-∈.(1)讨论函数()f x 的单调性;(2)当1a =时,设()()()21x g x f x -=,求证:函数()g x 存在极大值点0x ,且()0222e 3g x <<.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,分类讨论,判断导数正负,即可判断函数单调性;(2)求出函数()()()21x g x f x -=的导数,由此构造函数,利用导数判断其单调性,确定函数()g x 的极值点0x ,并判断其范围,进而化简()0g x 的表达式,即可证明结论.【详解】(1)由函数()ln ,R f x ax x a =-∈的定义域为(0,)+∞,则()11ax f x a x x-'=-=,当0a ≤时,()0f x '<,()f x 在(0,)+∞上单调递减;当0a >时,当10x a<<时,()0f x '<,则()f x 在1(0,a 上单调递减;当1x a>时,()0f x ¢>,则()f x 在1(,)a +∞上单调递增;故当0a ≤时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在1(0,a上单调递减,在1(,)a +∞上单调递增;(2)当1a =时,由(1)可知()ln f x x x =-,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)1f x f ≥=;故当1a =时,()()()()2211ln x x g x f x x x--==-,则()()()()2221121(ln )1(1)1(2ln 2)(ln )(ln )x x x x x x x x x g x x x x x -------+-'==--,令1()2ln 2,(0)h x x x x x =-+->,则222222121(1)()10x x x h x x x x x -+-'=-+==≥,仅当1x =时等号成立,故1()2ln 2h x x x x=-+-在(0,)+∞上单调递增,且2211()2ln 310,(e )6e 033h h -=+->=-<,即存在唯一201(e ,3x -∈,使得0()0h x =,当00x x <<时,()0h x <;当01x x <<时,()0h x >;则当00x x <<时,()0g x '>;当01x x <<时,()0g x '<,当1x >时,()0g x '>,即()g x 在0(0,)x 单调递增,在0(),1x 单调递减,在(1,)+∞单调递增,故函数()g x 存在极大值点,即为0x ;由0()0h x =,即00012ln 20x x x -+-=,故()()()()()()222200000020000000111211111ln 1(2)1222x x x x x g x x x x x x x x x ----====---+--+,由于201(e ,)3x -∈,故()002g x x =,且2022(2e ,3x -∈,即()0222e 3g x <<.【点睛】难点点睛:本题考查了导数的综合应用问题,涉及到判断函数的单调性以及函数极值问题,解答的难点在于第二问证明不等式()0222e 3g x <<,解答时要注意零点问题的解决,并判断零点201(e ,)3x -∈.16.(22-23高二下·江苏镇江·期末)已知函数()3f x x ax =-.(1)当1a =-时,求函数在点()()1,1f 处的切线方程;(2)若函数()f x 存在不同的极值点12,x x ,且以()()()()1122,,,A x f x C x f x 为对角线的正方形ABCD 的四顶点A B C D 、、、都在函数()y f x =的图像上,求2a 的值.【答案】(1)420x y --=(2)2278a +=【分析】(1)把1a =-代入函数解析式,可求切点坐标,利用导数求切线斜率,可求函数在点()()1,1f 处的切线方程;(2)利用导数求出极值点,得,A C 两点坐标,由AC 的中点为原点O ,ABCD 为正方形,可求D 点坐标,代入在函数()f x 中,可求出2a 的值.【详解】(1)当1a =-时,()3f x x x +,()12f =,故切点坐标为()1,2,()231f x x ='+,故切点处切线的斜率为()14f '=,切线方程为()241y x -=-,即420x y --=.(2)函数()3f x x ax =-,定义域为R ,()23f x x a '=-,()f x 存在不同的极值点12,x x ,则有0a >,()0f x ¢>,解得x <x >;()0f x '<,解得x <则()f x 在,⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎛ ⎝⎭上单调递减,得x =x则有2,23,,939A a C ⎛⎛- ⎪ ⎪ - ⎪⎝⎭⎝⎭,AC 的中点为原点O ,正方形ABCD ,过C 作CC '垂直于x 轴,过D 作DD '垂直于y 轴,垂足分别为,C D '',则有OCC ODD ''≅ ,所以D ⎫⎪⎪⎝⎭,D 点在函数()y f x =的图像上,则有f ⎝⎭即322993a ⎛⎛-= ⎝⎭⎝⎭,化简得42854810a a --=,解得2278a +=.【点睛】方法点睛:导数是研究函数的单调性、极值()最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.17.(22-23高二下·辽宁大连·期末)已知函数()()2cos ln 11f x x x =++-.(1)判断函数()f x 在区间π0,2⎛⎫⎪⎝⎭上零点和极值点的个数,并给出证明;(2)若0x ≥时,不等式()1f x ax <+恒成立,求实数a 的取值范围.【答案】(1)函数()f x 在区间π0,2⎛⎫⎪⎝⎭上只有一个极值点和一个零点,证明见解析(2)实数a 的取值范围是[)1,+∞【分析】(1)首先求函数的导数,并利用二阶导数判断导数的单调性,并结合零点存在性定理证明极值点个数,并结合函数单调性,以及端点值判断函数零点个数;(2)首先由不等式构造函数()()2cos ln 12g x x x ax =++--,()0x >,并求函数的导数,根据()00g =,以及()01g a '=-,分1a ≥,01a ≤<,a<0三种情况讨论不等式恒成立的条件.【详解】(1)函数()f x 在区间π0,2⎛⎫⎪⎝⎭上只有一个极值点和一个零点,证明如下,()12sin 1f x x x '=-++,设()()12sin 1t x f x x x '==-++,()()212cos 1t x x x '=--+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0t x '<,所以()f x '单调递减,又()010f '=>,π12220π2π212f ⎛⎫'=-+=-+< ⎪+⎝⎭+,所以存在唯一的π0,2α⎛⎫∈ ⎪⎝⎭,使得()0f α'=,所以当()0,x α∈时,()0f x ¢>,当π,2x α⎛⎫∈ ⎪⎝⎭时,()0f x '<,所以()f x 在()0,α单调递增,在π,2α⎛⎫⎪⎝⎭单调递减,所以α是()f x 的一个极大值点,因为()02110f =-=>,()()0f f α>>,ππln 11022f ⎛⎫⎛⎫=+-< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,α无零点,在π,2α⎛⎫⎪⎝⎭上有唯一零点,所以函数()f x 在区间π0,2⎛⎫⎪⎝⎭上只有一个极值点和一个零点;(2)由()1f x ax ≤+,得()2cos ln 120x x ax ++--≤,令()()2cos ln 12g x x x ax =++--,()0x >,则()00g =,()12sin 1g x x a x'=-+-+,()01g a '=-,①若1a ≥,则1a -≤-,当0x ≥时,ax x -≤-,令()()ln 1h x x x =+-,则()1111x h x x x -'=-=++,当0x ≥时,()0h x '≤,所以()h x 在[)0,∞+上单调递减,又()00h =,所以()()0h x h ≤,所以()ln 10x x +-≤,即()ln 1xx ≤+又cos 1≤x ,所以()220g x x x ≤+--=,即当0x ≥时,()1f x ax ≤+恒成立,②若01a ≤<,因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,()g x '单调递减,且()010a g =->',π120π212g a ⎛⎫'=-+-< ⎪⎝⎭+,所以存在唯一的π0,2β⎛⎫∈ ⎪⎝⎭,使得()0g β'=,当()0,x ∈β时,()0g x '>,()g x 在()0,β上单调递增,不满足()0g x ≤恒成立,③若a<0,因为()()()()()()444444e 12cos e 1ln e e 1222cos e 1e 10g a a -=-+---=---->不满足()0g x ≤恒成立,综上所述,实数a 的取值范围是[)1,+∞.【点睛】关键点点睛:本题考查利用导数解决函数零点,不等式恒成立问题,本题第一问需要求函数的二阶导数,利用二阶导数分析一阶导数的单调性,结合零点存在性定理判断零点问题,第二问的关键是()00g =这个条件,再根据()01g a '=-,讨论a 的取值.18.(22-23高二下·福建龙岩·期末)已知函数()ln f x ax x =-.(1)讨论()f x 的单调性;(2)已知()()g x xf x b =+,且12,x x 是()g x 的两个零点,12x x <,证明:()()211211x ax b x ax -<<-.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后分0a ≤与0a >两种情况讨论即可;(2)根据12,x x 是()g x 的两个零点可得()12211221ln ln x x x x b ax x x x -=--,再将所证不等式转化为1222111ln 1x x x x x x -<<-,进而令211xt x =>,再构造函数求导分析单调性证明即可.【详解】(1)()11(0)ax f x a x x x-='-=>,①若0a ≤,则()0f x '<,即()f x 在()0,∞+单调递减,②若0a >,令()0f x ¢>,有1x a >,令()0f x '<,有10x a <<,即()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增,综上:0a ≤,()f x 在()0,∞+单调递减,若0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.(2)()()2ln ln g x x ax x b ax x x b =-+=-+,令()0g x =得:2ln 0ax x x b -+=,因为0x >,ln 0bax x x -+=,因为12,x x 是()g x 的两个零点,所以,112212ln 0,ln 0b bax x ax x x x -+=-+=,所以()12211211ln ln 0a x x x x b x x ⎛⎫-+-+-= ⎪⎝⎭,()12211221ln ln x x x x b ax x x x -=--,要证明()()211211x ax b x ax -<<-,只需证122121ax x x b ax x x -<<-,即证明21212121ln ln x x x x x x x x --<-<--变形为1222111ln 1x x x x x x -<<-,令211xt x =>,则证明11ln 1t t t-<<-,设()()1ln 11h t t t t ⎛⎫=--> ⎪⎝⎭,()210t h t t -'=>,()h t 在()1,+∞单调递增,所以()()10h t h >=,即1ln 1t t>-,设()()ln 1u t t t =--,()10tu t t-'=<,()u t 在()1,+∞单调递减,所以,()()10u t u <=,即,ln 1t t <-,综上:()()211211x ax b x ax -<<-.19.(22-23高二下·安徽阜阳·期末)已知函数()21ln e 2f x x x x x =+-.(1)讨论()f x 的单调性;(2)令()()()212e 12eg x f x x a x =++++,若不等式()0g x ≥恒成立,求a 的最小值.【答案】(1)答案见解析(2)2-【分析】(1)求得()ln e f x x x =+',令()()h x f x =',得到()0h x '>,结合10e f '⎛⎫= ⎪⎝⎭,进而求得函数()f x 的单调区间;(2)求得()ln 12e g x x x a =+++',令()()x g x ϕ'=,求得()0x ϕ'>,得到()g x '在()0,x ∈+∞上单调递增,结合()()2e0a g -+'<,()e 0a g -'>,得出存在()()20e ,e aa x -+-∈,使得()000ln 12e 0g x x x a '=+++=,进而得出函数的单调性,结合不等式()0g x ≥恒成立等价于()min 0()0g x g x =≥,得到010ex <≤,得到00ln 2e 12a x x -=++≤,即可求解.【详解】(1)解:函数()21ln e 2f x x x x x =+-的定义域为()0,∞+,可得()ln e f x x x =+',令()()h x f x =',则()1e 0h x x=+>',所以()h x 单调递增,即()f x '单调递增.又因为1110e f ⎛⎫=-+= ⎪⎝⎭',所以当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,所以函数()f x 的单调递减区间为10,e ⎛⎫⎪⎝⎭,单调递增区间1,e ∞⎡⎫+⎪⎢⎣⎭.(2)解:由题意知()22ln e eg x x x x ax =+++,可得()ln 12e g x x x a =+++',令()()x g x ϕ'=,可得()12e 0x xϕ+'=>,所以()x ϕ在()0,x ∈+∞上单调递增,即()g x '在()0,x ∈+∞上单调递增,又由()()()()2222e e212e e 10ea aa g a a -+-++=-+++⋅+≤-+<',()e 12e e 0a a g a a --=-++⋅+>',。
(完整word 版)高二数学导数大题练习详细答案一、解答题1.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.2.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 3.己知函数()2ln ,f x x ax a R =-∈.(1)当0a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)设函数()()ln 21g x f x x x =--+,若()0g x ≤在其定义域内恒成立,求实数a 的最小值;(3)若关于x 的方程()2ln f x x x =+恰有两个相异的实根12,x x ,求实数a 的取值范围,并证明121x x >.4.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<.5.求函数()31443f x x x =-+在区间1,33⎡⎤⎢⎥⎣⎦上的最大值与最小值.6.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 7.已知函数()1ln xf x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 8.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 9.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e1313e e e 222222x x x x xm g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 2.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==-⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =.即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 3.(1)22y x =- (2)1-(3)(),1-∞-;证明见解析. 【解析】 【分析】(1)根据题意,()2ln f x x =,分别求出()1f 和()1f '求解即可;(2)条件等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+求解最大值即可; (3)令()()ln 0xm x x a x x=-->,求出()m x 的单调性,得到()()11max m x m a ==--, 根据题意求解a 的范围即可;不妨设12x x <,则1201x x <<<,2101x <<,题设即证明()121m x m x ⎛⎫> ⎪⎝⎭成立,构造()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭, 求解单调性得到()()10x ϕϕ>=即可求解. (1)当0a =时,()2ln f x x =,所以()2l 01n1=f =,()2f x x'=,所以()12f '=, 所以曲线()y f x =在()()1,1f 处的切线方程为:()021y x -=-,即22y x =- (2)由题意得,()ln 21g x x ax x =--+,因为()0g x ≤在其定义域内恒成立, 所以ln 210x ax x --+≤在()0,∞+恒成立,即ln 12x a x++≥在()0,∞+恒成立, 等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+,所以()2ln x h x x -'=, 令()0h x '>解得01x <<,令()0h x '<解得1x >,所以函数()h x 在()0,1单调递增, 在()1,+∞单调递减,所以()()1=1h x h ≤,所以21a +≥,即1a ≥-,故a 的最小值为1-.(3)先证明必要性:由()2ln f x x x =+得2ln x ax x -=,即ln 0xx a x--=, 令()()ln 0x m x x a x x =-->,则()221ln x x m x x --'=, 设()21ln t x x x =--,则()12t x x x'=--,因为0x >,所以()0t x '<恒成立,函数()t x 在()0,∞+单调递减,而()10t =,故在()0,1上()0t x >,()0m x '>,()m x 单调递增,在()1,+∞上()0t x <,()0m x '<,()m x 单调递减,所以()()11max m x m a ==--.故方程()2ln f x x x =+恰有两个相异的实根只需:10a -->,所以实数a 的取值范围是(),1-∞-; 再证明充分性:当(),1a ∞∈--时,方程()2ln f x x x =+恰有两个相异的实根,条件等价于2ln x ax x -=,即ln x x a x -=,即y a =与ln x y x x=-, 当1a <-,0x >时有两个不同的交点,所以221ln x xy x --'=,由上面必要性的证明可知函数在()0,1单调递增,在()1,+∞单调递减, 所以ln x y x x =-在0x >时的最大值为:ln11=11y =--,最小值趋近于负无穷, 所以当(),1a ∞∈--时,程()2ln f x x x =+恰有两个相异的实根,即充分性成立.下证:121x x >,不妨设12x x <,则1201x x <<<,2101x <<, 所以()121122111x x x m x m x x ⎛⎫>⇔>⇔> ⎪⎝⎭,因为()()120m x m x ==, 所以()()22122222221ln ln 1111x x m x m m x m x a a x x x x x ⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭ 2222222222221lnln ln 11ln 1x x x x x x x x x x x x =--+=-++2222211ln x x x x x ⎛⎫=+-+ ⎪⎝⎭,令()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭,则()211ln 0x x xϕ⎛⎫'=-> ⎪⎝⎭,所以()x ϕ在()1,+∞上单调递增,所以当1x >时,()()10x ϕϕ>=,即2222211ln 0x x x x x ⎛⎫+-+> ⎪⎝⎭,所以()121m x m x ⎛⎫> ⎪⎝⎭,所以121x x >. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义, 往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.4.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<.5.最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭【解析】 【分析】利用导数判断函数的单调性与最值情况. 【详解】由()31443f x x x =-+,得()24f x x '=-令()0f x '=.得2x =±1,33x ⎡⎤∈⎢⎥⎣⎦,所以2x =-舍去, 列表如下:()f x ∴的极小值为()23f =-又1217381f ⎛⎫= ⎪⎝⎭,()31f =,所以,()f x 的最小值为()423f =-,最大值为1217381f ⎛⎫=⎪⎝⎭. 6.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:()f x 0x (2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 7.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x ++≤+=, 令()()()e 1ln x x g x x ++=,则()2eln x x g x x -'=, 令()eln h x x x =-,则()ee 1x h x x x-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=, ()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-. 【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.8.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.9.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x '=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。
1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =及的图象有三个不同的交点,求m 的取值范围.2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.已知常数0>a ,e 为自然对数的底数,函数x e x f x-=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.已知函数()ln(1)(1)1f x x k x =---+.(I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在的最大值和最小值.7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.9.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围; (III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.答案1.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分) (III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723及x 轴有三个交点; 42381432--=+-='x x x x x g()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分)当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,为所求. …………(12分) 2.解:(I ))0()1()('>-=x xx a x f (2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间(8分)(10分) (12分) 3.解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f ),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f 由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以,所以)3,(:--∞的取值范围是a ;(依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f ,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值及最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f . 4.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分) (II )xa x a x xa x x g )22)(22(22)(-+=-=',由0)(='x g ,得,列表x22a )(x g '-+ )(x g单调递减 极小值单调递增当时,函数)(x g y =取极小值,无极大值. 由(I )a e a >,∵,∴,∴01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分) (i )当,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当,即2>a 时若,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =; 若,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点; 综上所述,)(x g y =在(1,)a e 上,我们有结论: 当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.5.解:(I )当1k =时,)(x f 定义域为(1,+∞),令()0,2f x x '==得, ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<,∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f =(II )①当0k ≤时,函数ln(1)y x =-图象及函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分)令,∵1(1,),()0x f x k '∈++∞<时,∴内是增函数,上是减函数, ∴()f x 的最大值是,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞ 6. 解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分) ∵2x =是函数()f x 的一个极值点,∴(2)0f '= ∴2(5)0a e +=,解得5a =-(II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在的最小值; ……………(8分),3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在的最大值是3)3(e f =.7.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分 (Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分 当0>a 时,△=08)2(2416>=-⨯-a a ,令0)('>x f ,即02422>-+-a x x ,解得或; 令0)('<x f ,即02422<-+-a x x , 解得. ①若≥2e ,即a ≥22)1(2-e 时,)(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若,即222)1(2)1(2-<<-e a e 时间,)(x f 在区间上单调递减,在区间上单调递增,所以min )(x f )221ln()2(322aa a a +-+--=.③若≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=; 当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=;当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分8.解:(I )226()26a x x af x x x x-+'=-+=,∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0,即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+<的实数a 的取值范围(,4)-∞ (II )由(I ),方法1:2222()()62(0)a g x f x x x x x x'=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分) 设,3448124(23)()x h x x x x -'=-= ()h x 在3(0,)2是减函数,在增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴,函数是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴∴3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a ax x x x x x +∴+-> ………(8分)设,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得由()0u t '<得()u t ∴在上是减函数,在上是增函数,)(t u ∴在32=t 处取极小值2738,,∴所以3827>即121238|()()|||27g x g x x x ->- 9. (1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= (i )若2,11==-a a 即,则 故)(x f 在),0(+∞单调增加.(ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加. (II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-= 由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.解:(I )(),()1a f x x g x a x''=+=+,∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, 即2(1)()0a x a ++≥恒成立,∴在[1,3]x ∈时恒成立,或在[1,3]x ∈时恒成立,∵91x -≤≤-,∴1a >-或9a ≤- (II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a xx--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--,∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=-设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴,∵(1,]a e ∈,∴[()]0G a ''>∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>= ∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.解:(I )11()0exf x e x x-'=-==,得当x 变化时,()f x '及()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值,没有极小值;(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴ 即,设2211()ln()x g x x x x x =-- 211211()ln()x g x x x x x =--,,1()g x 是1x 的增函数, ∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()xg x x x x x =--,,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x ,又∵,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数在12(,)x x 内有唯一零点0x ,命题成立 (方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.解:(I )22log (24)0x x -+>,即2241x x -+> 得函数()f x 的定义域是(1,3)-, (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++ ∴存在实数b 使得 有解, 由①得,238020ax x b ---=代入③得082020<---ax x , 有解, ……………………(8分) 方法1:,因为041x -<<-,所以,当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或, 1010,10.a a a ∴<<∴<或 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a <(III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有 ),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当①②③。