材料加工冶金传输原理课件绪论
- 格式:ppt
- 大小:3.49 MB
- 文档页数:29
冶金传输原理1-8[1].2.冶金传输原理(Principles of Transfer in Metallurgy)绪论1、冶金的分类:钢铁冶金、有色冶金共同特点(1)发生物态变化固?液态(2)物理化学变化原料与产品的性质、化学成分截然不同钢铁冶金:原料是矿石产品是钢铁钢铁工艺流程:(1)长流程:高炉、转炉、轧机(2)短流程:直接还原或熔融还原、电炉、轧机(1)高炉炼铁:烧结矿或球团矿(铁矿石造块)、焦炭(煤炼焦)、熔剂铁水(2)非高炉炼铁:天然块矿、粉矿或造块、块煤或气体还原剂、熔剂海绵铁(3)转炉炼钢:铁水、废钢、铁合金、氧气、造渣剂钢水(4)电炉炼钢:废钢(海绵铁)、铁水、铁合金、造渣剂钢水2.有色冶金:原料是矿石产品是有色金属(1)重金属:铜(造锍熔炼)、铅(还原熔炼)、锌(湿法冶炼)、锡(火法精炼)(2)轻金属:铝冶金、镁冶金(3)稀贵金属:锂冶炼、铍冶炼、钙锶钡制取、金银提炼3、课程概况一、课程性质专业基础课,是基础课和专业课之间的桥梁。
二、课程内容传输原理(动量、热量、质量传输)简称“三传”传输是指流体的(输送、转移、传递)动力过程、传热过程、物质传递过程的统称热量、动量、质量的传递与输送,热量传输、质量传输、动量传输(类似统一性)传输原理类似性:基本概念、运动规律、解析方法类似。
冶炼过程:高温、多相条件下进行的复杂物理化学过程。
传输过程:?冶炼过程中的物理过程,不涉及化学反应。
动量、热量、质量传递的过程。
(TransportPhenomena)举例:高炉炼铁的气固两相流动。
高炉强化冶炼,目的就是改善传输条件。
转炉炼钢的气液两相流动。
转炉底吹,目的也是改善传输条件。
冶金传输原理已成为现代冶金过程理论的基础!研究对象:动量、热量、质量传输(传递)过程的速率。
研究方法:理论研究(简单问题)、实验研究、数值计算(复杂问题)习题与思考题:如何加深对所学传输理论的理解和应用。
三、课程特点物理概念抽象,数学推导繁琐,计算公式多,计算过程复杂。
传输过程:物理量从非平衡状态朝平衡状态转移的过程动量传输:在垂直于实际流体流动方向上,动量由高速度区向低速度区的转移。
热量传输:是热量由高温区向低温区的转移。
质量传输:质量传输是指物系中的一个或几个组分由高浓度区向低浓度区的转移。
相对于固体,流体在力学上的特点:*流体不能承受拉力;*对于牛顿流体:切应力与应变的时间变化率成比例,而对弹性体(固体)来说,其切应力则与应变成比例。
*固体只能以静变形抵抗剪切力,流体则连续变形,除非外力作用停止。
流体的粘性:在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性。
由粘性产生的作用力叫做粘性阻力或内摩擦力。
流体中出现粘性的原因:由于分子间内聚力(引力)和流体分子的垂直流动方向热运动(出现能量交换)。
在液体中以前者为主,气体中以后者为主,所以液体的粘度随温度升高而减小,由于温度升高时分子间距增大,分子间引力减小;而气体的粘度则随温度的升高而增大,由于此时分子的热运动增强温度对粘度的影响,当温度升高时,液体的粘度降低,但是气体则与其相反,当温度升高时分子间的吸引力减小,粘度值就要降低;而造成气体粘度的主要原因是气体内部分子的杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以粘度值将增大。
牛顿流体:实际上,流体都具有粘性,凡流体在流动时,粘性力与速度梯度的关系都能用牛顿粘性定律全部气体和所有单相非聚合态流体(如水及甘油等)均质流体都属于牛顿流体。
理想流体是一种内部不能出现摩擦力,无粘性的流体,既不能传递拉力,也不能传递切力.它只能传递压力和在压力作用下流动,同时它还是不可被压缩的。
非稳定流:如果流场的运动参数不仅随位置改变,又随时间不同而变化;稳定流:如果运动参数只随位置改变而与时间无关;迹线定义:迹线就是流体质点运动的轨迹线迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线是一族曲线,而且迹线只随质点不同而异,与时间无关连续性微分方程:连续性微分方程的物理意义:流体在单位时间内流经单位体积空间输出与输入的质量差与其内部质量变化的代数和为零。