高中数学函数的极值典型例题
- 格式:doc
- 大小:257.50 KB
- 文档页数:4
5.3.2 函数的极值与最大(小)值第1课时 函数的极值基础过关练题组一 函数极值的概念及其求解1.已知函数f(x)的导函数为f'(x),则“f'(x0)=0”是“x=x0是函数f(x)的一个极值点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.函数f(x)的定义域为R,导函数f'(x)的图象如图所示,则函数f(x) ( )A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点x2,则f(x)( )3.(2019天津高二上期末)已知函数f(x)=ln x-12A.有极小值,无极大值B.无极小值,有极大值C.既有极小值,又有极大值D.既无极小值,又无极大值4.函数f(x)=x+2cos x在0,( )A.0B.π6C.π3D.π25.求下列函数的极值.(1)f(x)=x3-3x2-9x+5;(2)f(x)=2xx2+1-2;(3)f(x)=x2-2ln x.题组二 含参函数的极值问题6.(2019海南海口高二上期末)已知f(x)=ln x+ax(a≠0),则( )A.当a<0时,f(x)存在极小值f(a)B.当a<0时,f(x)存在极大值f(a)C.当a>0时,f(x)存在极小值f(a)D.当a>0时,f(x)存在极大值f(a)7.(2020浙江湖州高二上期末)若函数y=e x-2mx有小于零的极值点,则实数m的取值范围是( )A.m<12B.0<m<12C.m>12D.0<m<18.(2020浙江杭州七校高二下联考)若函数f(x)=x3+ax2+ax(x∈R)不存在极值点,则a的取值范围是 .9.已知函数f(x)=x3+3mx2+nx+m2在x=-1处取得极值0,则m= ,n= .10.(2020山西吕梁高二上期末)已知函数f(x)=ln x-12ax2+x,a∈R.(1)当a=0时,求曲线f(x)在点(1,f(1))处的切线方程;(2)若g(x)=f(x)-(ax-1),求函数g(x)的极值.题组三 函数极值的综合应用11.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )A.2B.3C.6D.912.(2019云南昆明高三月考)已知函数f(x)=(x2-m)·e x,若函数f(x)的图象在x=1处的切线斜率为3e,则f(x)的极大值是( )A.4e-2B.4e2C.e-2D.e213.(2019辽宁省实验中学高二上期末)已知等差数列{a n}的前n项和为S n=n2+k+12(n∈N*),则f(x)=x3-kx2-2x+1的极大值为( )A.52B.3C.72D.214.已知三次函数f(x)=mx3+nx2+px+2q的图象如图所示,则f'(1)f'(0)= .15.已知函数f(x)=x3+ax2+bx+c在点x0处取得极小值-5,其导函数y=f'(x)的图象经过点(0,0),(2,0).(1)求a,b的值;(2)求x0及函数f(x)的表达式.16.(2020山西吕梁高二上期末)已知函数f(x)=2x3+3ax2+3bx+c在x=1及x=2处取得极值.(1)求a,b的值;(2)若方程f(x)=0有三个不同的实根,求c的取值范围.深度解析17.已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求出f(x)的极大值.能力提升练题组一 函数极值的求解及其应用1.(2020湖南长沙麓山国际学校高二上检测,)函数f(x)的定义域为(a,b),其导函数f'(x)在(a,b)内的图象如图,则函数f(x)在区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个2.()已知函数f(x)=x3-px2-qx的图象与x轴相切于(1,0)点,则f(x)的极小值为( )A.0B.-427C.-527D.13.(多选)()如图是函数y=f(x)的导函数f'(x)的图象,则下面判断正确的是( )A.f(x)在(-3,1)上是增函数B.f(x)在(1,3)上是减函数C.f(x)在(1,2)上是增函数D.当x=4时,f(x)取得极小值4.(2019北京大兴高三上期末,)已知函数f(x)=x-aln x.(1)若曲线y=f(x)在x=1处的切线方程为x-2y+1=0,求a的值;(2)求函数y=f(x)在区间[1,4]上的极值.题组二 含参函数的极值问题5.(2019福建泉州高三月考,)已知函数f(x)=ax3-bx+2的极大值和极小值分别为M,m,则M+m=( )A.0B.1C.2D.46.(2020浙江杭州高三检测,)已知a>0且a≠1,则函数f(x)=(x-a)2ln x( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值7.(2019湖南湘潭高三一模,)若函数f(x)=x 2-(3m+1)x+3,x≤0,mx2+xln x,x>0恰有三个极值点,则m的取值范围是( )A.-12,-B.-12,0C.-1,-D.-1,-8.(2020河北保定高二上期末,)已知x=1是函数f(x)=ax+x2的极值点,则实数a的值为 .易错9.(2020北京海淀高三上期末,)已知函数f(x)=e x(ax2+1)(a>0).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数f(x)有极小值,求证:f(x)的极小值小于1.10.(2020江西高安中学高二上期末,)已知函数f(x)=1x2-ax+ln2x(a∈R).(1)若f(x)在定义域上不单调,求a的取值范围;(2)设a<e+1,m,n分别是f(x)的极大值和极小值,且S=m-n,求S的取值e范围.题组三 函数极值的综合应用11.(2020福建三明高二上期末质量检测,)函数y=1-x2的图象大致是x( )12.(2020河北邯郸高三上期末,)已知函数f(x)为定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=(x-2e)ln x.若函数g(x)=f(x)-m存在四个不同的零点,则m的取值范围是(深度解析)A.(-e,e)B.[-e,e]C.(-1,1)D.[-1,1]13.(2020山东济宁高二上期末质量检测,)已知点A,B为曲线y=1上xax2-ax-ln x的两个极值两个不同的点,A,B的横坐标x1,x2是函数f(x)=12+y2=1的位置关系是( )点,则直线AB与椭圆x24A.相离B.相切C.相交D.不确定14.(多选)()已知函数f(x)=xln x+x2,x是函数f(x)的极值点,则下列结论正确的是( )A.0<x0<1e B.x0>1eC.f(x0)+2x0<0D.f(x0)+2x0>015.(多选)()已知函数f(x)=ax-ln x(a∈R),则下列说法正确的是( )A.若a≤0,则函数f(x)没有极值B.若a>0,则函数f(x)有极值C.若函数f(x)有且只有两个零点,则实数a的取值范围是-∞,D.若函数f(x)有且只有一个零点,则实数a的取值范围是(-∞,0]16.(2020山东青岛高三上期末,)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.求证:(1)f'(x)在(0,π)上存在唯一零点;(2)f(x)有且仅有两个不同的零点.答案全解全析基础过关练1.B 由极值点的定义可以得出,可导函数f(x)的极值点为x 0,则f'(x 0)=0,必要性成立;反过来不成立.故选B.2.C 设y=f'(x)的图象与x 轴的交点从左到右的横坐标依次为x 1,x 2,x 3,x 4,则f(x)在x=x 1,x=x 3处取得极大值,在x=x 2,x=x 4处取得极小值,故选C.3.B 由题可得, f'(x)=1x -x=1―x 2x (x>0),当x>1时, f'(x)<0,当0<x<1时, f'(x)>0,所以f(x)在x=1处取得极大值,无极小值.故选B.4.B 由题意得, f'(x)=1-2sin x,令f'(x)=0,得x=π6,当0<x<π6时, f'(x)>0;当π6<x<π2时, f'(x)<0.∴当x=π6时, f(x)取得极大值.5.解析 (1)由题意得, f'(x)=3x 2-6x-9,令f'(x)=0,即3x 2-6x-9=0,解得x=-1或x=3.当x 变化时,f'(x),f(x)的变化情况如下表:x (-∞,-1)-1(-1,3)3(3,+∞)f'(x)+-+f(x)↗极大值↘极小值↗∴当x=-1时,函数f(x)有极大值,且f(-1)=10;当x=3时,函数f(x)有极小值,且f(3)=-22.(2)由题意得,函数f(x)的定义域为R,f'(x)=2(x 2+1)―4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f'(x)=0,得x=-1或x=1.当x 变化时, f'(x),f(x)的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)f'(x)-0+0-f(x)↘极小值↗极大值↘∴当x=-1时,函数有极小值,且极小值为f(-1)=-3;当x=1时,函数有极大值,且极大值为f(1)=-1.(3)由题意得, f'(x)=2x-2x ,且函数f(x)的定义域为(0,+∞),令f'(x)=0,得x=1或x=-1(舍去),当x ∈(0,1)时, f'(x)<0,当x ∈(1,+∞)时, f'(x)>0,∴当x=1时,函数有极小值,极小值为f(1)=1,无极大值.6.C 由题意得, f'(x)=1x -a x 2=x -ax 2,且函数f(x)的定义域是(0,+∞).当a>0时,令f'(x)>0,解得x>a,令f'(x)<0,解得0<x<a,∴f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,故f(x)的极小值为f(a),无极大值,当a<0时, f'(x)>0, f(x)在(0,+∞)上单调递增,无极值.故选C.7.B 由y=e x -2mx,得y'=e x -2m.由题意知e x -2m=0有小于零的实根,即e x =2m,得m=12e x .∵x<0,∴0<12e x <12,∴0<m<12.8.答案 [0,3]解析 由f(x)=x 3+ax 2+ax(x ∈R),得f'(x)=3x 2+2ax+a.∵函数f(x)=x 3+ax 2+ax(x ∈R)不存在极值点,且f'(x)的图象开口向上,∴f'(x)≥0对x ∈R 恒成立,∴Δ=4a 2-12a ≤0,解得0≤a ≤3,∴a 的取值范围是[0,3].9.答案 2;9解析 由题可得, f'(x)=3x 2+6mx+n,∴f '(-1)=3-6m +n =0,f (-1)=-1+3m -n +m 2=0,解得m =1,n =3或m =2,n =9.当m =1,n =3时,f'(x)=3x 2+6x+3=3(x+1)2≥0恒成立,不满足题意.故m=2,n=9.10.解析 (1)当a=0时, f(x)=ln x+x,所以f'(x)=1x +1,则切线斜率k=f'(1)=2,又f(1)=1,所以切点坐标为(1,1),所以切线方程为y-1=2(x-1),即2x-y-1=0.(2)由题知,g(x)=f(x)-(ax-1)=ln x-12ax 2+(1-a)x+1(x>0),所以g'(x)=1x-ax+(1-a)=-ax2+(1―a)x+1x(x>0),当a≤0时,因为x>0,所以g'(x)>0.所以g(x)在(0,+∞)上是单调递增函数,无极值.当a>0时令g'(x)=0,得x=1a或x=-1(舍去),所以当x∈0,,g'(x)>0;当x,+∞时,g'(x)<0,所以当a>0时,函数g(x)的单调递增区间是0,单调递减区间是,+∞,所以当x=1a 时,g(x)有极大值=12a-ln a,综上,当a≤0时,函数g(x)无极值;当a>0时,函数g(x)有极大值12a-ln a,无极小值.11.D f'(x)=12x2-2ax-2b,∵f(x)在x=1处有极值,∴f'(1)=12-2a-2b=0,∴a+b=6.又a>0,b>0,∴a+b≥2ab,∴2ab≤6,∴ab≤9,当且仅当a=b=3时等号成立,∴ab的最大值为9.12.A 因为函数f(x)=(x2-m)e x,所以f'(x)=e x(x2-m+2x),由函数f(x)的图象在x=1处的切线斜率为3e,得f'(1)=e(1-m+2)=e(3-m)=3e,所以m=0.则f'(x)=e x(x2+2x)=e x(x+2)x,因为e x>0,所以函数f(x)在(-∞,-2)上单调递增,在(-2,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的极大值为f(-2)=4e -2.故选A.13.A 由于等差数列前n 项和公式中,常数项为0,所以k+12=0,所以k=-12,所以f(x)=x 3+12x 2-2x+1,所以f'(x)=3x 2+x-2=(3x-2)(x+1),故函数f(x)在(-∞,-1),+∞上单调递增,在-1,,故当x=-1时,f(x)取得极大值,为f(-1)=52.故选A.14.答案 1解析 由题意得,m ≠0,且f'(x)=3mx 2+2nx+p,由题图可知,x=2是函数的极大值点,x=-1是极小值点,即2,-1是f'(x)=0的两个根,由f '(-1)=3m -2n +p =0,f '(2)=12m +4n +p =0,解得p =―6m ,2n =―3m ,∵f'(0)=p=-6m, f'(1)=p=-6m,∴f '(1)f '(0)=1.15.解析 (1)由题意可得f'(x)=3x 2+2ax+b.∵f'(x)的图象过点(0,0),(2,0),∴b =0,12+4a +b =0,解得a =―3,b =0.(2)由(1)知f'(x)=3x 2-6x,令f'(x)>0,得x>2或x<0,令f'(x)<0,得0<x<2.∴f(x)在(-∞,0),(2,+∞)上单调递增,在(0,2)上单调递减,∴f(x)在x=2处取得极小值.∴x 0=2.由f(2)=-5,得c=-1,∴f(x)=x3-3x2-1.16.解析 (1)由题意得,f'(x)=6x2+6ax+3b,由函数f(x)在x=1及x=2处取得极值,得f'(1)=6+6a+3b=0,f'(2)=24+12a+3b=0,解得a=―3,b=4,经检验a,b均符合题意.(2)由(1)可知,f(x)=2x3-9x2+12x+c,f'(x)=6x2-18x+12=6(x-2)(x-1),令f'(x)=0,得x=1或x=2,当x<1或x>2时,f'(x)>0,f(x)单调递增,当1<x<2时,f'(x)<0,f(x)单调递减,∴f(x)在x=1处取得极大值,在x=2处取得极小值.又f(x)=0有三个不同的实根,∴f(1)=5+c>0,f(2)=4+c<0,解得-5<c<-4.方法技巧 解决一元三次方程的实数根问题,常常要考虑两个方面:一是导数为零时一元二次方程实根的个数;二是一元二次方程有两个不等实根时,三次函数有极大值点和极小值点,判断极大值、极小值与0的大小关系.17.解析 (1)由题可得,f'(x)=e x(ax+a+b)-2x-4.由已知得f(0)=b=4,f'(0)=a+b-4=4,解得a=4, b=4.(2)由(1)知,f(x)=4e x(x+1)-x2-4x, f'(x)=4e x(x+2)-2x-4=4(x+2)e x-令f'(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f'(x)>0;当x∈(-2,-ln2)时,f'(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).能力提升练1.A 设y=f'(x)的图象与x轴交点的横坐标从左到右依次为x1,x2,x3,x4.由题图知,当a<x<x1时,f'(x)>0,当x1<x<x2时,f'(x)<0,所以x1是极大值点;同理,x2是极小值点,x4是极大值点.又当x2<x<x3时,f'(x)>0,当x3<x<x4时,f'(x)>0,所以x3不是极值点,所以f(x)在(a,b)内有1个极小值点.故选A.2.A 由题知f'(x)=3x2-2px-q,f'(1)=3-2p-q=0,f(1)=1-p-q=0,联立3―2p-q=0,1―p-q=0,解得p=2,q=―1.∴f(x)=x3-2x2+x,f'(x)=3x2-4x+1.令f'(x)=3x2-4x+1=0,解得x=1或x=13,经检验知x=1是函数f(x)的极小值点,∴f(x)极小值=f(1)=0.3.CD f'(x)的图象在(-3,1)上先小于0,后大于0,故f(x)在(-3,1)上先减后增,因此A错误;f'(x)的图象在(1,3)上先大于0,后小于0,故f(x)在(1,3)上先增后减,因此B错误;由题图可知,当x∈(1,2)时,f'(x)>0,所以f(x)在(1,2)上单调递增,因此C 正确;当x ∈(2,4)时, f'(x)<0,当x ∈(4,5)时, f'(x)>0,所以当x=4时, f(x)取得极小值,因此D 正确.故选CD.4.解析 (1)因为f(x)=x -aln x,所以f'(x)=12x -ax (x>0),所以f'(1)=12-a.因为曲线y=f(x)在x=1处的切线方程为x-2y+1=0,所以12-a=12,解得a=0.(2)f'(x)=12x -a x =x -2a2x .①当2a ≤1,即a ≤12时, f'(x)≥0在[1,4]上恒成立,所以y=f(x)在[1,4]上单调递增,所以y=f(x)在[1,4]上无极值;②当2a ≥2,即a ≥1时, f'(x)≤0在[1,4]上恒成立,所以y=f(x)在[1,4]上单调递减,所以y=f(x)在[1,4]上无极值;③当1<2a<2,即12<a<1时,令f'(x)=0,得x=4a 2.当x 变化时, f'(x), f(x)的变化情况如下表:x (1,4a 2)4a 2(4a 2,4)f'(x)-0+f(x)↘极小值↗因此, f(x)的单调递减区间为(1,4a 2),单调递增区间为(4a 2,4),所以当x=4a 2时, f(x)在[1,4]上取得极小值,且极小值为f(4a 2)=2a-2aln 2a,无极大值.5.D 由题意得, f'(x)=3ax 2-b,设方程3ax 2-b=0的两个根分别为x 1,x 2,则f(x)在x 1,x 2处取到极值,则M+m=4-b(x 1+x 2)+a(x 1+x 2)[(x 1+x 2)2-3x 1x 2],又x 1+x 2=0,x 1x 2=-b3a ,所以M+m=4,故选D.6.C 由题意得, f'(x)=2(x-a)ln x+(x -a )2x =(x-a)2ln x +1―令f'(x)=0,得x=a 或2ln x+1-ax =0.作出g(x)=2ln x+1和h(x)=ax 的图象(图略),易知g(x)=2ln x+1和h(x)=a x 的图象有交点,所以方程2ln x+1-ax =0有解,所以根据函数的单调性和极值的关系可得,函数f(x)=(x-a)2ln x 既有极大值又有极小值,故选C.7.A 由题可知f'(x)=2x -(3m +1),x ≤0,2mx +ln x +1,x >0,当x>0时,令f'(x)=0,得-2m=ln x +1x,令g(x)=ln x +1x,则g'(x)=-ln xx 2,则函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,g(x)的图象如图所示,所以当0<-2m<1,即-12<m<0时, f'(x)=0有两个不同的根.当x ≤0时,令f'(x)=0,得x=3m +12<0,解得m<-13.综上,m ∈-12,-13.8.答案 2解析 由f(x)=ax +x 2,得f'(x)=-ax 2+2x.因为x=1是f(x)的极值点,所以f'(1)=0,即-a+2=0,所以a=2.此时f'(x)=2(x3-1)x2,当x<1时,f'(x)<0;当x=1时,f'(x)=0;当x>1时,f'(x)>0.因此x=1是极小值点,即a=2符合题意.易错警示 已知极值点求参数的值,先计算f'(x)=0,求得x的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.9.解析 (1)由已知得f'(x)=e x(ax2+2ax+1),因为f(0)=1,f'(0)=1,所以所求切线的方程为y=x+1.(2)证明:f'(x)=e x(ax2+2ax+1),令g(x)=ax2+2ax+1,则Δ=4a2-4a.(i)当Δ≤0,即0<a≤1时,∀x∈R,f'(x)≥0,所以函数f(x)在R上是单调递增函数,此时函数f(x)在R上无极小值. (ii)当Δ>0,即a>1时,记x1,x2是方程ax2+2ax+1=0的两个根,不妨设x1<x2,则x1+x2=―2<0,x1x2=1a>0,所以x1<x2<0.当x变化时,f'(x),f(x)的变化情况如下表:x(-∞,x1)x1(x1,x2)x2(x2,+∞) f'(x)+0-0+ f(x)↗极大值↘极小值↗所以函数y=f(x)的极小值为f(x2),又因为函数y=f(x)在[x2,0]上单调递增,所以f(x2)<f(0)=1.所以函数y=f(x)的极小值小于1.10.解析 (1)由已知得f'(x)=x+1x-a(x>0,a∈R).①若f(x)在定义域上单调递增,则f'(x)≥0,即a ≤x+1x 在(0,+∞)上恒成立,又x+1x ∈[2,+∞),所以a ≤2.②若f(x)在定义域上单调递减,则f'(x)≤0,即a ≥x+1x 在(0,+∞)上恒成立,又x+1x ∈[2,+∞),所以a ∈⌀.因为f(x)在定义域上不单调,所以a>2,所以a ∈(2,+∞).(2)由(1)知,要使f(x)在(0,+∞)上有极大值和极小值,必须满足a>2.又a<e+1e ,所以2<a<e+1e .设f'(x)=x+1x -a=x 2-ax +1x=0的两根分别为x 1,x 2,即x 2-ax+1=0的两根分别为x 1,x 2,于是x 1+x 2=a,x 1x 2=1.不妨设0<x 1<1<x 2,则f(x)在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增,所以m=f(x 1),n=f(x 2),所以S=m-n=f(x 1)-f(x 2)21-a x 1+ln x 122-a x 2+ln x 2=12(x 21-x 22)-a(x 1-x 2)+(ln x 1-ln x 2)=-12(x 21-x 22)+ln x 1x 2-+ln x 1x 2.令t=x 1x 2,t ∈(0,1),则-t.又t+1t =x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=a 2-2∈2,e 2+所以1e 2<t<1.所以++1t-12<0,所以-t ,1上为减函数.所以S ∈0,11.D 令y=1x -x 2=0,得x 3=1,解得x=1.因此选项A 、C 中的图象不正确;y'=-1x 2-2x,令y'=0,得2x 3+1=0,解得x=-312,因此,x=-312是函数y=1x -x 2的唯一的极大值点,因此,当x<-312时,y'>0,当-312<x<0时,y'<0,故B 错误,D 正确.故选D.12.A 当x>0时, f'(x)=ln x+1-2e x , f″(x)=1x +2ex 2>0,故f'(x)在(0,+∞)上单调递增,因为f'(e)=0,所以f(x)在(0,e)上单调递减,在(e,+∞)上单调递增.f(x)的大致图象如图所示.由g(x)=f(x)-m 存在四个不同的零点知,直线y=m 与y=f(x)的图象有四个不同的交点,故m ∈(-e,e),故选A.解题模板 利用导数解决函数的极值问题,常见的解题步骤是:求导、求驻点(令导数为0时方程的解)、列表、回答问题,由表可得出函数的大致图象,借助数形结合可解决函数的极值问题.13.C 由f(x)=12ax 2-ax-ln x,得f'(x)=ax-a-1x =ax 2-ax -1x,因为A,B 的横坐标x 1、x 2是函数f(x)=12ax 2-ax-ln x 的两个极值点,所以x 1、x 2是方程ax 2-ax-1=0的两根,因此x 1+x 2=1,x 1x 2=―1a ,a ≠0,又点A,B 为曲线y=1x 上两个不同的点,所以k AB =1x 1-1x2x 1-x 2=-1x 1x 2=a,因此直线AB 的方程为y-1x 1=a(x-x 1),即y=ax-ax 1+1x 1=ax-ax 1-ax 2=ax-a(x 1+x 2)=ax-a=a(x-1),即直线AB 恒过定点(1,0),显然点(1,0)在椭圆x 24+y 2=1内,因此直线AB与椭圆x 24+y 2=1必相交.故选C.14.AD ∵函数f(x)=xln x+x 2(x>0),∴f'(x)=ln x+1+2x,易得f'(x)=ln x+1+2x 在(0,+∞)上单调递增=2e >0,∵当x →0时, f'(x)→-∞,∴0<x 0<1e ,∴A 正确,B 错误.∵f'(x 0)=ln x 0+1+2x 0=0,∴f(x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,∴C 错误,D 正确.故选AD.15.ABD 由题意得,函数f(x)的定义域为(0,+∞),且f'(x)=a-1x =ax -1x,当a ≤0时, f'(x)<0恒成立,此时f(x)单调递减,没有极值.又当x 趋近于0时, f(x)趋近于+∞,当x 趋近于+∞时, f(x)趋近于-∞,∴f(x)有且只有一个零点.当a>0时,在0,f'(x)<0, f(x)单调递减,,+∞上f'(x)>0, f(x)单调递增,当x=1a 时, f(x)取得极小值,同时也是最小值,∴f(x)min =1+ln a,当x 趋近于0时,ln x 趋近于-∞, f(x)趋近于+∞,当x 趋近于+∞时, f(x)趋近于+∞,当1+ln a=0,即a=1e 时, f(x)有且只有一个零点;当1+ln a<0,即0<a<1e 时, f(x)有且仅有两个零点,综上可知ABD 正确,C 错误.故选ABD.16.证明 (1)设g(x)=f'(x)=1x -1+2cos x,当x ∈(0,π)时,g'(x)=-2sin x-1x 2<0,所以g(x)在(0,π)上单调递减,又因为=3π-1+1>0,g=2π-1<0,所以g(x),α,即f'(x)在(0,π)上存在唯一零点α.(2)①由(1)知,当x ∈(0,α)时, f'(x)>0,f(x)在(0,α)上单调递增;当x ∈(α,π)时, f'(x)<0, f(x)在(α,π)上单调递减,所以f(x)在(0,π)上存在唯一的极大值点<α<所以=ln π2-π2+2>2-π2>0,又因为=-2-1e 2+2sin 1e 2<-2-1e 2+2<0,所以f(x)在(0,α)上恰有一个零点,又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点,②当x ∈[π,2π)时,sin x ≤0, f(x)≤ln x-x,设h(x)=ln x-x,则h'(x)=1x -1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x ∈[π,2π)时, f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2,-1<0,设φ(x)=ln x-x+2,φ'(x)=1x所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。
极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。
高中数学中的函数最值求解问题是学习中的难点,在解决函数最值问题的时候要经过全方位的考虑,结合函数的定义域,将各种可能出现的结果进行分析,最终求得准确的计算结果。
在数学学习的过程中活跃的数学思维非常重要,它不仅可以改善学习方法,而且可以帮助学生掌握更多的解题技巧,进而提高解题速度和学习效率。
本文总结了一些求函数最值的常用方法如下:一、利用一次函数的单调性【例题1】 已知 x , y , z 是非负实数,且 x + 3y + 2z = 3 , 3x + 3y + z = 4 ,求函数 w = 2x - 3y + z 的最值 .解:得 y = 5/3 (1 - x), z = 2x - 1∴ w = 9x - 6又 x , y , z 非负,依一次函数 w = 9z - 6 的单调性可知当 x = 1/2 时,Wmin = -3/2 ,当 x= 1 时,Wmax = 3 .注:再求多元函数的条件最值时,通常是根据已知条件消元,转化为一元函数来解决问题.对于一次函数 y = kx + b ( k ≠ 0 ) 的最值,关键是指出自变量的取值范围,即函数的定义域,当一次函数的定义域是闭区间时,其最值在闭区间的端点处取得 .二、利用二次函数的性质【例题2】 设 α , β 是方程 4x^2 - 4kx + k + 2 = 0 的两个实数根,当 k 为何值时 α^2 + β^2 有最小值?解:∵ α , β 为方程的两个实数根,∴ α + β = k , αβ = 1/4 ( k + 2 ) ,令 y = α^2 + β^2 , 则有又由原方程由实数根可知,∴ k ≤ -1 或 k ≥ 2 .而二次函数的顶点 (1/4,-17/16)不在此范围内,根据二次函数的性质知,y 是以 k = 1/4 为对称轴,开口向上的,定义域为 (-∞,-1]∪[2,+∞)的抛物线,比较 k = -1 及 k = 2 时 y 的值知,当 k = -1 时,有 ymin = 1/2 .注:利用二次函数的性质求最值时,不能机械地套用最值在顶点处取得 . 首先要求出函数的定义域,然后在看顶点是否在函数的定义域内,最后再根据函数的单调性来判定 . 【例题3】 如图所示,抛物线 y = 4 - x^2 与直线 y = 3x 交于 A , B 两点,点 P 在抛物线上由 A 运动到 B,求 △APB 的面积最大时点 P 的坐标 .分析:由于 A , B 为定点,所以 AB 长为定值,欲使 △APB 的面积最大,须使 P 到 AB的距离最大 .解:设 P 点坐标为 (x0 , y0),∵ A , B 在直线 y = 3x 上,∴联立抛物线与直线方程,可得xA = -4 , xB = 1 ,∴ -4 ≤ x0 ≤ 1 ,则有∴当 x = -3/2 时,d 取最大值,△APB 面积最大,此时 P 点坐标为 (-3/2 , 7/4).注:在解决实际问题时要注意确定自变量取值范围的方法,本题是由直线与抛物线的交点来确定的,这样才能确定定义域内的最值 .三、利用二次方程的判别式欲求函数 y = f(x) ( x ∈ R ) 的极值,如果可以把函数式整理成关于 x 的二次方程, 注意到 x 在其定义域内取值,即方程有实根,所以可以通过二次方程的判别式 △ ≥ 0 来探求 y 的极大值与极小值 .【例题4】 已知 0 ≤ x ≤ 1 , 求的最值 .解: 原式可化为∵ x ∈ R ,∴解得 y ≤ 1/4 或 y ≥ 9/16 ,即函数 y 的值域为 y ≤ 1/4 或 y ≥ 9/16 ,∴ y极大 = 1/4,y极小 = 9/16 .当 y = 1/4 时,代入原函数解析式得 x = 1 ∈ [ 0 , 1 ] ;当 y = 9/16 时,代入原函数解析式得 x = -1 [ 0 , 1 ] .又 x = 0 时 , y = 2/3 ,∴ 当 x = 0 时,y 取极大值 2/3 .注:① 由判别式确定的是函数的值域,由值域得到的是函数的极值而不是最值;② 对有些函数来说,极值与最值相同,而有的函数就不一定,如本题中的极大值比极小值还小,这是因为极值是就某局部而言;③ 若要求函数在给定的定义域内的最值,一定要注意极值是否在此定义域内取得, 即要注意验根 .四、利用重要不等式【例题5】 设 x , y , z ∈ R+ , 且 2x + 4y + 9z = 16 .求 6√x + 4√y + 3√z 的最大值 .解:令 u = 6√x + 4√y + 3√z ,∴ u ≤ 4√23 ,( 其中当 9/x = 1/y = 1/9z 时,即当 x = 144/23 , y = 16/23 , z = 16/207 时取等号) 故注:这里是应用柯西不等式,在应用公式时,如何构造出已知条件等式 2x + 4y + 9z = 16,颇具技巧性和解题意义 .五、利用三角函数的有界性对于三角函数的极值,通常是利用三角函数的有界性来求解问题的,如正、余弦函数的最大(小)值很明显:y = asinx + bcosx (a , b ≠ 0)引入辅助角 θ,则其最值也一目了然 . 而对于其它的类型或用同角关系式、或用万能公式、或用正余弦定理作转化,变为二次函数问题来求解 .【例题6】 求的最值 .解法一: (利用降幂公式)解法二: (用判别式法)注: 本例还可以用万能公式等方法来求解 .六、利用参数换元对于有些函数而言,直接求极值比较复杂或不方便,这时可根据题目的特点作变量代换,然后运用前面的几种方法来解决问题.在换元时,一定要注意新的变量的取值范围 . 【例题7】 求函数 y = x + √( 1 - x ) 的极值 .解:原函数变为∵ t = 1/2 ∈ [ 0 , +∞ ) ,∴ 当 t = 1/2 ,即 x = 3/4 时,ymax = 5/4 .注: 这种换元虽然十分简单,但具有代表性 .七、利用复数的性质【例题8】 已知复数 z 满足 | z | = 2 , 求 | 1 + √3 i + z | 的极值 . 解法一:设 z = 2(cosθ + isinθ) (∵ | z | = 2)故 | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .解法二:依据 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | ,有 | 1 + √3 i | - | z | ≤ | 1 + √3 i + z | ≤ | 1 + √3 i | + | z | ,即 2 - 2 ≤ | 1 + √3 i + z | ≤ 2 + 2 ,∴ | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .注:求复数模的最值通常可用代数法,三角法(解法一),复数模的性质及其公式 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | , 此外还有数形结合方法等,但以上两种方法最为简捷.八、利用数形结合有些代数和三角问题,若能借助其几何背景,予以几何直观,这时求其最值常能收到直观、明快,化难为易得功效.【例题9】 求的最值 .解: 将函数式变形为其几何意义是在直角坐标系中,动点 P(cosx , sinx)和定点 A(-2 ,-1)连线的斜率,动点 P 的轨迹为单位圆,如下图所示:知 kAB 最小,kAC 最大,显然 kAB = 0 ,又 tgθ = |OB|/|AB| = 1/2 ,tg∠A = tg2θ = 2tgθ/(1 - tg^2 θ)= 4/3 ,即 kAC = 4/3 ,故 ymin = 0 , ymax = 4/3 .注:形如 [f(x) - a] / [g(x) - b] 的函数式,通常都可视作点 (g(x) ,f(x) ) 与点 (b , a)的连线的斜率 .运用数形结合的思想解题,关键是要进行合理的联想和类比,将代数式通过转化、变形、给予几何解释,通常这种转化与变形的过程常是一种挖掘和发现的过程,如本例需要挖掘 .。
高中数学人教A 版(新教材)选择性必修第二册5.3.2第1课时 函数的极值一、选择题1.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( ) A .-x 0是-f (-x )的极小值点 B .对任意x ∈R ,f (x )≤f (x 0) C .-x 0是f (-x )的极小值点 D .x 0是-f (x )的极大值点2.已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(0,1)D .(-1,0)3.函数f (x )的导函数f ′(x )的图象如图所示则( )A .12为f (x )的极大值点B .-2为f (x )的极大值点C .2为f (x )的极大值点D .45为f (x )的极小值点4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9xD .y =x 3+6x 2-9x5.已知a 为常数,函数f (x )=x ln x -ax 2+x 有两个极值点,则实数a 的取值范围为( ) A .⎝⎛⎭⎫0,e2 B .(0,e) C .⎝⎛⎭⎫e 2,eD .⎝⎛⎭⎫e 2,e 26.(多选题)定义在R 上的可导函数y =f (x )的导函数的图象如图所示,以下结论正确的是( )A .-3是f (x )的一个极小值点B .-2和-1都是f (x )的极大值点C .f (x )的单调递增区间是(-3,+∞)D .f (x )的单调递减区间是(-∞,-3)7.(多选题)若函数f (x )=x 3+2x 2+a 2x -1有两个极值点,则a 的值可以为( ) A .0 B .1 C .2 D .3 二、填空题8.已知函数f (x )=13x 3-12x 2+cx +d 无极值,则实数c 的取值范围为________.9.若可导函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,则f ′(1)=________,1是函数f (x )的________值.10.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.11.已知函数f (x )=(x 2-mx -m )e x +2m (m ∈R ,e 是自然对数的底数)在x =0处取得极小值,则m =________,这时f (x )的极大值是________.12.已知函数f (x )=x e 2x -1,则函数f (x )的极小值为________,零点有________个. 三、解答题13.已知函数f (x )=x 3+ax 2+bx -1,曲线y =f (x )在x =1处的切线方程为y =-8x +1. (1)求函数f (x )的解析式;(2)求y =f (x )在区间(-1,4)上的极值.14.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极大值点还是极小值点,并说明理由. 15.已知函数f (x )=2x 2-kx +ke x (k ∈R ).(1)k 为何值时,函数f (x )无极值?(2)试确定k 的值,使f (x )的极小值为0.参考答案一、选择题 1.答案:A答案:对于A ,函数-f (-x )与函数f (x )的图象关于原点对称,因此-x 0是-f (-x )的极小值点;对于B ,极值是一个局部性概念,因此不能确定在整个定义域上f (x 0)是否最大;对于C ,函数f (-x )与函数f (x )的图象关于y 轴对称,因此-x 0是f (-x )的极大值点;对于D ,函数f (x )与函数-f (x )的图象关于x 轴对称,因此x 0是-f (x )的极小值点,故D 错误. 2.答案:D解析:∵f ′(x )=a (x +1)(x -a ),若a <-1,∴f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增,∴f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值,符合题意;若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. 3.答案:A解析:对于A 选项,当-2<x <12时,f ′(x )>0,当12<x <2时,f ′(x )<0,12为f (x )的极大值点,A 选项正确; 对于B 选项,当x <-2时,f ′(x )<0,当-2<x <12时,f ′(x )>0,-2为f (x )的极小值点,B 选项错误;对于C 选项,当12<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,2为f (x )的极小值点,C 选项错误;对于D 选项,由于函数y =f (x )为可导函数,且f ′⎝⎛⎭⎫45<0,45不是f (x )的极值点,D 选项错误. 故选A. 4.答案:B解析:∵三次函数过原点,故可设为y =x 3+bx 2+cx ,∴y ′=3x 2+2bx +c . 又x =1,3是y ′=0的两个根,∴⎩⎨⎧1+3=-2b 3,1×3=c3,即⎩⎪⎨⎪⎧b =-6,c =9,∴y =x 3-6x 2+9x , 又y ′=3x 2-12x +9=3(x -1)(x -3),∴当x =1时,f (x )极大值=4 , 当x =3时,f (x )极小值=0,满足条件,故选B.] 5.答案:A解析:[f ′(x )=ln x +2-2ax ,函数f (x )有两个极值点,则f ′(x )有两个零点,即函数y =ln x 与函数y =2ax -2的图象有两个交点,当两函数图象相切时,设切点为(x 0,y 0),对函数y=ln x 求导(ln x )′=1x ,则有⎩⎪⎨⎪⎧y 0=ln x 0,y 0=2ax 0-2,1x 0=2a ,解得⎩⎪⎨⎪⎧y 0=-1,x 0=1e ,a =e 2,要使函数图象有两个交点,则0<2a <e ,即0<a <e2.故选A.]6.答案:ACD解析:当x <-3时,f ′(x )<0,x ∈(-3,+∞)时f ′(x )≥0,∴-3是极小值点,无极大值点,增区间是(-3,+∞),减区间是(-∞,-3).故选ACD. 7.答案:AB解析:∵f (x )=x 3+2x 2+a 2x -1,∴f ′(x )=3x 2+4x +a 2.∵函数f (x )=x 3+2x 2+a 2x -1有两个极值点,则f ′(x )=3x 2+4x +a 2与x 轴有两个交点, 即Δ=42-4×3×a 2>0解得-233<a <233,故满足条件的有AB.故选AB.二、填空题8.答案:⎣⎡⎭⎫14,+∞解析:∵f ′(x )=x 2-x +c ,要使f (x )无极值,则方程f ′(x )=x 2-x +c =0没有变号的实数解,从而Δ=1-4c ≤0,∴c ≥14.9.答案:0 极大解析:[由题意可知,当x <1时,f ′(x )>0,当x >1时,f ′(x )<0, ∴f ′(1)=0,1是函数f (x )的极大值.] 10.答案:4解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2取得极值, 所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0. ① 又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0, ②联立①②可得a =-1,b =0,所以f ′(x )=3x 2-6x =3x (x -2). 当f ′(x )>0时,x <0或x >2;当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=0+c ,极小值为f (2)=-4+c , 故函数的极大值与极小值的差为0-(-4)=4,故答案为4. 11.答案:0 4e -2解析:由题意知f ′(x )=[x 2+(2-m )x -2m ]e x ,由f ′(0)=-2m =0,解得m =0, 则f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,令f ′(x )=0,解得x =0或x =-2,故函数f (x )的单调递增区间是(-∞,-2),(0,+∞),单调递减区间是(-2,0), 所以函数f (x )在x =-2处取得极大值,且有f (-2)=4e -2. 12.答案:-12e-1 1解析:∵f (x )=x e 2x -1,f ′(x )=e 2x +2x e 2x =(1+2x )e 2x , 令f ′(x )=0,可得x =-12,如下表所示:所以,函数y =f (x )的极小值为f ⎝⎛⎭⎫-12=-12e -1,f (x )=0⇒e 2x =1x, 则函数y =f (x )的零点个数等于函数y =e 2x 与函数y =1x的图象的交点个数,如图所示:两个函数的图象有且只有一个交点,即函数y =f (x )只有一个零点. 三、解答题13.解: (1)因为f (x )=x 3+ax 2+bx -1,所以f ′(x )=3x 2+2ax +b . 所以曲线y =f (x )在x =1处的切线方程的斜率k =f ′(x )|x =1=f ′(1)=3+2a +b . 又因为k =-8,所以2a +b =-11. ① 又因为f (1)=1+a +b -1=-8×1+1, 所以a +b =-7, ②联立①②解得a =-4,b =-3. 所以f (x )=x 3-4x 2-3x -1.(2)由(1)知,f ′(x )=3x 2-8x -3=3⎝⎛⎭⎫x +13(x -3), 令f ′(x )=0得,x 1=-13,x 2=3.当-1<x <-13,f ′(x )>0,f (x )单调递增;当-13≤x <3,f ′(x )<0,f (x )单调递减;当3≤x <4,f ′(x )>0,f (x )单调递增.所以f (x )在区间(-1,4)上的极小值为f (3)=-19,极大值为f ⎝⎛⎭⎫-13=-1327. 14.解: f ′(x )=3ax 2 +2bx +c , (1)法一:∵x =±1是函数的极值点, ∴x =±1是方程3ax 2+2bx +c =0的两根.由根与系数的关系知⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1,③由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0, ① 3a -2b +c =0, ②又f (1)=-1,∴a +b +c =-1, ③由①②③解得a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时f ′(x )>0,当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数. ∴当x =-1时,函数取得极大值,x =-1为极大值点; 当x =1时,函数取得极小值,x =1为极小值点.15.解: (1)∵f (x )=2x 2-kx +k e x ,∴f ′(x )=-2x 2+(k +4)x -2ke x .要使f (x )无极值,只需f ′(x )≥0或f ′(x )≤0恒成立即可. 设g (x )=-2x 2+(k +4)x -2k ,∵e x >0,∴f ′(x )与g (x )同号. ∵g (x )的二次项系数为-2,∴只能满足g (x )≤0恒成立,∴Δ=(k +4)2-16k =(k -4)2≤0,解得k =4,∴当k =4时,f (x )无极值. (2)由(1)知k ≠4,令f ′(x )=0,得x 1=2,x 2=k2.①当k2<2,即k <4时,当x 变化时,f ′(x ),f (x )的变化情况如下表:由题意知f ⎝⎛⎭⎫k 2=0,可得2·⎝⎛⎭⎫k 22-k ·k 2+k =0,∴k =0,满足k <4. ②当k2>2,即k >4时,当x 变化时,f ′(x ),f (x )的变化情况如下表:由题意知f (2)=0,可得2×22-2k +k =0,∴k =8,满足k >4.综上,当k=0或k=8时,f (x)有极小值0.。
极点极值法高中(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。
使A作匀速直线运动。
试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。
(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。
它的根就可能是要求的极值。
这种方法应用是很普遍的。
(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。
将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。
今将两小珠从环的顶端由静止开始释放。
证明,当m>M时,圆环能升起。
证明:取小球为研究对象,受力如图(a)。
由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ (1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。
有 2(2mg-3mgcosθ)cosθ=Mg即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。
cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。
高三数学极值练习题极值问题是高中数学中一个重要的概念和考点,需要学生熟练掌握相关的知识和解题技巧。
本文将提供一些高三数学极值练习题,帮助同学们加深对这一概念的理解,并提供解题思路和方法。
练习题一:已知函数f(x) = x^3 - 3x^2 - 9x + 5,在区间[-3, 4]上求f(x)的极大值和极小值。
解析一:为了求出函数f(x)的极值,首先需要找到它的驻点。
驻点即函数的导数为零的点。
求导数:f'(x) = 3x^2 - 6x - 9令f'(x) = 0:3x^2 - 6x - 9 = 0化简得:x^2 - 2x - 3 = 0解方程x^2 - 2x - 3 = 0,可以得到x1 = -1和x2 = 3接下来,需要判断这两个驻点是否为极值点。
计算f(-3) = -2、f(-1) = 18、f(3) = -31和f(4) = -15,可以得到f(-3) = -2为极小值,f(-1) = 18为极大值所以,在区间[-3, 4]上,函数f(x)的极小值为-2,极大值为18。
练习题二:已知函数g(x) = 2x^3 - 15x^2 + 36x - 40,求g(x)的极值所对应的x 的值。
解析二:与练习题一类似,首先求导函数g'(x) = 6x^2 - 30x + 36,并令g'(x) = 0。
解方程6x^2 - 30x + 36 = 0,可以得到x1 = 1和x2 = 6。
接下来,需要判断这两个驻点是否为极值点。
计算g(1) = -17和g(6) = 40,可以得到g(1) = -17为极大值。
所以,函数g(x)的极大值所对应的x的值为1。
练习题三:已知函数h(x) = e^x - 4x,在区间[0, 2]上求h(x)的极大值和极小值。
解析三:首先求导函数h'(x) = e^x - 4,并令h'(x) = 0。
解方程e^x - 4 = 0,可以得到x = ln(4)。
5.3.2 函数的极值与最大(小)值第1课时 函数的极值学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一 函数极值的定义1.极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.3.极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二 函数极值的求法与步骤1.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)列表;(4)利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × )2.函数的极大值一定大于极小值.( × )3.函数y=f(x)一定有极大值和极小值.( × )4.函数的极值点是自变量的值,极值是函数值.( √ )一、求函数的极值例1 求下列函数的极值:(1)f (x )=x 3-3x 2-9x +5;(2)f (x )=x -a ln x (a ∈R ).解 (1)f ′(x )=3x 2-6x -9,令f ′(x )=0,即3x 2-6x -9=0,解得x 1=-1,x 2=3.当x 变化时,f (x ),f ′(x )的变化情况如下表:x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-1时,函数y =f (x )有极大值,且f (-1)=10;当x =3时,函数y =f (x )有极小值,且f (3)=-22.(2) f (x )=x -a ln x 的定义域为(0,+∞),由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.反思感悟 函数极值和极值点的求解步骤(1)确定函数的定义域.(2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格.(4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况.跟踪训练1 (1)求函数f (x )=2xx 2+1-2的极值.解 函数f (x )的定义域为R .f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)f ′(x )-0+0-f (x )↘极小值↗极大值↘由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3;当x =1时,函数有极大值,且极大值为f (1)=-1.(2)已知函数f (x )=x +ax +1,a ∈R .求此函数的极值.解 函数的定义域为{x |x ≠0},f ′(x )=1-ax 2=x 2-ax2.当a ≤0时,显然f ′(x )>0,这时函数f (x )在区间(-∞,0),(0,+∞)上均单调递增,此时函数无极值.当a >0时,令f ′(x )=0,解得x =±a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-a )-a (-a ,0)(0,a )a (a ,+∞)f ′(x )+0--0+f (x )↗极大值↘↘极小值↗由上表可知,当x =-a 时,函数取得极大值f (-a )=-2a +1.当x =a 时,函数取得极小值f (a )=2a +1.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =-a 处取得极大值-2a +1,在x =a 处取得极小值2a +1.二、由极值求参数的值或取值范围例2 (1)若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.答案 4 -11解析 f ′(x )=3x 2+2ax +b ,依题意得Error!即Error!解得Error!或Error!但由于当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以Error!不符合题意,应舍去.而当a =4,b =-11时,经检验知符合题意,故a ,b 的值分别为4,-11.(2)已知函数f (x )=13x 3-12(m +3)x 2+(m +6)x (x ∈R ,m 为常数),在区间(1,+∞)内有两个极值点,求实数m 的取值范围.解 f ′(x )=x 2-(m +3)x +m +6.因为函数f (x )在(1,+∞)内有两个极值点,所以f ′(x )=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以Error!解得m >3.故实数m 的取值范围是(3,+∞).反思感悟 已知函数的极值求参数的方法(1)对于已知可导函数的极值求参数的问题,解题的切入点是极值存在的条件:极值点处的导数值为0,极值点两侧的导数值异号.注意:求出参数后,一定要验证是否满足题目的条件.(2)对于函数无极值的问题,往往转化为其导函数的值非负或非正在某区间内恒成立的问题,即转化为f ′(x )≥0或f ′(x )≤0在某区间内恒成立的问题,此时需注意不等式中的等号是否成立.跟踪训练2 (1)若函数f (x )=ax -ln x 在x =22处取得极值,则实数a 的值为( )A.2B.22C .2 D.12答案 A解析 因为f ′(x )=a -1x ,所以f ′(22)=0,即a -122=0,解得a =2.(2)已知函数f (x )=13x 3-x 2+ax -1.①若函数的极大值点是-1,求a 的值;②若函数f (x )有一正一负两个极值点,求a 的取值范围.解 ①f ′(x )=x 2-2x +a ,由题意得,f ′(-1)=1+2+a =0,解得a =-3,则f ′(x )=x 2-2x -3,经验证可知,f (x )在x =-1处取得极大值,故a =-3.②由题意得,方程x 2-2x +a =0有一正一负两个根,设为x 1,x 2,则x 1x 2=a <0,故a 的取值范围是(-∞,0).三、利用函数极值解决函数零点(方程根)问题例3 已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解 由f (x )=x 3-6x 2+9x +3,可得f ′(x )=3x 2-12x +9,13 f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m .则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8=(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:x (-∞,23)23(23,4)4(4,+∞)g ′(x )+0-0+g (x )↗极大值↘极小值↗则函数g (x )的极大值为g (23)=6827-m ,极小值为g (4)=-16-m .由g (x )的图象与x 轴有三个不同的交点,得Error!解得-16<m <6827.∴实数m 的取值范围为(-16,6827).反思感悟 (1)利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.(2)解决这类问题,一个就是注意借助几何图形的直观性,另一个就是正确求导,正确计算极值.跟踪训练3 若函数f (x )=13x 3-4x +4的图象与直线y =a 恰有三个不同的交点,则实数a 的取值范围是________.答案 (-43,283)解析 ∵f (x )=13x 3-4x +4,∴f ′(x )=x 2-4=(x +2)(x -2).令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2(-2,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-2时,函数取得极大值f (-2)=283;当x =2时,函数取得极小值f (2)=-43.且f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增.根据函数单调性、极值的情况,它的图象大致如图所示,结合图象知-43<a <283.1.(多选)函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论正确的是( )A.在(1,2)上函数f(x)单调递增B.在(3,4)上函数f(x)单调递减C.在(1,3)上函数f(x)有极大值D.x=3是函数f(x)在区间[1,5]上的极小值点答案 ABC解析 由题图可知,当1<x<2时,f′(x)>0,函数f(x)单调递增;当2<x<4时,f′(x)<0,函数f(x)单调递减;当4<x<5时,f′(x)>0,函数f(x)单调递增,∴x=2是函数f(x)的极大值点,x=4是函数f(x)的极小值点,故A,B,C正确,D错误.2.(多选)已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个单调递增区间是( )A.(-∞,2) B.(3,+∞)C.(2,+∞) D.(-∞,3)答案 AB解析 ∵f′(x)=6x2+2ax+36,且在x=2处有极值,∴f′(2)=0,即24+4a+36=0,解得a=-15,∴f′(x)=6x2-30x+36=6(x-2)(x-3),由f′(x)>0得x<2或x>3.3.设函数f(x)=x e x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点答案 D解析 令f′(x)=e x+x·e x=(1+x)e x=0,得x=-1.当x<-1时,f′(x)<0;当x>-1时,f′(x)>0.故x=-1为f(x)的极小值点.4.函数f(x)=x3-3x2+1的极小值点为________.答案 2解析 由f ′(x )=3x 2-6x =0,解得x =0或x =2.列表如下:x (-∞,0)0(0,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =2时,f (x )取得极小值.5.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a =___________,b =________.答案 2 -4解析 f ′(x )=3x 2+2ax +b ,由题意知Error!即Error!解得Error!经验证知符合题意.1.知识清单:(1)函数极值的定义.(2)函数极值的判定及求法.(3)函数极值的应用.2.方法归纳:方程思想、分类讨论.3.常见误区:导数值等于零不是此点为极值点的充要条件.1.下列函数中存在极值的是( )A .y =1xB .y =x -e xC .y =2D .y =x 3答案 B解析 对于y =x -e x ,y ′=1-e x ,令y ′=0,得x =0.在区间(-∞,0)上,y ′>0;在区间(0,+∞)上,y ′<0.故当x =0时,函数y =x -e x 取得极大值.2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)答案 D解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.3.函数f (x )=ln x -x 在区间(0,e)上的极大值为( )A .-e B .-1C .1-e D .0答案 B解析 函数f (x )的定义域为(0,+∞),f ′(x )=1x -1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0,故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.4.已知a 是函数f (x )=x 3-12x 的极小值点,则a 等于( )A .-4 B .-2 C .4 D .2答案 D解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增;当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.5.(多选)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的值可以是( )A .-4 B .-3 C .6 D .8答案 AD解析 由题意知f ′(x )=3x 2+2ax +(a +6)=0有两个不相等的根,所以Δ=4a 2-12(a +6)>0,解得a >6或a <-3.6.f (x )=2x +1x 2+2的极小值为________.答案 -12解析 f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1;令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增,所以f (x )极小值 =f (-2)=-12.7.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________.答案 -23解析 因为f ′(x )=ax +2bx +1,由题意得Error!所以a =-23.8.已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc ,如果函数f (x )在x =1处取得极值-43,则b =________,c =________.答案 -1 3解析 f ′(x )=-x 2+2bx +c ,由Error!解得Error!或Error!若b =1,c =-1,则f ′(x )=-x 2+2x -1=-(x -1)2≤0,此时f (x )没有极值;若b =-1,c =3,则f ′(x )=-x 2-2x +3=-(x +3)(x -1),当-3<x <1时,f ′(x )>0,当x >1时,f ′(x )<0,所以当x =1时,f (x )有极大值-43.故b =-1,c =3即为所求.9.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解 (1)f ′(x )=a x -12x 2+32(x >0).由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上单调递增.故f (x )在x =1处取得极小值,极小值为f (1)=3,无极大值.10.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点?解 (1)f ′(x )=3x 2-2x -1.令f ′(x )=0,得x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-13)-13(-13,1)1(1,+∞)f′(x)+0-0+f(x)↗极大值↘极小值 ↗∴f(x)的极大值是f (-13)=527+a,极小值是f(1)=a-1.(2)函数f(x)=x3-x2-x+a=(x-1)2(x+1)+a-1,由此可知,x取足够大的正数时,有f(x)>0,x取足够小的负数时,有f(x)<0,∴曲线y=f(x)与x轴至少有一个交点.由(1)知f(x)极大值=f (-13)=527+a,f(x)极小值=f(1)=a-1.∵曲线y=f(x)与x轴仅有一个交点,∴f(x)极大值<0或f(x)极小值>0,即527+a<0或a-1>0,∴a<-527或a>1,∴当a∈(-∞,-527)∪(1,+∞)时,曲线y=f(x)与x轴仅有一个交点.11.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是( )答案 C解析 因为f(x)在x=-2处取得极小值,所以当x<-2时,f(x)单调递减,即f ′(x )<0;当x >-2时,f (x )单调递增,即f ′(x )>0.所以当x <-2时,y =xf ′(x )>0;当x =-2时,y =xf ′(x )=0;当-2<x <0时,y =xf ′(x )<0;当x =0时,y =xf ′(x )=0;当x >0时,y =xf ′(x )>0.结合选项中的图象知选C.12.函数y =x e x 在其极值点处的切线方程为________.答案 y =-1e解析 由题意知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为(-1,-1e ),又极值点处的切线为平行于x 轴的直线,故方程为y =-1e.13.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________.答案 [1,5)解析 ∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点,即f ′(x )=0在(-1,1)内恰有一个根.又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13.∴应满足Error!∴Error!∴1≤a <5.14.若函数f (x )=x 3-3ax +1在区间(0,1)内有极小值,则a 的取值范围为________.答案 (0,1)解析 f ′(x )=3x 2-3a .当a ≤0时,在区间 (0,1)上无极值.当a >0时,令f ′(x )>0,解得x >a 或x <-a .令f ′(x )<0,解得-a <x <a .若f (x )在(0,1)内有极小值,则0<a <1.15.已知函数f (x )=ax 3+bx 2+cx 的图象如图所示,且f (x )在x =x 0与x =2处取得极值,则f (1)+f (-1)的值一定( )A .等于0B .大于0C .小于0D .小于或等于0答案 B解析 f ′(x )=3ax 2+2bx +c .令f ′(x )=0,则x 0和2是该方程的根.∴x 0+2=-2b 3a <0,即b a>0.由题图知,f ′(x )<0的解集为(x 0,2),∴3a >0,则b >0,∵f (1)+f (-1)=2b ,∴f (1)+f (-1)>0.16.设函数f (x )=x 33-(a +1)x 2+4ax +b ,其中a ,b ∈R .(1)若函数f (x )在x =3处取得极小值12,求a ,b 的值;(2)求函数f (x )的单调递增区间;(3)若函数f (x )在(-1,1)上只有一个极值点,求实数a 的取值范围.解 (1)因为f ′(x )=x 2-2(a +1)x +4a ,所以f ′(3)=9-6(a +1)+4a =0,得a =32.由f (3)=13×27-52×9+4×32×3+b =12,解得b =-4.(2)因为f ′(x )=x 2-2(a +1)x +4a =(x -2a )(x -2),令f ′(x )=0,得x =2a 或x =2.当a >1时,f (x )的单调递增区间为(-∞,2),(2a ,+∞);当a =1时,f (x )的单调递增区间为(-∞,+∞);当a <1时,f (x )的单调递增区间为(-∞,2a ),(2,+∞).(3)由题意可得Error!即Error!解得-12<a<12,所以实数a的取值范围是(-12,12).。
极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
函数在某点取得极值的条件精选题28道一.选择题(共9小题)1.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.62.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)3.若函数f(x)=x(x﹣c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.﹣2或﹣64.已知函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则a、b的值为()A.a=﹣4,b=11B.a=3,b=﹣3或a=﹣4,b=11C.a=﹣1,b=5D.以上都不正确5.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个6.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3)B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在7.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x08.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a+b=()A.0或﹣7B.0C.﹣7D.1或﹣69.已知函数f(x)和g(x)的导函数f′(x),g′(x)图象分别如图所示,则关于函数y =g(x)﹣f(x)的判断正确的是()A.有3个极大值点B.有3个极小值点C.有1个极大值点和2个极小值点D.有2个极大值点和1个极小值点二.多选题(共1小题)(多选)10.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法正确的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0三.填空题(共10小题)11.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=.12.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c=.13.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则f(2)等于.14.函数f(x)=x2﹣lnx的极值点是.15.已知f(x)=x3+3ax2+bx+a2在x=﹣1时有极值0,则a﹣b的值为.16.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是.17.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m=,n=.18.若f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是.19.已知命题p:∃x∈R,使得e x≤2x+a为假命题,则实数a的取值范围是.20.函数f(x)=alnx+x在x=1处取得极值,则a的值为.四.解答题(共8小题)21.已知f(x)=x3+ax2+bx+c在x=1与时,都取得极值.(1)求a,b的值;(2)若,求f(x)的单调区间和极值.22.已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.23.已知函数f(x)=lnx+ax﹣a2x2(a≥0).(1)若x=1是函数y=f(x)的极值点,求a的值;(2)求函数y=f(x)的单调区间.24.设函数f(x)=(x2+ax+b)e x(x∈R).(Ⅰ)若x=1是函数f(x)的一个极值点,试求出a关于b的关系式(用a表示b),并确定f(x)的单调区间;(Ⅱ)在(Ⅰ)的条件下,设a>0,函数g(x)=(a2+14)e x+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立,求a的取值范围.25.已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间;(3)设,存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.26.已知x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.27.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(3)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.28.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.函数在某点取得极值的条件精选题28道参考答案与试题解析一.选择题(共9小题)1.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,得x=x1,或x=x2,即3(f(x))2+2af(x)+b=0的根为f(x)=x1或f(x)=x2的解.如图所示,由图象可知f(x)=x1有2个解,f(x)=x2有1个解,因此3(f(x))2+2af(x)+b=0的不同实根个数为3.故选:A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.2.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)【分析】观察图象知,x<﹣3时,f′(x)<0.﹣3<x<0时,f′(x)>0.由此知极小值为f(﹣3).0<x<3时,yf′(x)>0.x>3时,f′(x)<0.由此知极大值为f (3).【解答】解:观察图象知,x<﹣3时,y=x•f′(x)>0,∴f′(x)<0.﹣3<x<0时,y=x•f′(x)<0,∴f′(x)>0.由此知极小值为f(﹣3).0<x<3时,y=x•f′(x)>0,∴f′(x)>0.x>3时,y=x•f′(x)<0,∴f′(x)<0.由此知极大值为f(3).故选:D.【点评】本题考查极值的性质和应用,解题时要仔细图象,注意数形结合思想的合理运用.3.若函数f(x)=x(x﹣c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.﹣2或﹣6【分析】求出函数的导数,再令导数等于0,求出c值,再检验函数的导数是否满足在x =2处左侧为正数,右侧为负数,把不满足条件的c值舍去.【解答】解:∵函数f(x)=x(x﹣c)2=x3﹣2cx2+c2x,它的导数为f′(x)=3x2﹣4cx+c2,由题意知,在x=2处的导数值为12﹣8c+c2=0,∴c=6,或c=2,又函数f(x)=x(x﹣c)2在x=2处有极大值,故导数值在x=2处左侧为正数,右侧为负数.当c=2时,f′(x)=3x2﹣8x+4=3(x﹣)(x﹣2),不满足导数值在x=2处左侧为正数,右侧为负数.当c=6时,f′(x)=3x2﹣24x+36=3(x2﹣8x+12)=3(x﹣2)(x﹣6),满足导数值在x=2处左侧为正数,右侧为负数.故c=6.故选:B.【点评】本题考查函数在某点取得极大值的条件:导数值等于0,且导数在该点左侧为正数,右侧为负数.4.已知函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则a、b的值为()A.a=﹣4,b=11B.a=3,b=﹣3或a=﹣4,b=11C.a=﹣1,b=5D.以上都不正确【分析】求导数,利用函数在x=1处有极值10,得到两个条件f(1)=10和f'(1)=0,然后利用方程组求解a,b.【解答】解:函数的导数为f'(x)=3x2﹣2ax﹣b,因为函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,所以f(1)=10且f'(1)=0.即,解得.当a=3,b=﹣3时,f'(x)=3x2﹣6x+3=3(x﹣1)2≥0,此时函数单调递增,所以此时函数没有极值,所以不满足条件.所以经检验值当a=﹣4,b=11时,满足条件.故选:A.【点评】本题主要考查利用导数研究函数的极值问题,要求掌握可导函数取得极值的条件,f'(x)=0是函数取得极值的必要不充分条件,求解之后要注意进行检验.5.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个【分析】根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故选:C.【点评】本题主要考查函数的极值点和导数正负的关系.属基础题.6.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3)B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在【分析】首先对f(x)求导,然后由题设在x=1时有极值10可得解之即可求出a和b的值.【解答】解:对函数f(x)求导得f′(x)=3x2﹣2ax﹣b,又∵在x=1时f(x)有极值10,∴,解得或,验证知,当a=3,b=﹣3时,在x=1无极值,故选:B.【点评】掌握函数极值存在的条件,考查利用函数的极值存在的条件求参数的能力,属于中档题.7.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0【分析】对四个选项分别进行判断,即可得出结论.【解答】解:∵f(x)=e x﹣ax,∴f′(x)=e x﹣a,令f′(x)=e x﹣a>0,①当a≤0时,f′(x)=e x﹣a>0在x∈R上恒成立,∴f(x)在R上单调递增.②当a>0时,∵f′(x)=e x﹣a>0,∴e x﹣a>0,解得x>lna,∴f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增.∵函数f(x)=e x﹣ax有两个零点x1<x2,∴f(lna)<0,a>0,∴e lna﹣alna<0,∴a>e,A正确;∵,,∴,设,则t>1,,∴,令,则,∴g(t)>g(1)>0,∴x1+x2﹣2>0,x1+x2>2,B正确;f(0)=1>0,∴0<x1<1,x1x2>1不一定,C不正确;f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,∴有极小值点x0=lna,由图象观察可得x1+x2<2x0=2lna,D正确.故选:C.【点评】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.8.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a+b=()A.0或﹣7B.0C.﹣7D.1或﹣6【分析】根据函数f(x)=x3+ax2+bx+a2在x=1处有极值10,可知f′(1)=0和f(1)=10,对函数f(x)求导,解方程组,注意验证,可求得答案.【解答】解:由f(x)=x3+ax2+bx+a2,得f′(x)=3x2+2ax+b,,即,解得或(经检验应舍去),a+b=4﹣11=﹣7,故选:C.【点评】本题主要考查函数在某点取得极值的条件,注意f′(x0)=0是x=x0是极值点的必要不充分条件,因此对于解得的结果要检验,这是易错点,属于基础题.9.已知函数f(x)和g(x)的导函数f′(x),g′(x)图象分别如图所示,则关于函数y =g(x)﹣f(x)的判断正确的是()A.有3个极大值点B.有3个极小值点C.有1个极大值点和2个极小值点D.有2个极大值点和1个极小值点【分析】由已知结合函数的单调性与极值的关系进行分析即可求解.【解答】解:结合函数图象可知,当x<a时,f′(x)<g′(x),此时y′=g′(x)﹣f′(x)>0,函数单调递增,当a<x<0时,f′(x)>g′(x),此时y′=g′(x)﹣f′(x)<0,函数单调递减,当0<x<b时,f′(x)<g′(x),此时y′=g′(x)﹣f′(x)>0,函数单调递增,当x>b时,f′(x)>g′(x),此时y′=g′(x)﹣f′(x)<0,函数单调递减,故函数在x=a,x=b处取得极大值,在x=0处取得极小值.故选:D.【点评】本题主要考查了函数极值的判断,属于基础试题.二.多选题(共1小题)(多选)10.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法正确的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0【分析】对四个选项分别进行判断,即可得出结论.【解答】解:∵f(x)=e x﹣ax,∴f′(x)=e x﹣a,令f′(x)=e x﹣a>0,①当a≤0时,f′(x)=e x﹣a>0在x∈R上恒成立,∴f(x)在R上单调递增.②当a>0时,∵f′(x)=e x﹣a>0,∴e x﹣a>0,解得x>lna,∴f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增.∵函数f(x)=e x﹣ax有两个零点x1<x2,∴f(lna)<0,a>0,∴e lna﹣alna<0,∴a>e,A正确;∵,,∴,设,则t>1,,∴,令,则,∴g(t)>g(1)>0,∴x1+x2﹣2>0,x1+x2>2,B正确;f(0)=1>0,∴0<x1<1,x1x2>1不一定,C不正确;f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,∴有极小值点x0=lna,由图象观察可得x1+x2<2x0=2lna,D正确.故选:ABD.【点评】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.三.填空题(共10小题)11.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=11.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得联立可得当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:11【点评】本题主要考查函数在某点取得极值的性质:若函数在x0取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.12.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c=6.【分析】由已知函数f(x)=x(x﹣c)2在x=2处有极大值,则必有f′(2)=0,且在x=2的两侧异号即可得出.【解答】解:∵f′(x)=(x﹣c)2+2x(x﹣c)=3x2﹣4cx+c2,且函数f(x)=x(x﹣c)2在x=2处有极大值,∴f′(2)=0,即c2﹣8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为6.【点评】熟练掌握利用导数研究函数的极值的方法是解题的关键.13.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则f(2)等于18.【分析】对函数f(=x)求导的导函数,利用导函数与极值的关系进行求解.【解答】解:f′(x)=3x2+2ax+b,∴或当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,∴适合∴f(2)=8+16﹣22+16=18.故答案为18.【点评】本题主要考查了函数在某点取得极值的条件,即在该点处导函数值为0.14.函数f(x)=x2﹣lnx的极值点是.【分析】直接利用导函数为0,求出方程的解,判断是否是极值点即可.【解答】解:函数f(x)的定义域{x|x>0},f′(x)=2x﹣=,令f′(x)=0,得x=或﹣(舍去),当x∈(0,)时,f′(x)<0,f(x)单调递减,当x∈(,+∞)时,f′(x)>0,f(x)单调递增,所以函数f(x)的极值点是x=,故答案为:.【点评】本题考查函数的极值点的求法与判断,是易错题,求解方程的根后,必须验证方程的根是否是函数的极值点.15.已知f(x)=x3+3ax2+bx+a2在x=﹣1时有极值0,则a﹣b的值为﹣7.【分析】求导函数,利用函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,建立方程组,求得a,b的值,再验证,即可得到结论.【解答】解:∵函数f(x)=x3+3ax2+bx+a2∴f'(x)=3x2+6ax+b,又∵函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,∴,∴或当时,f'(x)=3x2+6ax+b=3(x+1)2≥0,没有极值,不满足题意;当时,f'(x)=3x2+6ax+b=3(x+1)(x+3)=0,方程有两个不等的实数根,满足题意;∴a﹣b=﹣7故答案为:﹣7.【点评】本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.16.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是[﹣1,7).【分析】首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.【解答】解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值范围是[﹣1,7).故答案为:[﹣1,7).【点评】考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.17.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m=2,n=9.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得即解得或当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:2 9【点评】本题主要考查函数在某点取得极值的性质:若函数在取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.18.若f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是a<﹣1或a>2.【分析】先求导,利用函数既有极大值又有极小值,则说明f'(x)=0有两个不同的根,然后确定a的取值范围.【解答】解:函数的导数为f'(x)=3x2+6ax+3(a+2).因为函数f(x)既有极大值又有极小值,则f'(x)=0有两个不同的根.即判别式Δ>0,即36a2﹣4×3×3(a+2)>0,所以a2﹣a﹣2>0,解得a>2或a<﹣1.故答案为:a>2或a<﹣1.【点评】本题主要考查函数的极值和导数之间的关系,将条件转化为f'(x)=0有两个不同的根,是解决本题的关键.19.已知命题p:∃x∈R,使得e x≤2x+a为假命题,则实数a的取值范围是(﹣∞,2﹣ln2).【分析】求出“∃x∈R,使得e x≤2x+a”是假命题时,实数a的取值范围,通过构造函数,利用函数的导数,求出函数的最小值,然后求解实数a的取值范围.【解答】解:若命题“∃x∈R,使得e x≤2x+a”成立则a大于等于函数y=e x﹣2x的最小值.函数y=e x﹣2x的导数为y′=e x﹣2.令y′=0,解得x=ln2,此时函数y=e x﹣2x有最小值,y min=2﹣2ln2.则命题“∃x∈R,使得e x≤2x+a”是假命题时数a的取值范围是(﹣∞,2﹣ln2)故答案为:(﹣∞,2﹣ln2).【点评】本题考查的知识点是命题的真假判断与应用,利用函数的对数求出函数的最小值,是解答本题的关键.20.函数f(x)=alnx+x在x=1处取得极值,则a的值为﹣1.【分析】由题意得求出函数的导数f′(x)=+1,因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0进而可以求出答案.【解答】解:由题意得f′(x)=+1因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0,即a+1=0,所以a=﹣1.故答案为﹣1.【点评】解决此类问题的关键是熟悉导数的作用即判断单调性,求极值,求切线方程等,解题时要正确利用公式求函数的导数.四.解答题(共8小题)21.已知f(x)=x3+ax2+bx+c在x=1与时,都取得极值.(1)求a,b的值;(2)若,求f(x)的单调区间和极值.【分析】(1)因为函数在极值点处导数等于0,所以若f(x)在x=1与时,都取得极值,则f′(1)=0,f′()=0,就可得到a,b的值.(2)先由求出函数中的c扥值,再求导数,令导数大于0,解得x的范围是函数的增区间,令导数小于0,解得x的范围是函数的减区间,增区间与减区间的分界点为极值点,且当极值点左侧导数大于0,右侧导数小于0时取得极大值,当极值点左侧导数小于0,右侧导数大于0时取得极小值,再把x的值代入原函数求出极大值与极小值.【解答】解:(1)f′(x)=3x2+2ax+b,∵f(x)在x=1与时,都取得极值,∴f′(1)=0,f′()=0,即3×1+2a+b=0,3×+2a()+b=0解得(2)由(1)知,f(x)=x3﹣x2﹣2x+c∵,∴﹣1﹣+2+c=,解得c=1∴f(x)=x3﹣x2﹣2x+1又∵f′(x)=3x2﹣x﹣2,令f′(x)>0,即3x2﹣x﹣2>0,解得,x<﹣,或x>1,令f′(x)<0,即3x2﹣x﹣2<0.解得,﹣<x<1∴函数的增区间为;减区间为,∴函数在x=﹣时又极大值为,在x=1时有极小值为﹣.【点评】本题主要考查了函数的导数与极值,单调区间之间的关系,属于导数的应用.22.已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.【分析】(I)求出导函数,求出导函数等于0的两个根,列出x,f′(x),f(x)的变化情况的表格,求出极大值,列出方程求出m的值.(II)将(I)求出的m的值代入导函数,利用曲线在切点处的导数值是切线的斜率,令导数等于﹣5,求出x即切点横坐标,将横坐标代入f(x)求出切点坐标,利用直线方程的点斜式写出切线方程.【解答】解:(Ⅰ)f’(x)=3x2+2mx﹣m2=(x+m)(3x﹣m)=0,则x=﹣m或x=m,当x变化时,f’(x)与f(x)的变化情况如下表:,从而可知,当x=﹣m时,函数f(x)取得极大值9,即f(﹣m)=﹣m3+m3+m3+1=9,∴m=2.(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2﹣4x+1,依题意知f’(x)=3x2+4x﹣4=﹣5,∴x=﹣1或x=﹣.又f(﹣1)=6,f(﹣)=,所以切线方程为y ﹣6=﹣5(x+1),或y﹣=﹣5(x+),即5x+y﹣1=0,或135x+27y﹣23=0.【点评】本题考查利用导数求函数的极值的步骤:求出导数;令导数为0求出根;列出表格判断根左右两边导函数的符号;求出极值.考查导数的几何意义:导数在切点处的值是曲线的切线斜率.23.已知函数f(x)=lnx+ax﹣a2x2(a≥0).(1)若x=1是函数y=f(x)的极值点,求a的值;(2)求函数y=f(x)的单调区间.【分析】(1)确定函数的定义域,求导函数,利用x=1是函数y=f(x)的极值点,即可求a的值;(2)分类讨论,利用导数的正负,结合函数的定义域,可得函数的单调区间.【解答】解:(1)函数定义域为(0,+∞),因为x=1是函数y=f(x)的极值点,所以f′(1)=1+a﹣2a2=0,解得或a=1,因为a>0,所以a=1;(2)若a=0,>0,∴函数f(x)的单调增区间为(0,+∞);若a≠0,则a>0,=由f′(x)>0,结合函数的定义域,可得0<x<;由f′(x)<0,结合函数的定义域,可得x>;∴函数的单调增区间为(0,);单调减区间为(,+∞).【点评】本题考查导数知识的运用,考查函数的极值,考查函数的单调性,正确求导,合理分类是关键.24.设函数f(x)=(x2+ax+b)e x(x∈R).(Ⅰ)若x=1是函数f(x)的一个极值点,试求出a关于b的关系式(用a表示b),并确定f(x)的单调区间;(Ⅱ)在(Ⅰ)的条件下,设a>0,函数g(x)=(a2+14)e x+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立,求a的取值范围.【分析】(Ⅰ)据极值点处的导函数值为0得到a,b的关系;代入导函数中求出导函数的两根,讨论两根的大小;判断根左右两边导函数的符号,据导函数与单调性的关系求出单调区间.(Ⅱ)据函数的单调性求出两根函数的值域,求出函数值的最小距离,最小距离小于1求出a的范围【解答】解:(Ⅰ)∵f'(x)=(2x+a)e x+(x2+ax+b)e x=[x2+(2+a)x+(a+b)]e x﹣﹣﹣(1分)且x=1是函数f(x)的一个极值点∴f'(1)=0﹣﹣﹣﹣﹣﹣(2分)即e[1+(2+a)+(a+b)]=0,解得b=﹣3﹣2a﹣﹣﹣(3分)则f′(x)=e x[x2+(2+a)x+(﹣3﹣a)]=e x(x﹣1)[x+(3+a)]令f′(x)=0,得x1=1或x2=﹣3﹣a﹣﹣﹣﹣﹣﹣﹣(4分)∵x=1是极值点,∴﹣3﹣a≠1,即a≠﹣4当﹣3﹣a>1即a<﹣4时,由f′(x)>0得x∈(﹣3﹣a,+∞)或x∈(﹣∞,1)由f'(x)<0得x∈(1,﹣3﹣a)﹣﹣﹣﹣﹣﹣(5分)当﹣3﹣a<1即a>﹣4时,由f′(x)>0得x∈(1,+∞)或x∈(﹣∞,﹣3﹣a)由f′(x)<0得x∈(﹣3﹣a,1)﹣﹣﹣﹣﹣﹣﹣﹣(6分)综上可知:当a<﹣4时,函数f(x)的单调递增区间为(﹣∞,1)和(﹣3﹣a,+∞),单调递减区间为(1,﹣3﹣a);当a>﹣4时,函数f(x)单调递增区间为(﹣∞,﹣3﹣a)和(1,+∞),单调递减区间为(﹣3﹣a,1)﹣﹣﹣﹣﹣(8分)(Ⅱ)由(1)知,当a>0时,f(x)在区间(0,1)上的单调递减,在区间(1,4)上单调递增,∴函数f(x)在区间[0,4]上的最小值为f(1)=﹣(a+2)e﹣﹣﹣﹣(9分)又∵f(0)=be x=﹣(2a+3)<0,f(4)=(2a+13)e4>0,∴函数f(x)在区间[0,4]上的值域是[f(1),f(4)],即[﹣(a+2)e,(2a+13)e4]﹣﹣﹣(11分)又g(x)=(a2+14)e x+4在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[(a2+14)e4,(a2+14)e8]﹣﹣﹣﹣﹣﹣(12分)∵(a2+14)e4﹣(2a+13)e4=(a2﹣2a+1)e4=(a﹣1)2e4≥0,∴存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立只须仅须(a2+14)e4﹣(2a+13)e4<1.﹣﹣﹣﹣(14分)【点评】本题考查利用导函数研究函数的极值:极值点处的值为0;研究函数的单调性:导数大于0对应区间为单调递增区间,导数小于0对应区间为单调递减区间;将存在性问题转化成最值问题.25.已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间;(3)设,存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.【分析】(Ⅰ)先求导得到f′(x),令f′(x)=0,解出a的值,并验证a的值是否满足极值的条件.(Ⅱ)先求导得到f′(x),然后对a分类讨论,看f′(x)是大于0还是小于0,从而得到f(x)的单调区间.(Ⅲ)把要求的问题:“存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,”转化为“对于x∈(0,e],|f(x)min﹣g(x)max|<9”.进而求出a的取值范围.【解答】解:(Ⅰ),x∈(0,e].由已知f'(1)=2a﹣2=0,解得a=1,此时.在区间(0,1)上,f′(x)<0;在区间(1,e)上,f′(x)>0.∴函数f(x)在x=1时取得极小值.因此a=1时适合题意.(Ⅱ),x∈(0,e].1)当a≤0时,f'(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,.①若,即,则f(x)在上是减函数,在上是增函数;②若,即,则f(x)在(0,e]上是减函数.综上所述,当时,f(x)的减区间是(0,e],当时,f(x)的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)可知:当x=时,函数f(x)取得最小值,且.∵g(x)=﹣5,∴函数g(x)在区间(0,e]上单调递增.∴当x=e时,函数g(x)取得最大值,且g(x)max=g(e)=﹣4﹣lna.∵存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,∴必有对于x∈(0,e],|f(x)min﹣g(x)max|<9.又∵,联立得,解得.∴a的取值范围是.【点评】本题综合考查了函数的极值、单调区间及恒成立问题,掌握方法和正确计算及分类讨论是解决问题的关键.26.已知x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.【分析】(1)求导函数,利用x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点,可得f′(4)=0,从而可求a的值;(2)利用导数的正负,可得函数f(x)的单调区间;(3)确定函数的极值,从而可得不等式,即可求b的取值范围.【解答】解:(1)求导函数可得f′(x)=+2x﹣12,∵x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点∴f′(4)=+8﹣12=0,∴a=16 …3分(2)由(1)知,f(x)=16lnx+x2﹣12x+11,x∈(0,+∞)f′(x)=…5分当x∈(0,2)∪(4,+∞)时,f′(x)>0;当x∈(2,4)时,f′(x)<0…7分所以f(x)的单调增区间是(0,2),(4,+∞),f(x)的单调减区间是(2,4)…8分(3)由(2)知,f(x)的极大值为f(2)=16ln2﹣9,极小值为f(4)=32ln2﹣21所以在f(x)的三个单调区间(0,2),(2,4),(4,+∞)内,直线y=b与y=f(x)的图象各有一个交点,当且仅当f(4)<b<f(2)成立…13分因此,b的取值范围为(32ln2﹣21,16ln2﹣9).…14分.【点评】本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查学生的计算能力,正确求导是关键.27.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(3)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.【分析】(1)函数f(x)=ln(x+a)﹣x2﹣x,对其进行求导,在x=0处取得极值,可得f′(0)=0,求得a值;(2)关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,将问题转化为φ(x)=0,在区间[0,2]上恰有两个不同的实数根,对φ(x)对进行求导,从而求出b的范围;(3)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},利用导数研究其单调性,可以推出ln(x+1)﹣x2﹣x≤0,令x=,可以得到ln(+1)<+利用此不等式进行放缩证明;【解答】解:(1)函数f(x)=ln(x+a)﹣x2﹣xf′(x)=﹣2x﹣1 …(1分)当x=0时,f(x)取得极值,∴f′(0)=0 …(2分)故解得a=1,经检验a=1符合题意.…(3分)(2)由a=1知f(x)=ln(x+1)﹣x2﹣x由f(x)=﹣x+b,得ln(x+1)﹣x2+x﹣b=0令φ(x)=ln(x+1)﹣x2+﹣b,则f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.…(4分)φ′(x)=﹣2x+=,…(5分)当x∈[0,1]时,φ′(x)>0,于是φ(x)在{0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+;…(9分)(3)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f'(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)…(11分)对任意正整数n,取x=>0得,ln(+1)<+…(12分)∴ln()<故2+++…+>ln2+ln+ln+…+ln=ln(n+1).…(14分)【点评】本题考查利用导数研究函数的极值及单调性,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,第三问难度比较大,利用了前两问的结论进行证明,此题是一道中档题;28.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.【分析】(Ⅰ)由函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3,求导,可得±1是f′(x)=0的两根,且f′(0)=﹣3,解方程组即可求得,a,b,c的值,从而求得f(x)的解析式;(Ⅱ)设切点,求切线方程,得到m=﹣2x03+6x02﹣6,要求过点A(2,m)可作曲线y=f(x)的三条切线,即求m=﹣2x03+6x02﹣6有三个零点,画出函数的草图,即可求得实数m的取值范围.【解答】解:(Ⅰ)f'(x)=3ax2+2bx+c依题意又f'(0)=﹣3∴c=﹣3∴a=1∴f(x)=x3﹣3x(Ⅱ)设切点为(x0,x03﹣3x0),∵f'(x)=3x2﹣3∴f'(x0)=3x02﹣3∴切线方程为y﹣(x03﹣3x0)=(3x02﹣3)(x﹣x0)又切线过点A(2,m)∴m﹣(x03﹣3x0)=(3x02﹣3)(2﹣x0)∴m=﹣2x03+6x02﹣6令g(x)=﹣2x3+6x2﹣6则g'(x)=﹣6x2+12x=﹣6x(x﹣2)由g'(x)=0得x=0或x=2g(x)极小值=g(0)=﹣6,g(x)极大值=g(2)=2画出草图知,当﹣6<m<2时,m=﹣2x3+6x2﹣6有三解,所以m的取值范围是(﹣6,2).【点评】此题是中档题.考查利用导数研究函数的单调性和极值问题,和利用导数研究曲线上某点的切线问题,体现了数形结合和转化的思想,考查了学生灵活应用知识分析解决问题的能力.。
高中数学导数的应用——极值)全(与最值专项训练题.高中数学专题训练导数的应用——极值与最值一、选择题123)和,.函数y=ax则+bx(取得极大值和极小值时的x的值分别为0130 b=2a-2b=0B.A.a-0 =+2b D.a2C.a+b=0 D答案 2bx,据题意,+2ax=3y解析′1 的两根bx=0是方程3ax+22、031b20.=+2=∴,∴a3a3x) x=(2.当函数y=x·2取极小值时,11 B.- A ln2ln2ln2 D..-ln2 C B答案2·=2+x得y′xxx ln22·解析由y=x·2得y′=0令x0=+x·ln2)(11=-,∴x∵2>0x ln23) (0,1)内有极小值,则(3bx+3bx3.函数f(x)=在-1<B.b0<b<1 .A1C.b>0 D.b 2答案 A-3b在(0,1)上先负后正,∴f′(0)2x=3′则f(x)(解析fx)在(0,1)内有极小值,=-3b<0,∴b>0,f′(1)=3-3b>0,∴b<1综上,b的范围为0<b<14.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是()A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点答案B解析x>-1时,f′(x)>0)<0x(′f时,1-<x为极小值=-1单减,在(-1,+∞)单增,∴x∞∴连续函数f(x)在(-,-1) 点.3x2)-3x-4在[0,2]上的最小值是5.函数y=+x(31017 .-B.-A336 4 D.-C.-3A答案3.2x-+2x=解析y′=1为极值点.,x=-3或x=令y′=x+2x-302时,函数取得极=1时,y′>0,所以当x时,当x∈[0,1]y′<0.当x∈[1,2] 小值,也为最小值.17=-y∴当x=1时. min3)(x)的图象,如右图所示,则(.函数6f(x)的导函数f′是最小值点.x =1A 是极小值点.x=0B x.=2是极小值点C )在(1,2)上单增D.函数f(x C 答案2为极大值点,x=xx=2为两极值点,=0x解析由导数图象可知,=0,C. 为极小值点,选71322)与f(-1)的大小关系为(x-,则f(-a).已知函数7f(x=x-x)222)≤f(--A.f(a1)2)<f(-f(-a1) B.2)≥f(-(C.f-a1)2的大小关系不确定1)-(f与)a-(f.D.A答案73-x-22.x=由题意可得f′(x)解析2271=由f′x)(.=1=-或xx+1)=0,得x(3x-7)(327是函1)f(-时,f(x)为减函数.所以(当x<-1时,fx)为增函数;当-1<x<3a0]上的最大值,又因为-在x)(-∞,数f(22.)≤f(-≤0,故f(-a1) )-x·xe8.函数f(x)=,则(A.仅有极小值e2 .仅有极大值Be21 ,极大值C.有极小值0e2 .以上皆不正确D B 答案x21-11e=xxxx----.·x=+·eex)=-e(-x·(解析f′x2x22x1=,得xx)=0令f′(.21 x)<0f′(;当x时,21)>0.′(时,fx当x21111=时取极大值,xf(.)·222ee2 二、填空题2=b=1和x=2处有极值,则a=________bx9.若y =alnx+,+x在x________.1 答案-63a1.bx++2=′解析y2??01=+2b+a=-a?3??,解得由已知 a10+4b+1=???=-b26123取得极)时,函数2f(x,c(bc为常数).当x=x10.已知函数f()=x-bx+3________的取值范围为)只有三个零点,则实数cf值,若函数(x4 <0<c答案31-bx +c,∴f′(x)=x-2bx,∵x=2时,f(x)取得极值,∴223x(∵解析f)x=3.1.0,解得b=-2b×2=22单)(x∞∈(-,0) 或x∈(2,+∞)时,f∴当x∈(0,2)时,f(x)单调递减,当x 调递增.个实根,有3若f(x)=0?>0c0f??=4?<c,解得则0 13,<0-2+c232×f?2?=?3x的取值范有大于零的极值点,则y=em+2mx(x∈R)11.设m∈R,若函数围是________. m<-答案2=+2mx∈R)有大于零的极值点,所以y′=e2+mx(xx e=因为函数y解析,则两曲线的交点必在第一象限.由图2m,y=-x e有大于0的实根.令y=0211-,即m<象可得-2m>1.223,则极小值为x轴相切于-px(1,0)-qx的图象与xf12.已知函数(x)=________.0答案,-2px-q2x=3解析f′(x)0. =(1)=3-2p-q由题知f′ 01-p-q =,又f(1)=1. 联立方程组,解得p=2,q=-1. x+x-43x-2x+x,f′(x)==∴f(x)232,1=0xf′(x)=3-4x+由21,或x=1解得x=3 是函数的极小值点,x=1经检验知0. =f(1)x∴f()=极小值三、解答题的单调区间与极)fx<2π,求函数(x+=13.设函数f(x)sinx-cosx+x1,0<值. x<2π,<xf(x)=sin-cosx+x+1,0解析由,+1+f知′(x)=cosxsinxπ+2sin(1于是f′(x)=x).4ππ23=x=xπ,或sin()f令′(x=0,从而x+,得.=-)422 的变化情况如下表:)x(f,)x(′f变化时,x当.π3π33π (0x,π) π () π (,2π,)222 -++ 0 0f′(x)3 单调递增 f)(x 单调递减+2 单调递增ππ2π3,π,单调递减区间是(,因此,由上表知f(x)的单调递增区间是(0,π)与(2π)2π3π3π32. +)=π,极大值为f(π=)f),极小值为22223.214.设函数f(x)=6x++3(a2)xax+的值;,(1)若f(x)的两个极值点为xx,且xx=1,求实数a2211上的单调函数?若存在,求出是否存在实数(2)a,使得f(x)是(-∞,+∞) a的值;若不存在,说明理由..2a+6(a+2)x+2x18)′(x=解析fa2 =1,所以a=9;=(1)由已知有f′(x)=f′(x)xx=0,从而221118 4)>0,36(a+a-4×18×2=222)+36(a(2)由于Δ=上的单调函数.,+∞)是所以不存在实数a,使得f(x)(-∞2为常数.3),其中15.已知定义在R上的函数xf()=xa(ax-的值;)的一个极值点,求=(1)若x1是函数af(x 上是增函数,求a的取值范围.x(2)若函数f()在区间(-1,0) -2).-3x,f′(x)=3ax-6x=3x(ax223ax)(1)f(x=解析2.=a∵x=1是f(x)的一个极值点,∴f′(1)=0,∴符0在区间(-1,0)上是增函数,∴a=2x3)=-时,f(x=(2)解法一①当a0 合题意;22-(x②当aax ≠0时,f′(x)=3. ==),令f′(x)=0得:x0,x21aa -(1,0),f′(x)>0,∴a>0符合题意;当a>0时,对任意x∈22,∴时,f′(∈,0)x)>0a当<0时,当x -1,∴-≤≤a<0符合题意;aa2.≥综上所述,a-2≥a,6≤0∴上恒成立,6-x≥0在区间(-1,0)∴3ax-2ax)=3(解法二f′xx222.a≥-,∴(在区间-1,0)上恒成立,=-<x1-2.x(x)=-x+ax+1-ln.已知函数16f1 )在a上是减函数,求的取值范围;(0)((1)若fx2若不a是否既有极大值又有极小值?若存在,求出的取值范围;x(2)函数f() 存在,请说明理由.111,(0在xf,∵()时-x′(1)解析f()),∈-ax2=-+x 上为减函数,∴(0)x22.11 恒成立.+xa<2<02x +a -恒成立,即xx1111-=2′(x)设g(x)=2x +,则g 在)g(x ′.∵x ∈(0,)时>4,∴g(x)<0,∴22xx2x113.,∴()=3a ≤(0,)上单调递减,g(x)>g22必须有两个不等的正实数根′(x)=0(2)若f(x)既有极大值又有极小值,则f有两个不等的正实数根.1=0+-ax 2x2x ,x ,即21 >0Δ? 8>0-??2a 应满足故a ?? 2?>2?a 时,>22,∴当a>0??>0a2? x)=0有两个不等的实数根,f ′( x<x ,不妨设2121=-1)=--ax +由f ′(x)2,)<0(x<x -x)(x -x)知,0<(2xxx 时f ′(112xx ,x ′(x)>0,x>x 时f ′()<0时x<x<xf 212 .(x)既有极大值fx)又有极小值f(x)∴当2>2时f(12 12,0)-∈(a),当xln∈y1. 已知=f(x)是奇函数,当x(0,2)时,f(x)=x-ax(2 .a1,则的值等于________f时,(x)的最小值为1答案上的最大值为-1,f解析∵f(x)是奇函数,∴(x)在(0,2)11110<>,∴得(x)=0x,又a,令=′∈当x(0,2)时,f(x)-af′<2.axa211,(0f(x)在<x令f′()>0,则x,∴ )上递增;aa11 上递减,()(,∴>,则x′令f()<0xfx在2),aa11111.=0,得a∴f(x)=f(-a·=-1,∴ln=ln=)max aaaa23==2x2+3ax时取得极值.+3bx+8c在x=1及x(2.设函数fx) 、b的值;(1)求a2 c(2)若对任意的x∈[0,3],都有f(x)<c的取值范围.成立,求,ax+6+3b2x =6解(1)f′(x)时取得极值,因为函数f(x)在x =1及x =2 0则有f ′(1)=0,f ′(2)=, ?,0b =6a +36+?4. =,b 解得a =-3即??0.b =3+12a +24? ,x +8c -9x +1223x2(2)由(1)可知,f(x)= x -2).x +12=6(x -1)(-182xx6)=f ′( ;x)<0∈;当x(1,2)时,f ′(当x ∈(0,1)时,f ′(x )>0)>0.(x ′当x ∈(2,3)时,f. c =)取得极大值f(1)5+8所以,当x =1时,f(x ,f(3)=9+8c 又f(0)=8c ,. (3)=9+8cf 则当x ∈[0,3]时,f(x)的最大值为 f(xc 恒成立,)<因为对于任意的x ∈[0,3],有2>9.c -<1或所以9+8c<c ,解得c 2 ∞,+).因此c 的取值范围为(-∞,-1)∪(9231. x3.已知函数f(x)=x +-3ax +3 )的单调区间;(1)设a =2,求f(x 的取值范围.(2)设f(x)在区间(2,3)中至少有一个极值点,求a -2x2--3)(,f′(x)=3(x+-6x3x+123xa=)=x2时,f((1)解析当 3). 3)∞,2上单调增加;f(x)在(--当x∈(∞,2f3)时′(x)>0 (x)在(2上单调减少;3,23)x当∈(2)3,23)时f′(x<0,f 上单调增加.x)在(2,+3∞)(′当x∈(23,+∞)时f(x)>0,f的单调减区x)3,+∞),fx综上,f()的单调增区间是(-∞,23)和(2( +(3)3,2.间是a1-+22])((2)f′x)=3[(x-a.a-当12x)无极值点;(0≥,f(x)为增函数,故f(0≥时,f′x) 有两个根,x′()=0时,a当1-<0f21.-+a,-1=xa22a=xa-21,①3aa2由题意知,<-<1-2.②1<或2<a3.+a-255<①式无解.②式的解为<a.3455,的取值范围是(因此a ).34,axf()在区间[为函数y=f(x)的零点.若函数y==1.“我们称使f(x)0的x上]在区间[a,b(b)<0,则函数y=f(x)b]上是连续的,单调的函数,且满足f(a)·f2,2x-=6ln(x+1)-x1+f有唯一的零点”.对于函数(x) 在其定义域内的单调性,并求出函数极值.f(x)(1)讨论函数[2,+∞)内只有一个零点.)(2)证明连续函数f(x在∞),,+x-1定义域为(-1+22x-+1)6ln((1)解:f(x)=x解析2x-286).舍去x0?=2(--2x+2,f′(x)==且f′(x)11xx+),+(1,2x取得极大值 f(x)由表可知,f(x)值在区间(-1,2]上单调递增,在[2,+∞)上单调递减.∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x 在定义域内只有一个零点.1-x2+2..>0)+ax(a江西高考)设函数f(x)=ln x+ln (2-x)2.(2010·的单调区间;f(x)(1)当a=1时,求1 a的值.在(0,1]上的最大值为,求(2)若f(x)2 (0,2),x)的定义域为解析函数f(11.-+a=x)f′(xx2-2+-x2,单调x)的单调递增区间为(2,所以f(=x)=1时,f′((1)当a?xx?2-,2)递减区间为2x22-,+a>0=)′(x当x∈(0,1]时,f(2)?x?2-x1即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=.232+9x+3xa(3.已知函数fx)=-x. +(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.分析本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.+6x+9. 2x3(1)f′(x)=-解令f′(x)<0,解得x<-1,或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在(-1,2]上单调递增.又由于f(x)在[-2,-1)上单调递减,∴f(-1)是f(x)的极小值,且f(-1)=a-5.∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.∴f(x)=-x+3x+9x-2. 23∴f(-1)=a-5=-7,即函数f(x)在区间[-2,2]上的最小值为-7..)R∈x(xe=)x(f.已知函数4.-x的单调区间和极值;(1)求函数f(x)对称.证明x)的图象关于直线x=1已知函数(2)y=g(x)的图象与函数y=f( >g(x);当x>1时,f(x)2.),证明x+x>≠x,且f(x)=f(x(3)如果x212211x-. x)e(1)解析f′(x)=(1-1.=0,解得x=令f′(x)的变化情况如下表x当变化时)1(,+x-∞x极大值f(x)内是减函数.内是增函数,在(1,+∞)f(x)在(-∞,1)所以1=(1)处取得极大值f(1),且f函数f(x)在x=1. e2x-. )e(),得gx)=(2-x(2)由题意可知g(x)=f(2-x ,x-2)e,即F(x)=xe+(令F(x)=f(x)-g(x)x-2x-e--1)(e1)F′(x)=(x于是x-22x-.从而x)>0.,又e>0.所以F′(x>1时,2x-2>0,从而e-1>0当x-22x -,+∞)上是增函数.函数F(x)在[1 x).f(x)>g(x>1时,有F(x)>F(1)=0,即=又F(1)=e-e0,所以11--矛≠x,与x=x=1x,由(1)及f(x)=f(x),得x(3)①若(-1)(x-1)=021221211盾. x矛盾.=x,与x≠x及f(x)=f(),得x-②若(x-1)(x1)>0,由(1)212111221.><,不妨设x1,x根据①②得(x-1)(x-1)<02211)(xx),从而f,所以f(x)>f(2-xf(x>)g(x),g(x)=f(2-)(2)由可知,12222221),在区间(-∞1,又由(1)可知函数f(x)>>f(2-x),因为x1,所以2-x<2222. >,即x+x内是增函数,所以x>2-x22113223.x-1)g(x)=5.已知函数f(x)=ax-ax3(,函数2 x)的公共单调区间;(x)和g((1)当a>0时,求f )的极小值;(x)-gx当a>2时,求函数h(x)=f((2) )的解的个数.)=g(x(3)讨论方程f(x,x>1x<0或x>0,由f′()>0得1)3-ax=3ax(x-,又a2ax(′x)=(1)解f3f′(x)<0得0<x<1,即函数f(x)的单调递增区间是(-∞,0)与(1,+∞)由,单调递减区间是(0,1),而函数g(x)的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).32--3(x-1),h′(x)=3ax-3(a+2)x+6=3a(x-2322)((2)ax=x(h)xax-a2.22由于,x=1或的极小值点,(x)易知(1),令h′x)=0,得x=x=1为函数h<1,aaa=-(1))的极小值为h∴h(x.23 ,-3+-6x23xφ((a+x)=ax2)gx)=f(x)-((3)令22-xa(x+6=3-3(a+2)2ax=3φ′(x) ,-1))(xa轴只有一个交点,即方xxφ()的图象与=①若a0,则φ(x)=-3(x-1),∴2只有一个解;g(x)程f(x)=6a42-x)的极大值为φ(1)=-+②若a<0,则φ(=-)的极小值为φ(>0,φ(x)2aaa2 3<0,g(x)有三个解;的图象与φ(x)x轴有三个交点,即方程f(x)=∴a=-x)的极大值为φ(1)③若0<a<2,则φ(轴只有一个x)的图象与x∴<0,φ(2 只有一个解;x)(交点,即方程f(x)=g1)x-6(,则φ′(x)=2④若a=2轴只x))单调递增,∴φ(x的图象与φ≥0,(x 只有一个解;=g(x))有一个交点,即方程f(x3231⑤若a>2,由(2)知φ(x)的极大值为φ--<0,∴φ(4)=-))的图象与aa44x轴只有一个交点,即方程f(x)=g(x)只有一个解.afxgxafxgx)=只有一个解;若,方程综上知,若≥0()=()<0,方程()( 有三个解.。
[A 组 基础巩固]1.函数y =x 3-3x +2的极大值为m,极小值为n,则m +n 为( ) A .0 B .1 C .2D .4解析:令y ′=3x 2-3=0⇒x =1或x =-1,经分析知f(-1)为函数y =x 3-3x +2的极大值,f(1)为函数y =x 3-3x +2的极小值,故m +n =f(-1)+f(1)=4. 答案:D2.已知函数f(x)=ax 3+bx 2+c,其导函数的图像如图所示,则函数f(x)的极小值是( ) A .a +b +c B .8a +4b +c C .3a +2b D .c解析:由f ′(x)的图像可知x ∈(-∞,0)∪(2,+∞)时,f ′(x)<0;x ∈(0,2)时,f ′(x)>0. ∴f(x)在(-∞,0)和(2,+∞)上为减函数,在(0,2)上为增函数. ∴x =0时,f(x)取到极小值为f(0)=c. 答案:D3.函数f(x)=x 3-3bx +3b 在(0,1)内有极值,则( ) A .0<b <1 B .b <0 C .b >0D .b <12解析:f ′(x)=3x 2-3b.因f(x)在(0,1)内有极值,所以f ′(x)=0有解,∴x =±b,∴0<b <1,∴0<b <1. 答案:A4.设三次函数f(x)的导函数为f ′(x),函数y =xf ′(x)的图像的一部分如图所示,则正确的是( )A .f(x)的极大值为f(3),极小值为f(-3)B .f(x)的极大值为f(-3),极小值为f(3)C .f(x)的极大值为f(-3),极小值为f(3)D .f(x)的极大值为f(3),极小值为f(-3)解析:由题图可知,当x ∈(-∞,-3)时,xf ′(x)>0,即f ′(x)<0; 当x ∈(-3,0)时,xf ′(x)<0,即f ′(x)>0; 当x ∈(0,3)时,xf ′(x)>0,即f ′(x)>0; 当x ∈(3,+∞)时,xf ′(x)<0,即f ′(x)<0.故函数f(x)在x =-3处取得极小值,在x =3处取得极大值. 答案:D5.若函数f(x)=x 2+ax +1在x =1处取得极值,则a =________.解析:f ′(x)=2x(x +1)-(x 2+a)(x +1)2=x 2+2x -a (x +1)2,由题意得f ′(1)=3-a4=0,解得a =3.经检验,a =3符合题意. 答案:36.关于函数f(x)=x 3-3x 2有下列命题,其中正确命题的序号是________.①f(x)是增函数;②f(x)是减函数,无极值;③f(x)的增区间是(-∞,0)和(2,+∞),减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.解析:f ′(x)=3x 2-6x,令f ′(x)=0,则x =0或x =2.利用极值的求法可求得x =0是极大值点,x =2是极小值点. 答案:③④7.已知函数f(x)=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m =________,n =________. 解析:f ′(x)=3x 2+6mx +n, 由题意,f ′(-1)=3-6m +n =0, f(-1)=-1+3m -n +m 2=0,解得⎩⎪⎨⎪⎧m =1n =3或⎩⎪⎨⎪⎧m =2,n =9.但m =1,n =3时,f ′(x)=3x 2+6x +3=3(x +1)2≥0恒成立,此时x =-1不是f(x)的极值点,应舍去.经检验m =2,n =9符合题意. 答案:2 98.设函数f(x)=x 3+bx 2+cx(x ∈R),已知g(x)=f(x)-f ′(x)是奇函数. (1)求b 、c 的值;(2)求g(x)的单调区间与极值. 解析:(1)∵f ′(x)=3x 2+2bx +c, 从而g(x)=f(x)-f ′(x) =x 3+(b -3)x 2+(c -2b)x -c. 又∵g(x)是R 上的奇函数,∴g(-x)=-g(x),即(-x)3+(b -3)x 2-(c -2b)x -c =-x 3-(b -3)x 2-(c -2b)x +c, 化简得(b -3)x 2-c =0,∴b =3,c =0. (2)由(1)知g(x)=x 3-6x,∴g ′(x)=3x 2-6=3(x +2)(x -2). 由此可知=-2处取得极大值42,在x =2处取得极小值-4 2.9.设x =1与x =2是函数f(x)=aln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f(x)的极大值点还是极小值点,并说明理由. 解析:(1)∵f(x)=aln x +bx 2+x, ∴f ′(x)=ax +2bx +1.由题意可知f ′(1)=f ′(2)=0,∴⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解得a =-23,b =-16.∴f(x)=-23ln x -16x 2+x.(2)f ′(x)=-23x -1-13x +1,且原函数定义域为(0,+∞),当x ∈(0,1)时,f ′(x)<0;当x ∈(1,2)时,f ′(x)>0;当x ∈(2,+∞)时,f ′(x)<0.故x =1是函数f(x)的极小值点,x =2是函数f(x)的极大值点.[B 组 能力提升]1.设a ∈R,若函数y =e ax+3x,x ∈R 有大于零的极值点,则( ) A .a>-3 B .a<-3 C .a>-13D .a<-13解析:y ′=ae ax+3,令y ′=0得x =ln(-3a )a ,即为极值点.由ln(-3a )a >0得a<-3.答案:B2.已知函数f(x)=ax 2+3x +2a,若不等式f(x)>0的解集为{x|1<x<2},则函数y =xf(x)的极值点的个数为( ) A .1 B .2 C .0D .不能判断解析:由题意知⎩⎪⎨⎪⎧a<0,-3a=3,所以a =-1,即f(x)=-x 2+3x -2.于是y =xf(x)=-x 3+3x 2-2x,y ′=-3x 2+6x -2,由Δ>0,所以y ′=0有两个相异实根,故函数y =xf(x)有两个极值点. 答案:B3.已知函数f(x)=ax 3+bx 2+cx,其导函数y =f ′(x)的图像经过点(1,0),(2,0),如图所示,则下列说法中不正确的是________. ①当x =32时函数取得极小值;②f(x)有两个极值点; ③当x =2时函数取得极小值; ④当x =1时函数取得极大值.解析:从图像上可以看到:当x ∈(-∞,1)时,f ′(x)>0;当x ∈(1,2)时,f ′(x)<0;当x ∈(2,+∞)时,f ′(x)>0,所以f(x)有两个极值点1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值,只有①不正确. 答案:①4.已知函数f(x)=13x 3+ax 2+ax +b,当x =-1时,函数f(x)的极值为-712,则f(2)=________.解析:f ′(x)=x 2+2ax +a.由题意知f ′(-1)=0,f(-1)=-712,即⎩⎪⎨⎪⎧1-2a +a =0,-13+a -a +b =-712,解得⎩⎪⎨⎪⎧a =1,b =-14.所以f(x)=13x 3+x 2+x -14.所以f(2)=10112.答案:101125.设a 为实数,函数f(x)=-x 3+3x +a. (1)求f(x)的极值;(2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a 的取值范围;若不存在,请说明理由.解析:(1)令f ′(x)=-3x 2+3=0,得x 1=-1,x 2=1. 又因为当x ∈(-∞,-1)时,f ′(x)<0; 当x ∈(-1,1)时,f ′(x)>0; 当x ∈(1,+∞)时,f ′(x)<0. 所以f(x)的极小值为f(-1)=a -2, f(x)的极大值为f(1)=a +2.(2)因为f(x)在(-∞,-1)上是减少的,且当x →-∞时,f(x)→+∞,又f(x)在(1,+∞)上是减少的,且当x →+∞时,f(x)→-∞,而a +2>a -2,即函数的极大值大于极小值,所以当极大值等于0时,有极小值小于0,此时曲线f(x)与x 轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a +2=0,a =-2;当极小值等于0时,有极大值大于0,此时曲线f(x)与x 轴恰有两个交点, 即方程f(x)=0恰好有两个实数根, 所以a -2=0,a =2.综上,当a =2或a =-2时方程恰有两个实数根. 6.已知f(x)=x 3+bx 2+cx +2.(1)若f(x)在x =1时有极值-1,求b 、c 的值;(2)若函数y =f(x)的图像与函数y =k 的图像恰有三个不同的交点,求实数k 的取值范围. 解析:(1)∵f(x)=x 3+bx 2+cx +2, ∴f ′(x)=3x 2+2bx +c. 由已知得f ′(1)=0,f(1)=-1,∴⎩⎪⎨⎪⎧3+2b +c =01+b +c +2=-1,解得b =1,c =-5.(2)由(1)知f(x)=x 3+x 2-5x +2, f ′(x)=3x 2+2x -5.由f ′(x)=0得x 1=-53,x 2=1.当x 变化时,f ′(x),f(x)的变化情况如下表:f ′(x) + 0 - 0 + f(x)极大值极小值根据上表,x 1=-53是函数的极大值点且极大值为f(-53)=22927,x 2=1是函数的极小值点且极小值为f(1)=-1.如图,可知k 的取值范围为(-1,22927).。
高中数学中的函数极值与最值测试题在高中数学的学习中,函数极值与最值问题一直是重点和难点。
为了帮助同学们更好地掌握这部分知识,下面我们来一起做一套相关的测试题。
一、选择题(每题 5 分,共 30 分)1、函数\(f(x) = x^3 3x\)的极小值是()A -2B 0C 2D 42、函数\(f(x) =\frac{1}{2}x^2 \ln x\)的最小值为()A \(\frac{1}{2}\)B 1C \(\frac{3}{2}\)D 23、已知函数\(f(x) = x^3 + ax^2 + bx + c\),当\(x =-1\)时取得极大值 7,当\(x = 3\)时取得极小值,那么\(a +b\)的值为()A -5B -7C -9D -114、函数\(f(x) = x +\frac{1}{x}\)在区间\(\frac{1}{2}, 3\)上的最大值为()A \(\frac{10}{3}\)B \(\frac{5}{2}\)C 4D 55、函数\(f(x) = 2x^3 3x^2 12x + 5\)在区间\(0, 3\)上的最大值和最小值分别是()A 5,-15B 5,-4C -4,-15D 5,-166、设函数\(f(x) = x^3 \frac{9}{2}x^2 + 6x a\),对于任意实数\(x\),\(f'(x) \geq m\)恒成立,则\(m\)的最大值为()A -3B 0C 3D 1二、填空题(每题 5 分,共 20 分)7、函数\(f(x) = x +\sqrt{1 x}\)的最大值为________。
8、函数\(f(x) =\sin^2x \cos x\)的最小值为________。
9、若函数\(f(x) = x^3 3x + a\)有 3 个不同的零点,则实数\(a\)的取值范围是________。
10、已知\(f(x) = x^3 3x^2 + 2\),\(x \in -1, 1\),则函数\(f(x)\)的最大值为________。
《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
如果函数 y = f(x) 在点 x0 处的导数存在,那么这个导数表示函数在 x0 点处的切线斜率。
设函数 y = f(x) 在点 x0 的某个邻域内有定义,当自变量 x 在 x0 处取得增量Δx(点 x0 +Δx 仍在该邻域内)时,相应地函数取得增量Δy = f(x0 +Δx) f(x0);如果Δy 与Δx 之比当Δx→0 时的极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限为函数 y = f(x) 在点x0 处的导数,记为 f'(x0)。
二、导数的几何意义导数的几何意义是函数在某一点处切线的斜率。
函数在某点处的导数 f'(x0) 就是曲线 y = f(x) 在点(x0, f(x0))处的切线斜率 k,切线方程为 y f(x0) = f'(x0)(x x0)。
三、导数的运算1、基本函数的导数公式(1)(C)'= 0(C 为常数)(2)(x^n)'= nx^(n 1)(n 为有理数)(3)(sin x)'= cos x(4)(cos x)'= sin x(5)(e^x)'= e^x(6)(a^x)'= a^x ln a(a > 0 且a ≠ 1)(7)(ln x)'= 1/x(8)(log_a x)'= 1/(x ln a)(a > 0 且a ≠ 1)2、导数的四则运算(1)(u ± v)'= u' ± v'(2)(uv)'= u'v + uv'(3)(u/v)'=(u'v uv')/v^2(v ≠ 0)3、复合函数的导数设函数 u =φ(x) 在点 x 处可导,y = f(u) 在点 u =φ(x) 处可导,则复合函数 y =fφ(x)在点 x 处可导,且其导数为 f 'φ(x)φ'(x) 。
利用导数研究函数的极值精选题28道一.选择题(共6小题)1.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)2.若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.13.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4B.﹣2C.4D.24.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.65.已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.B.C.D.6.设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2二.填空题(共17小题)7.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为.8.已知函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a﹣b=.9.若函数f(x)=+x﹣5无极值点,则实数a的取值范围是.10.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是.11.已知函数f(x)=2f′(1)lnx﹣x,则f(x)的极大值为.12.已知函数,若函数有两个极值点x1,x2,且,则实数a的取值范围为.13.直线y=a与函数f(x)=x3﹣3x的图象有相异的三个公共点,则a的取值范围是.14.已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是.(填出所有正确命题的序号)15.已知函数f(x)=x3﹣kx2+2x,x∈R,k∈R.①若f′(﹣1)=1,则k的值为.②若函数f(x)在区间(1,2)内存在2个极值点,则k的取值范围是.16.若函数f(x)=x2﹣x+alnx有两个不同的极值点,则实数a的取值范围是.17.已知f(x)=ax3+3x2﹣1存在唯一的零点x0,且x0<0,则实数a的取值范围是.18.已知函数f(x)=2x3﹣ax2+2在x=2处取得极值,则实数a=.19.若函数f(x)=ax2+xlnx有两个极值点,则实数a的取值范围是.20.已知函数若方程f(x)﹣m=0恰有两个实根,则实数m的取值范围是.21.已知函数f(x)=x3﹣3a2x+a(a>0)的极大值为正数,极小值为负数,则a的取值范围是.22.已知函数f(x)=ae x﹣x2有两个极值点,则实数a的取值范围是.23.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为.三.解答题(共5小题)24.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.25.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.26.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.27.已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.28.已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.利用导数研究函数的极值精选题28道参考答案与试题解析一.选择题(共6小题)1.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g (﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.2.若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.3.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4B.﹣2C.4D.2【分析】可求导数得到f′(x)=3x2﹣12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选:D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.4.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.6【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b =0有两个不相等的实数根,必有Δ=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=Δ>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解的个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴Δ=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=Δ>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f (x))2+2af(x)+b=0的只有3不同实根.故选:A.【点评】本题综合考查了利用导数研究函数的单调性、极值及方程解的个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.5.已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.B.C.D.【分析】先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.【解答】解:∵f′(x)=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.故当0<a<时,g(x)=0有两个根x1,x2,且x1<<x2,又g(1)=1﹣2a>0,∴x1<1<<x2,从而可知函数f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣.故选:D.【点评】本题考查了利用导数研究函数极值的方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.6.设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【分析】分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.【解答】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.【点评】本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.二.填空题(共17小题)7.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为﹣49.【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nS n的最小值.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴S n=na1+d=n2﹣n,∴nS n=n3﹣n2,令nS n=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nS n的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.8.已知函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a﹣b=15.【分析】根据函数f(x)=x3+ax2+bx+a2在x=1处有极小值10得f′(1)=0,f(1)=10即可求出a﹣b的值.【解答】解:∵f′(x)=3x2+2ax+b,∵函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,∴f′(1)=0,f(1)=10,∴3+2a+b=0,1+a+b+a2=10,解得a=4,b=﹣11或a=﹣3,b=3,当a=4,b=﹣11时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1),此时x=1是极小值点;当a=﹣3,b=3时,f′(x)=3x2﹣6x+3=3(x﹣1)2,此时x=1不是极小值点.∴a=4,b=﹣11,∴a﹣b=15.故答案为:15.【点评】本题考查利用导数求函数极值的处理策略,关键是f′(1)=0,f(1)=10,属于基础题.9.若函数f(x)=+x﹣5无极值点,则实数a的取值范围是[﹣1,1].【分析】求出函数的导数,问题转化为f′(x)=0最多1个实数根,根据二次函数的性质求出a的范围即可.【解答】解:f(x)=x3﹣ax2+x﹣5,f′(x)=x2﹣2ax+1,若函数f(x)在R上无极值点,即f′(x)=0最多1个实数根,故Δ=4a2﹣4≤0,解得:﹣1≤a≤1,故答案为:[﹣1,1].【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.10.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是.【分析】f(x)=xlnx﹣ax2(x>0),f′(x)=lnx+1﹣2ax.令g(x)=lnx+1﹣2ax,由于函数f(x)=x(lnx﹣ax)有两个极值点⇔g(x)=0在区间(0,+∞)上有两个实数根.g′(x)==.当a≤0时,直接验证;当a>0时,利用导数研究函数g(x)的单调性可得:当x=时,函数g(x)取得极大值,故要使g(x)有两个不同解,只需要,解得即可.【解答】解:f(x)=xlnx﹣ax2(x>0),f′(x)=lnx+1﹣2ax.令g(x)=lnx+1﹣2ax,∵函数f(x)=x(lnx﹣ax)有两个极值点,则g(x)=0在区间(0,+∞)上有两个实数根.g′(x)==,当a≤0时,g′(x)>0,则函数g(x)在区间(0,+∞)单调递增,因此g(x)=0在区间(0,+∞)上不可能有两个实数根,应舍去.当a>0时,令g′(x)=0,解得x=.令g′(x)>0,解得,此时函数g(x)单调递增;令g′(x)<0,解得,此时函数g(x)单调递减.∴当x=时,函数g(x)取得极大值.当x趋近于0与x趋近于+∞时,g(x)→﹣∞,要使g(x)=0在区间(0,+∞)上有两个实数根,则,解得.∴实数a的取值范围是.故答案为:.【点评】本题考查了利用导数研究函数的单调性极值,考查了等价转化方法,考查了推理能力和计算能力,属于难题.11.已知函数f(x)=2f′(1)lnx﹣x,则f(x)的极大值为2ln2﹣2.【分析】先求导数,当x=1时,即可得到f′(1),再令导数大于0或小于0,解出x 的范围,即得到函数的单调区间,进而可得函数的极大值.【解答】解:由于函数f(x)=2f′(1)lnx﹣x,则f′(x)=2f′(1)×﹣1(x>0),f′(1)=2f′(1)﹣1,故f′(1)=1,得到f′(x)=2×﹣1=,令f′(x)>0,解得:x<2,令f′(x)<0,解得:x>2,则函数在(0,2)上为增函数,在(2,+∞)上为减函数,故f(x)的极大值为f(2)=2ln2﹣2故答案为:2ln2﹣2【点评】本题考查了利用导数研究函数的极值,属于基础题.12.已知函数,若函数有两个极值点x1,x2,且,则实数a的取值范围为.【分析】由题意可得,,作比得,令x2﹣x1=t,结合条件将x1写成关于t的函数,求导分析得到x1的范围,再结合得到a的范围,与函数f(x)有两个极值点时a的范围取交集即可.【解答】解:∵函数f(x)由两个极值点x1,x2,∴f′(x)=ae x﹣x有两个零点x1,x2,即,,作比得,令x2﹣x1=t…①,则有,∴,代入①,得,由题意知,≥2,∴t≥ln2,令,(t≥ln2),∴,令h(t)=e t﹣1﹣te t,则h′(t)=﹣te t<0,∴h(t)单调递减,∴h(t)≤h(ln2)=1﹣2ln2<0,∴g(t)单调递减,∴g(t)≤g(ln2)=ln2,即x1≤ln2,而,令,则,∴u(x)在(﹣∞,ln2]上单调递增,∴,即,又f′(x)=ae x﹣x有两个零点x1,x2,u(x)在R上与y=a有两个交点,而,在(﹣∞,1)上u(x)单调递增,在(1,+∞)上u(x)单调递减,u(x)的最大值为,∴,综上,.故答案为:.【点评】本题考查了利用导数研究函数零点问题,利用导数研究函数的单调性与极值、最值问题,运用了整体换元的方法,属难题.13.直线y=a与函数f(x)=x3﹣3x的图象有相异的三个公共点,则a的取值范围是(﹣2,2).【分析】先求出其导函数,利用其导函数求出其极值以及图象的变化,进而画出函数f (x)=x3﹣3x对应的大致图象,平移直线y=a即可得出结论.【解答】解:令f′(x)=3x2﹣3=0,得x=±1,可求得f(x)的极大值为f(﹣1)=2,极小值为f(1)=﹣2,如图所示,当满足﹣2<a<2时,恰有三个不同公共点.故答案为:(﹣2,2)【点评】本题主要考查利用导数研究函数的极值以及数形结合思想的应用,是对基础知识的考查,属于基础题.14.已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是①③.(填出所有正确命题的序号)【分析】求导数,利用零点存在定理,可判断①②;f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x0<0,可判断③④.【解答】解:∵函数f(x)=xlnx+x2,(x>0)∴f′(x)=lnx+1+x,易得f′(x)=lnx+1+x在(0,+∞)递增,∴f′()=>0,∵x→0,f′(x)→﹣∞,∴0<x0<,即①正确,②不正确;∵lnx0+1+x0=0∴f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x02<0,即③正确,④不正确.故答案为:①③.【点评】本题考查利用导数研究函数的极值,考查学生的计算能力、转化思想,属于中档题.15.已知函数f(x)=x3﹣kx2+2x,x∈R,k∈R.①若f′(﹣1)=1,则k的值为﹣1.②若函数f(x)在区间(1,2)内存在2个极值点,则k的取值范围是.【分析】①求出原函数的导函数,再由f′(﹣1)=1列式求得k值;②把函数f(x)在区间(1,2)内存在2个极值点,转化为函数f′(x)=x2﹣2kx+2在区间(1,2)内存在2个零点,即方程x2﹣2kx+2=0在区间(1,2)内有两个不同根,由一元二次方程根的分布得关于k的不等式组求解.【解答】解:①∵f(x)=x3﹣kx2+2x,∴f′(x)=x2﹣2kx+2,由f′(﹣1)=(﹣1)2+2k+2=1,得k=﹣1;②∵函数f(x)在区间(1,2)内存在2个极值点,∴函数f′(x)=x2﹣2kx+2在区间(1,2)内存在2个零点,即方程x2﹣2kx+2=0在区间(1,2)内有两个不同根.∴,解得:.故答案为:①﹣1;②.【点评】本题考查利用导数研究函数的单调性,训练了利用导数求函数的极值,体现了数学转化思想方法,是中档题.16.若函数f(x)=x2﹣x+alnx有两个不同的极值点,则实数a的取值范围是(0,).【分析】求出函数的导数,结合二次函数的性质可求.【解答】解:因为f(x)=x2﹣x+alnx有两个不同的极值点,所以f′(x)=x﹣1+==0在(0,+∞)有2个不同的零点,所以x2﹣x+a=0在(0,+∞)有2个不同的零点,所以,解可得,0<a<.故答案为:(0,).【点评】本题主要考查了函数极值的存在条件的应用,属于基础试题.17.已知f(x)=ax3+3x2﹣1存在唯一的零点x0,且x0<0,则实数a的取值范围是(﹣∞,﹣2).【分析】讨论a的取值范围,求函数的导数判断函数的极值,根据函数极值和单调性之间的关系进行求解即可.【解答】解:(i)当a=0时,f(x)=﹣3x2+1,令f(x)=0,解得x=,函数f (x)有两个零点,舍去.(ii)当a≠0时,f′(x)=3ax2+6x=3ax(x+),令f′(x)=0,解得x=0或﹣.①当a<0时,﹣>0,当x>﹣或x<0,f′(x)<0,此时函数f(x)单调递减;当0<x<﹣时,f′(x)>0,此时函数f(x)单调递增.∴故x=﹣是函数f(x)的极大值点,0是函数f(x)的极小值点.∵函数f(x)=ax3+3x2﹣1存在唯一的零点x0,且x0<0,则f(﹣)=﹣+﹣1=﹣1<0,即a2>4得a>2(舍)或a<﹣2.②当a>0时,﹣<0,当x<﹣或x>0时,f′(x)>0,此时函数f(x)单调递增;当﹣<x<0时,f′(x)<0,此时函数f(x)单调递减.∴x=﹣是函数f(x)的极大值点,0是函数f(x)的极小值点.∵f(0)=﹣1<0,∴函数f(x)在(0,+∞)上存在一个零点,此时不满足条件.综上可得:实数a的取值范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【点评】本题考查了利用导数研究函数的单调性极值与最值、函数的零点,考查了分类讨论方法、推理能力与计算能力,属于中档题.18.已知函数f(x)=2x3﹣ax2+2在x=2处取得极值,则实数a=6.【分析】先求出导函数f'(x),又x=2是函数f(x)的一个极值点,利用f'(2)=0,求出a的值.【解答】解:f'(x)=6x2﹣2ax,f'(2)=24﹣4a=0,∴a=6.故答案为:6.【点评】本题考查极值点的定义,属于简单题.19.若函数f(x)=ax2+xlnx有两个极值点,则实数a的取值范围是.【分析】将题目等价转化为导函数方程有两个不同的正实根后,既可以采用不完全分离参数法数形结合求解(如法1),也可以采用常规的完全分离参数法,数形结合求解(如法2),相比较而言,法2更容易理解.【解答】解:法1:函数f(x)=ax2+xlnx有两个极值点,即导函数f'(x)=2ax+lnx+1在(0,+∞)上有两个变号零点,即方程lnx=﹣2ax﹣1有两个不同正实数根,即函数y=lnx与函数y=﹣2ax﹣1有两个不同的交点,作出图象如右图;设恒过定点的函数y=﹣2ax﹣1与函数y=lnx相切于点(x0,y0),则有,解得x0=1,y0=0,即切点为(1,0),此时直线的斜率为k=1,由图象可知,要使函数y=lnx与函数y=﹣2ax﹣1有两个不同的交点,则0<﹣2a<1,即a∈(﹣,0),法2:转化为导函数f'(x)=2ax+lnx+1在(0,+∞)上有两个变号零点,分离参数得到,方程﹣2a=在(0,+∞)上有两个不同的实根,令g(x)=,定义域为x>0,g′(x)=,则x∈(0,1)时,g'(x)>0,函数g(x)单调递增,x∈(1,+∞)时,g'(x)<0,函数g(x)单调递减,故g(x)max=g(1)=1,</br>作出函数y=g(x)和y=﹣2a的图象于同一个坐标系中,则得到0<﹣2a<1,即a∈(﹣,0),故答案为:(﹣,0).【点评】这类题目往往需要在函数和方程之间多次转化,需要我们对相关的知识要很清楚,另外需要了解常见的分离参数法的不同类型.20.已知函数若方程f(x)﹣m=0恰有两个实根,则实数m的取值范围是.【分析】研究x>0与x≤0时,f(x)的单调性、极值情况,画出图象,然后研究y=a 与y=f(x)恰有两个交点时a的取值范围.【解答】解:(1)x≤0时,f′(x)=e x﹣x﹣1,易知f′(0)=0,而f″(x)=e x﹣1<0,所以f′(x)在(﹣∞,0]上递减,故f′(x)≥f′(0)=0,故f(x)在(﹣∞,0]上递增,且f(x)≤f(0)=,当x→﹣∞时,f(x)→﹣∞.(2)x>0时,,令f′(x)>0,得0<x<e;f′(x)<0得x>e;故f(x)在(0,e)上递增,在(e,+∞)递减,故x>0时,;x→0时,f(x)→﹣∞;x→+∞时,f(x)→0.由题意,若方程f(x)﹣m=0恰有两个实根,只需y=m与y=f(x)恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y=m在图示①,②位置时,与y=f(x)有两个交点,所以m的范围是:.故答案为:.【点评】本题考查利用导数研究函数的单调性、极值等性质,进而结合图象研究函数的零点问题.属于中档题.21.已知函数f(x)=x3﹣3a2x+a(a>0)的极大值为正数,极小值为负数,则a的取值范围是.【分析】先利用导数求函数的极大值和极小值,再解不等式.【解答】解∵f′(x)=3x2﹣3a2(a>0),∴由f′(x)>0得:x>a或x<﹣a,由f′(x)<0得:﹣a<x<a.∴当x=a时,f(x)有极小值,x=﹣a时,f(x)有极大值.由题意得:解得a>.故答案为【点评】本题考查导数求函数的极值.解决函数的极值问题,导数是唯一方法.极值点左右两边的导数符号必须相反.22.已知函数f(x)=ae x﹣x2有两个极值点,则实数a的取值范围是(0,).【分析】求出函数的导数,问题转化为y=a和g(x)=在R上有2个交点,根据函数的单调性求出g(x)的范围,从而求出a的范围即可.【解答】解:f′(x)=ae x﹣2x,若函数f(x)=ae x﹣x2有两个极值点,则y=a和g(x)=在R上有2个交点,g′(x)=,x∈(﹣∞,1)时,即g′(x)>0,g(x)递增,x∈(1,+∞)时,g′(x)<0,g(x)递减,故g(x)max=g(1)=,而>0恒成立,所以0<a<,故答案为:(0,).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.23.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为6.【分析】先求出f′(x),根据f(x)在x=2处有极大值则有f′(2)=0得到c的值为2或6,先让c=2然后利用导数求出函数的单调区间,从而得到x=2取到极小值矛盾,所以舍去,所以得到c的值即可.【解答】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∞,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.三.解答题(共5小题)24.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【分析】(1)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(2)通过(1)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=.【解答】解:(1)因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),所以等价于f(x)在x=1处是极小值,所以解得a=1;(2)由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,又t()=>0,所以t(x)在(0,)上存在唯一零点,所以t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【点评】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.25.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【分析】法一:(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.法二:(1)显然x=1不是函数f(x)的零点,当x≠1时,方程f(x)=0等价于﹣a=,设g(x)=,通过研究g(x)函数的单调性与值域范围,即可求解.(2)不妨设x1<1<x2,要证x1+x2<2,只需证x2<2﹣x1,由函数g(x)在(1,+∞)上单调递增,只需证明g(x2)<g(2﹣x1),即g(x1)<g(2﹣x1),即∀x<1,e x(x ﹣2)+e2﹣x•x<0,令h(x)=e x(x﹣2)+e2﹣x•x,利用导数证得h(x)<0即可得证.【解答】法一:解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<x﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞).证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.法二:(1)解:显然x=1不是函数f(x)的零点,当x≠1时,方程f(x)=0等价于﹣a=,设g(x)=,求导g'(x)=,故函数g(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,∵函数g(x)在(﹣∞,1)上的值域为(﹣∞,0),在(1,+∞)上的值域为(﹣∞,+∞),∴当﹣a<0时,函数f(x)有两个零点,故所求a取值范围为(0,+∞).(2)证明:根据(1)的结果,不妨设x1<1<x2,则只需证x2<2﹣x1,考虑函数f(x)在(1,+∞)上单调递增,于是只需证明f(x2)<f(2﹣x1),即f(x1)<f(2﹣x1),接下来证∀x<1,f(x)﹣f(2﹣x)<0,即∀x<1,e x(x﹣2)+e2﹣x•x<0,令h(x)=e x(x﹣2)+e2﹣x•x,h′(x)=(e x﹣e2﹣x)(x﹣1),当x<1时有e x﹣e2﹣x<0,所以h′(x)>0,所以在(﹣∞,1)上,h(x)单调递增,所以h(x)<h(1)=0,因此原命题得证.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.26.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)方法一:分离参数可得a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.结合图象即可求得a.方法二:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点.②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.利用h′(x)=ax(x﹣2)e﹣x,可得h(x)在(0,2)递减,在(2,+∞)递增,结合函数h(x)图象即可求得a.【解答】解:(1)证明:当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1.(2)方法一:f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当x→0时,G(x)→+∞,当x→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.方法二:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点.②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.h′(x)=ax(x﹣2)e﹣x,当x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0,∴h(x)在(0,2)递减,在(2,+∞)递增,∴,(x≥0).当h(2)<0时,即a,(i)由于h(0)=1,当x>0时,e x>x2,可得h(4a)=1﹣==1﹣>0.h(x)在(0,+∞)有2个零点(ii)当h(2)>0时,即a,h(x)在(0,+∞)没有零点,(iii)当h(2)=0时,即a=,h(x)在(0,+∞)只有一个零点,综上,f(x)在(0,+∞)只有一个零点时,a=.【点评】本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题.27.已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.【分析】(1)f(x)的定义域为(﹣1,+∞),求出原函数的导函数,进一步求导,得到f″(x)在(﹣1,)上为减函数,结合f″(0)=1,f″()=﹣1+<﹣1+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一得零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;(2)由(1)知,当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)>0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f′()<0,可得函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈()时,f(x)单调递减.当x∈(,π)时,f(x)单调递减,再由f()>0,f(π)<0.然后列x,f′(x)与f(x)的变化情况表得答案.【解答】证明:(1)f(x)的定义域为(﹣1,+∞),f′(x)=cos x,f″(x)=﹣sin x+,令g(x)=﹣sin x+,则g′(x)=﹣cos x<0在(﹣1,)恒成立,∴f″(x)在(﹣1,)上为减函数,又∵f″(0)=1,f″()=﹣1+<﹣1+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一的零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;(2)由(1)知,当x∈(﹣1,0)时,f′(x)单调递增,f′(x)<f′(0)=0,f(x)单调递减;当x∈(0,x0)时,f′(x)单调递增,f′(x)>f′(0)=0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f′()=<0,由零点存在定理可知,函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f′(x)单调递减,f′(x)>f′(x1)=0,f(x)单调递增;当x∈()时,f′(x)单调递减,f′(x)<f′(x1)=0,f(x)单调递减.当x∈(,π)时,cos x<0,﹣<0,于是f′(x)=cos x﹣<0,f(x)单调递减,其中f()=1﹣ln(1+)>1﹣ln(1+)=1﹣ln2.6>1﹣lne=0,f(π)=﹣ln(1+π)<﹣ln3<0.于是可得下表:()结合单调性可知,函数f (x)在(﹣1,]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(,π)上有且只有一个零点x2,当x∈[π,+∞)时,sin x≤1<ln(1+x),则f(x)=sin x﹣ln(1+x)<0恒成立,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【点评】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大.28.已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【分析】(1)由f′(0)=2,可得切线斜率k=2,即可得到切线方程.(2)可得=﹣.可得f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(2)=4a+1>0只需(x)≥﹣e,即可.【解答】解:(1)=﹣.∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,∴曲线y=f(x)在点(0,﹣1)处的切线方程为y﹣(﹣1)=2x.即2x﹣y﹣1=0为所求.(2)证明:函数f(x)的定义域为:R,可得=﹣.令f′(x)=0,可得,当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(2)=4a+1>0,故g(x)在(2,+∞)上恒大于零,即f(x)=在(2,+∞)上恒大于零.函数f(x)的图象如下:∵a≥1,∴,则≥﹣e,∴f(x)≥﹣e,∴当a≥1时,f(x)+e≥0.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.。
函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点Þ()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点Þ导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点)5、求极值点的步骤:(1)筛选:令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。
利用导数求函数的极值
例 求下列函数的极值:
1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21
2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值.
解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f
令0)(='x f ,得2±=x .
当2>x 或2-<x 时,0)(>'x f ,
∴函数在()2,-∞-和()+∞,2上是增函数;
当22<<-x 时,0)(<'x f ,
∴函数在(-2,2)上是减函数.
∴当2-=x 时,函数有极大值16)2(=-f ,
当2=x 时,函数有极小值.16)2(-=f
2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2
令0)(='x f ,得0=x 或2=x .
当0<x 或2>x 时,0)(<'x f ,
∴函数)(x f 在()0,∞-和()+∞,2上是减函数;
当20<<x 时,0)(>'x f ,
∴函数)(x f 在(0,2)上是增函数.
∴当0=x 时,函数取得极小值0)0(=f ,
当2=x 时,函数取得极大值2
4)2(-=e f .
3.函数的定义域为R . .)
1()1)(1(2)1(22)1(2)(22222++-=+⋅-+='x x x x x x x x f
令0)(='x f ,得1±=x .
当1-<x 或1>x 时,0)(<'x f ,
∴函数)(x f 在()1,-∞-和()+∞,1上是减函数;
当11<<-x 时,0)(>'x f ,
∴函数)(x f 在(-1,1)上是增函数.
∴当1-=x 时,函数取得极小值3)1(-=-f ,
当1=x 时,函数取得极大值.1)1(-=f
说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数
)(x f 在0x 处有极值的必要条件,
如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误.
复杂函数的极值
例 求下列函数的极值:
1.)5()(32-=x x x f ;2..6)(2--=x x x f
分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”.
解:1..3)2(533)5(2)5(32
)(33323x
x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点.
当0<x 或2>x 时,0)(>'x f ,
∴函数)(x f 在()0,∞-和()+∞,2上是增函数;
当20<<x 时,0)(<'x f ,
∴函数)(x f 在(0,2)上是减函数.
∴当0=x 时,函数取得极大值0)0(=f ,
当2=x 时,函数取得极小值343)2(-=f .
2.⎪⎩⎪⎨⎧<<-++-≥-≤--),
32(,6),32(,6)(22x x x x x x x x f 或 ∴⎪⎩
⎪⎨⎧=-=<<-+->-<-').32(,),32(,12),32(,12)(x x x x x x x x f 或不存在或
令0)(='x f ,得21=
x . 当2-<x 或32
1<<x 时,0)(<'x f , ∴函数)(x f 在()2,-∞-和⎪⎭⎫
⎝⎛3,21上是减函数;
当3>x 或2
12<<-x 时,0)(>'x f , ∴函数)(x f 在()+∞,3和⎪⎭⎫ ⎝⎛
-21,2上是增函数.
∴当2-=x 和3=x 时,函数)(x f 有极小值0, 当21=x 时,函数有极大值4
25. 说明:在确定极值时,只讨论满足0)(0='x f 的点附近的导数的符号变化情况,确定极值是不全面的.在函数定义域内不可导的点处也可能存在极值.本题1中0=x 处,2中
2-=x 及3=x 处函数都不可导,
但)(x f '在这些点处左右两侧异号,根据极值的判定方法,函数)(x f 在这些点处仍取得极值.从定义分析,极值与可导无关.
根据函数的极值确定参数的值
例 已知)0()(2
3≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .
1.试求常数a 、b 、c 的值;
2.试判断1±=x 是函数的极小值还是极大值,并说明理由.
分析:考察函数)(x f 是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为0)(='x f 的根建立起由极值点1±=x 所确定的相关等
式,运用待定系数法求出参数a 、b 、c 的值.
解:1.解法一:c bx ax x f ++='23)(2.
1±=x 是函数)(x f 的极值点,
∴1±=x 是方程0)(='x f ,即0232
=++c bx ax 的两根,
由根与系数的关系,得 ⎪⎪⎩⎪⎪⎨⎧-==-)()(2 ,131 ,032a
c a b 又1)1(-=f ,∴1-=++c b a , (3)
由(1)、(2)、(3)解得2
3,0,21-===c b a . 解法二:由0)1()1(='=-'f f 得
023=++c b a , (1)
023=+-c b a (2)
又1)1(-=f ,∴1-=++c b a , (3)
解(1)、(2)、(3)得2
3,0,21-===
c b a . 2.x x x f 2321)(3-=,∴).1)(1(232323)(2+-=-='x x x x f 当1-<x 或1>x 时,0)(>'x f ,当11<<-x 时,.0)(<'x f
∴函数)(x f 在()1,-∞-和()+∞,1上是增函数,在(-1,1)上是减函数.
∴当1-=x 时,函数取得极大值1)1(=-f ,
当1=x 时,函数取得极小值1)1(-=f .
说明:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化,在转化的过程中充分运用了已知条件确定了解题的大方向.可见出路在于“思想认识”.在求导之后,不会应用0)1(=±'f 的隐含条件,因而造成了解决问题的最大思维障碍.。