多元函数的极值与最优化问题(课堂PPT)
- 格式:ppt
- 大小:3.44 MB
- 文档页数:8
多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。