自考-数量方法-讲义二
- 格式:pdf
- 大小:569.22 KB
- 文档页数:10
《数量方法(二)》(代码00994)自学考试复习提纲第一章 数据的整理和描述⊙基本知识点:一、 数据的分类: 按照描述的事物分类:1.分类型数据:描述的是事物的品质特征,本质表现是文字形式; 2.数量型数据:事物的数量特征,用数据形式表示; 3.日期和时间型数据。
按照被描述的对象与时间的关系分类:1.截面数据:事物在某一时刻的变化情况,即横向数据;2.时间序列数据:事物在一定的时间范围内的变化情况,即纵向数据; 3.平行数据:是截面数据与时间序列数据的组合。
二、 数据的整理和图表显示:1.组距分组法:1) 将数据按上升顺序排列,找出最大值max 和最小值min ; 2) 确定组数,计算组距c ;3) 计算每组的上、下限(分组界限)、组中值及数据落入各组的频数v i(个数)和频率i f (∑∑⨯≈mimii v y v 11=频数的和组中值)的和(频数平均数),形成频率分布表;4) 唱票记频数;5) 算出组频率,组中值; 6) 制表。
2.饼形图:用来描述和表现各成分或某一成分占全部的百分比。
注意:成分不要多于6个,多于6个一般是从中选出5个最重要的,把剩下的全部合并成为“其他”;成分份额总和必须是100%;比例必须于扇形区域的面积比例一致。
3.条形图:用来对各项信息进行比较。
当各项信息的标识(名称)较长时,应当尽量采用条形图。
4.柱形图:如果是时间序列数据,应该用横坐标表示时间,纵坐标表示数据大小,即应当使用柱形图,好处是可以直观的看出事物随时间变化的情况。
5.折线图:明显表示趋势的图示方法。
简单、容易理解,对于同一组数据具有唯一性。
6.曲线图:许多事物不但自身逐渐变化,而且变化的速度也是逐渐变化的。
具有更加自然的特点,但是不具有唯一性。
7.散点图:用来表现两个变量之间的相互关系,以及数据变化的趋势。
8.茎叶图:把数据分成茎与叶两个部分,既保留了原始数据,又直观的显示出了数据的分布。
三、 数据集中趋势的度量:1.平均数:容易理解,易于计算;不偏不倚地对待每一个数据;是数据集地“重心”;缺点是它对极端值十分敏感。
全国2018年4月自学考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.一个试验中所有基本事件的全体所组成的集合称为()A.集合B.单元C.样本空间D.子集2.对于峰值偏向右边的单峰非对称直方图,一般来说()A.平均数>中位数>众数B.众数>中位数>平均数C.平均数>众数>中位数D.中位数>众数>平均数3.下列统计量中可能取负值的是()A.相关系数B.判定系数C.估计标准误差D.剩余平方和4.设A、B、C为任意三个事件,则“在这三个事件中A与B不发生但是C发生”可以表示为()A.A B C B.A B CC.AB C D.ABC5.样本估计量的分布称为()A.总体分布B.抽样分布C.子样分布D.经验分布6.估计量的一致性是指随着样本容量的增大,估计量()A.愈来愈接近总体参数值B.等于总体参数值C.小于总体参数值D.大于总体参数值7.原假设为假时,根据样本推断其为真的概率称为()A.显著性水平B.犯第一类错误的概率C.犯第二类错误的概率D.错误率8.一个实验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8,10},则A B C=()A.{2,3} B.{2,4}12C .{4}D .{1,2,3,4,6,8}9.一个服从二项分布的随机变量,其方差与数字期望之比为3/4,则该分布的参数P 是( )A .1/4B .2/4C .3/4D .110.在一次抛硬币的试验中,小王连续抛了3次,则全部是正面向上的概率为( )A .91B .81C .61 D .3111.在一场篮球比赛中,A 队10名球员得分的方差是9,变异系数是0.2,则这10球员人均得分为( ) A .0.6 B .1.8 C .15D .2012.设A 、B 为两个事件,P (B )=0.7,P (B A )=0.3,则P (A +B )=( ) A .0.3 B .0.4 C .0.6D .0.713.已知某批水果的坏果率服从正态分布N (0.04,0.09),则这批水果的坏果率的标准差为( )A .0.04B .0.09C .0.2D .0.314.设总体X~N (μ,2σ),X 为该总体的样本均值,则( ) A .P (X <μ=<1/4 B .P (X <μ==1/4 C .P (X <μ=>1/2D .P (X <μ)=1/215.设总体X 服从正态分布N (μ,20σ),20σ已知,用来自该总体的简单随机样本X 1,X 2,…,X n 建立总体未知参数μ的置信水平为1-α的置信区间,以L 表示置信区间的长度,则( )A .α越大L 越小B .α越大L 越大C .α越小L 越小D .α与L 没有关系16.假设总体服从正态分布,在总体方差未知的情况下,检验H o :μ=0μ, H 1:μ>0μ的统计量为t =nS x /0μ-,其中n 为样本容量,S 为样本标准差,如果有简单随机样本X 1,X 2,…,X n ,与其相应的t <t a (n -1),则( ) A .肯定拒绝原假设B .肯定接受原假设C.有可能拒绝原假设D.有可能接受原假设17.一元回归直线拟合优劣的评价标准是()A.估计标准误差越小越好B.估计标准误差越大越好C.回归直线的斜率越小越好D.回归直线的斜率越大越好18.已知环比增长速度为2%、5%、6.1%,则定基增长速度为()A.2%×5%×6.1% B.(2%×5%×6.1%)-1C.102%×105%×106.1% D.(102%×105%×106.1%)-119.按照指数所反映的内容不同,指数可分为()A.个体指数和总指数B.简单指数和加权指数C.数量指标指数和质量指标指数D.动态指数和静态指数20表中a和b的数值应该为()A.125和120 B.120和80C.80和125 D.95和80二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
全国2009年4月高等教育自学考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.一个试验中所有基本事件的全体所组成的集合称为()A.集合B.单元C.样本空间D.子集2.对于峰值偏向右边的单峰非对称直方图,一般来说()A.平均数>中位数>众数B.众数>中位数>平均数C.平均数>众数>中位数D.中位数>众数>平均数3.下列统计量中可能取负值的是()A.相关系数B.判定系数C.估计标准误差D.剩余平方和4.设A、B、C为任意三个事件,则“在这三个事件中A与B不发生但是C发生”可以表示为()A.B.C C.AB D.ABC5.样本估计量的分布称为()A.总体分布B.抽样分布C.子样分布D.经验分布6.估计量的一致性是指随着样本容量的增大,估计量()A.愈来愈接近总体参数值B.等于总体参数值C.小于总体参数值D.大于总体参数值7.原假设为假时,根据样本推断其为真的概率称为()A.显著性水平B.犯第一类错误的概率C.犯第二类错误的概率D.错误率8.一个实验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8,10},则A C=()A.{2,3} B.{2,4}C.{4} D.{1,2,3,4,6,8}9.一个服从二项分布的随机变量,其方差与数字期望之比为3/4,则该分布的参数P是()A.1/4 B.2/4C.3/4 D.110.在一次抛硬币的试验中,小王连续抛了3次,则全部是正面向上的概率为()A.1/9 B.1/8 C.1/6 D.1/311.在一场篮球比赛中,A队10名球员得分的方差是9,变异系数是0.2,则这10球员人均得分为()A.0.6 B.1.8C.15 D.2012.设A、B为两个事件,P(B)=0.7,P(B)=0.3,则P(+)=()A.0.3 B.0.4 C.0.6 D.0.713.已知某批水果的坏果率服从正态分布N(0.04,0.09),则这批水果的坏果率的标准差为()A.0.04 B.0.09C.0.2 D.0.314.设总体X~N(,),为该总体的样本均值,则()A.P(<=<1/4 B.P(<==1/4C.P(<=>1/2 D.P(<)=1/215.设总体X服从正态分布N(,),已知,用来自该总体的简单随机样本X1,X2,…,Xn建立总体未知参数的置信水平为1-的置信区间,以L表示置信区间的长度,则()A.越大L越小B.越大L越大C.越小L越小D.与L没有关系16.假设总体服从正态分布,在总体方差未知的情况下,检验H o:=, H1:>的统计量为t=,其中n为样本容量,S为样本标准差,如果有简单随机样本X1,X2,…,X n,与其相应的t<t a(n-1),则()A.肯定拒绝原假设B.肯定接受原假设C.有可能拒绝原假设D.有可能接受原假设17.一元回归直线拟合优劣的评价标准是()A.估计标准误差越小越好B.估计标准误差越大越好C.回归直线的斜率越小越好D.回归直线的斜率越大越好18.已知环比增长速度为2%、5%、6.1%,则定基增长速度为()A.2%×5%×6.1% B.(2%×5%×6.1%)-1C.102%×105%×106.1% D.(102%×105%×106.1%)-119.按照指数所反映的内容不同,指数可分为()A.个体指数和总指数B.简单指数和加权指数C.数量指标指数和质量指标指数D.动态指数和静态指数20.某商店商品销售资料如下:表中a和b的数值应该为()A.125和120 B.120和80C.80和125 D.95和80二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
全国2010年7月自考数量方法(二)试题一、单项选择题(本大题共20小题,每小题2分,共40分)1.一个数列的平均数是8,变异系数是0.25,则该数列的标准差是( )A.2B.4C.16D.322.一般用来表现两个变量之间相互关系的图形是( )A.柱形图B.饼形图C.散点图D.曲线图3.A与B为互斥事件,则A B为( )A.ABB.BC.AD.A+B4.从1到100这100个自然数中任意取一个,取到能被3整除的偶数的概率是( )A.0.16B.0.18C.0.2D.0.215.设A、B为两个事件,则A-B表示( )A.“A发生且B不发生”B.“A、B都不发生”C.“A、B都发生”D.“A不发生或者B发生”6.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,则P(AB)为( )A.0.2B.0.3C.0.7D.0.87.某工厂用送样品的方式推销产品,平均每送10份样品,就收到两份订单,假定用户间的决策互不影响。
当该工厂发出30份样品时,它将收到订单的数量是( )A.2B.4C.6D.无法确定8.已知离散型随机变量X概率函数为P{X=i}=p i+1,i=0,1。
则p的值为( )A.(-1-51/2)/2B.(-l+51/2)/2C.(-l±51/2)/2D.P=1/29.对随机变量离散..程度进行描述时,通常采用( )A.分布律B.分布函数C.概率密度函数D.方差10.对于一列数据来说,其众数( )A.一定存在B.可能不存在C.是唯一的D.是不唯一的11.在一次知识竞赛中,参赛同学的平均得分是80分,方差是16,则得分的变异系数是( )A.0.05B.0.2C.5D.2012.样本估计量的数学期望与待估总体的真实参数之间的离差..称为( )A.偏差B.方差C.标准差D.相关系数13.在评价总体真实参数的无偏估计量和有偏估计量的有效性时,衡量标准为( ) A.偏差 B.均方误 C.标准差D.抽样误差14.在假设检验中,如果仅仅关心总体均值与某个给定值是否有显著区别,应采用( ) A.单侧检验 B.单侧检验或双侧检验 C.双侧检验D.相关性检验15.某销售商声称其销售的某种商品次品率P 低于1%,则质检机构对其进行检验时设立的原假设应为 A.H 0:P<0.01 B.H 0:P ≤0.01 C.H 0:P=0.01D.H 0:P ≥0.0116.在直线回归方程i yˆ=a+bx 中,若回归系数b=0,则表示( ) A.y 对x 的影响显著 B.y 对x 的影响不显著 C.x 对y 的影响显著D.x 对y 的影响不显著17.如果回归平方和SSR 与剩余平方和SSE 的比值为4∶1,则判定系数为( ) A.0.2 B.0.4 C.0.6D.0.818.若平均工资提高了5%,职工人数减少5%,则工资总额( ) A.降低2.5% B.提高2.5% C.降低0.25%D.提高0.25%19.反映城乡商品零售价格变动趋势的一种经济指数被称为( ) A.数量指数 B.零售价格指数 C.质量指数D.总量指数 20.设p 为价格,q 为销售量,则指数010q p q p ∑∑( )A.综合反映多种商品的销售量的变动程度B.综合反映商品价格和销售量的变动程度C.综合反映商品销售额的变动程度D.综合反映多种商品价格的变动程度二、填空题(本大题共5小题,每小题2分,共10分)21.数列2、3、3、4、1、5、3、2、4、3、6的众数是__________。
数量方法串讲讲义一、考试介绍:1、考试时间:2014年5月17日 14:30-17:15,请同学们提前查看考场所在位置。
2、考试题型:试题包括必答题和选答题两部分,必答题满分60分,选答题满分40分。
必答题为一、二、三题,每题20分。
一、包括1-20 单选题20个,每题1分,共20分;二、包括21-24共四个小题,每小题5分,共20分;三、包括25-28共四个小题,每小题5分,共20分;选答题为四、五、六、七题,每题20分。
四、五、六、七题为选答题,每题包括若干个小题,共20分,任选两题回答,不得多选。
多选者只按选答的前两题计分。
60分为及格线。
3、题型分析:单选题只有一个答案是正确的,单选题难度不大,请大家认真读题,每年考试题目比较固定,建议同学们举一反三,多做练习。
必答题和选答题均为画图或计算类的题目,对于会做的计算题一定不要失分,一定要认真审题,一定要写公式,按步骤完成,评分标准是按计算步骤给分的。
本串讲讲义涵盖了所有考试的知识点,希望同学们加油复习,由于时间比较紧张,同学们对个别出现在选答题中的知识点,可以有选择的复习。
二、复习计划:第一阶段:先复习串讲讲义中我给大家罗列的考试大纲要求的各种公式,结合后面的考试真题,力争熟练掌握。
第二阶段:至少做5套模拟题或历届真题,实战演练,掌握各类题目的答题技巧,巩固提高。
每年考试知识点固定,大家多背多练,肯定能顺利通过的。
我给同学们的测试卷优先做带答案的,数量方法(二)相对难一些,我们考试比这个难度低,仅供参考。
虽然《数量方法》这门课程涵盖的考点很多,但是每年考题并不难,且题型固定,每个考点练习1-2道类似的题目,做到举一反三就没问题了。
希望同学们认真复习,顺利通过考试,期待大家的好消息!三、各章考点:第一章数据的收集一、数据的定义:数据是通过观察、计数、测量等方法得到的信息所组成的集合。
二、离散型数据:指取值可以一一列举出来的数据。
三、连续型数据:指取值的情况不能一一列举的数据。
自考数量方法(二)公式小抄第一至四章◆:平均数◆:加权算术◆:数据分布不是对称分部时:左偏分布时:众数<中位数<平均数右偏分布时:众数>中位数>平均数◆:方差()的计算公式为:◆:变异系数是标准差与平均数的比值,即:◆:广义加法公式:P(A∪B∪C)=P(A)+P(B)+P(C)—P(AB)-P(AC)-P(BC)+P(ABC)◆:当A和B互斥时:P(AB)=0,当A和B相互独立,P(AB)=P(A)P(B)◆全概率公式:◆期望值:◆方差:D(a+bx)=b2D(X)◆:二项分布二项分布为X~B(n、p) E(X)= np 方差D(X)= np(1-p)(必考)◆:泊松公布:X~P()E(X)=(期望值)标准差D(X)=e为自然数=2.71828当n很大并且P很小时,可以利用泊松分布来近似地计算二项分布。
泊松分布特征值:E(X)=(期望值) 标准差D(X)=◆期望值E(x)=∑X i P i E(y)=∑y J p JE(x×y)=∑(x i,y i)×P(x=x i,y=y j)E(x+y)=E(x)+E(y) E(ax+by)=aE(x)+bE(y) ◆协方差:Cov(x,y)=E(xy)-E(x)E(y)◆相关系数(取值为-1——+1)D(ax+by)=a2D(x)+ b2D(y)+2ab×cov(xy)X,y独立时D(ax+by)= a2D(x)+ b2D(y)成立。
协方差为0◆抽样标准误差,即有代表性误差又有偏差为均方误差(必考)◆样本均值:;◆样本方差:;◆:重复:样本均值方差自考数量方法(二)公式小抄第五章(必考)◆总体均值的置信区间(置信度1-α)◆大样本,两个总体比例之差()的置信区间,◆置信度(1-α):◆总体比例的区间估计:数量方法(二)公式小抄第六章(必考)◆总体比例的假设检验:数量方法(二)公式小抄第七章◆总体相关系数:(必考)◆样本相关系数:(必考)◆回归直线,其中称为斜率,称为截距;◆总变差平方和=剩余平方和+回归平方和◆SST=SSE+SSR◆判定系数:◆估计标准误差(Sy):表示y的估计标准误差。
1全国2018年7月高等教育自学考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.有一组数据的平均数和标准差分别为50、25,这组数据的变异系数为( ) A.0.2 B.0.4 C.0.5D.0.72.一组数据中集中出现次数最多的数值,称为该组数据的( ) A.平均数 B.中位数 C.众数D.标准差3.对随机事件A 、B 、C ,用E 表示事件:A 、B 、C 三个事件中至少有一个事件发生,则E 可表示为( ) A.AUBUC B.Ω-ABC C.C U B U AD.C B A4.设A 、B 为两个事件,P (A )=0.8,P (A B )=0.3,则P (AB )=( ) A.0.2 B.0.3 C.0.4D.0.55.一般正态分布N (μ,σ2)的概率分布函数Φ(x )转换为标准正态分布N (0,1)的概率分布函数时表示为( ) A.Φ0(x ) B.Φ0)x (σμ- C.Φ0(x-μ)D.Φ0)x (σ6.对任意实数x ,随机变量x 的分布函数F (x )的值一定( ) A.大于1 B.大于等于0而小于等于1 C.小于0D.位于负1到正1之间7.从一个包含80个单元的有限总体中抽取容量为3的样本,可能的样本数为( ) A.900 B.3450 C.20540D.8216028.对于容量为N 的总体进行不重复抽样(样本容量为n ),样本均值X 的方差为( ) A.)1N n N (n 2--σB.n 2σ C.)Nn N (n 2-σ D.1N 2-σ 9.根据样本估计值以一定的概率给出总体参数的数值范围,被称作总体参数的( ) A.假设检验 B.显著性水平 C.区间估计D.否定域10.对两个正态总体X~N (μ1,σ2),Y~N (μ2,σ2),若均值差μ1-μ2的置信区下限大于0,表明( ) A.确定μ1>μ2 B.以一定置信度认为μ1>μ2 C.确定μ1<μ2D.以一定置信度认为μ1<μ211.在假设检验中,犯第一类错误的概率α与犯第二类错误的概率β之间的关系是( ) A.α与β一定相等 B.α大则β也大 C.α+β=1D.α小则β大12.在关于两个总体的独立性假设检验中,应采用( ) A.t 统计量 B.χ2统计量 C.Z 统计量D.F 统计量13.对变量之间进行回归分析,其目的是研究变量之间的( ) A.数量关系 B.线性相关的形式 C.因果关系D.线性相关的程度14.时间数列的增长量与基期水平之比,用以描述现象的相对增长速度,被称作( ) A.增长速度 B.环比发展速度 C.平均增长量D.定基发展速度15.居民消费价格指数是反映一定时期内居民所购买的生活消费品价格和服务项目价格的变动趋势和程度的一种( ) A.相对数 B.平均数 C.抽样数D.绝对数二、填空题(本大题共5小题,每空2分,共10分) 请在每小题的空格中填上正确答案。
《数量方法(二)》(代码00994)自学考试复习提纲-附件1变异系数:表示数据相对于其平均数的分散程度。
%100⨯=xV σ⊙基本运算方法:1、一组数据3,4,5,5,6,7,8,9,10中的中位数是( ) A .5 B .5.5 C .6 D .6.5解析:按从小到大排列,此九个数中,正中间的是6,从而答案为C 。
2、某企业30岁以下职工占25%,月平均工资为800元;30—45岁职工占50%, 月平均工资为1000元;45岁以上职工占25%,月平均工资1100元,该企业全 部职工的月平均工资为( ) A .950元 B .967元 C .975元 D .1000元解析:25%*800+50%*1000+25%*1100=975,故选C 。
3、有一组数据的平均数和标准差分别为50、25,这组数据的变异系数为( ) A.0.2 B.0.4 C.0.5D.0.7解析:变异系数%100⨯=xV σ=250.550=,故选C 。
4、若两组数据的平均值相差较大,比较它们的离散程度应采用( ) A .极差 B .变异系数 C .方差 D .标准差 解析:考变异系数的用法,先B 。
5、一组数据4,4,5,5,6,6,7,7,7,9,10中的众数是( ) A .6 B .6.5 C .7D .7.5解析:出现最多的数为众数,故选C 。
6、对于峰值偏向左边的单峰非对称直方图,一般来说( ) A .平均数>中位数>众数 B .众数>中位数>平均数 C .平均数>众数>中位数 D .中位数>众数>平均数 解析:数据分布是对称分部时: 众数=中位数=平均数数据分布不是对称分部时:左偏分布时:众数<中位数<平均数右偏分布时:众数>中位数>平均数需要记住提,峰值偏向左边的单峰非对称直方图称为右偏分布,峰值偏向右边的单峰非对称直方图称为左偏分布,从而此题答案为B 。
第二章 随机事件及其概率⊙基本知识点:一、 随机试验与随机事件:1. 随机试验:a) 可以在相同的条件下重复进行;b) 每次试验的可能结果可能不止一个,但是试验的所有可能的结果在试验之前是确切知道的;c) 试验结束之前,不能确定该次试验的确切结果。