两角和、差及倍角公式(一)
- 格式:doc
- 大小:182.50 KB
- 文档页数:4
高三一轮复习学案第18课时 两角和与差、倍角公式(一)基础知识:cos(α+β)= cos(α-β)= sin(α+β)= sin(α+β)= tan(α+β)= tan(α-β)= 变形: 转化成Asin(ωx +φ)的形式cos α+sin α=_______________=________________ cos α-sin α=_______________=________________ cos α+3sin α=_______________=________________ cos α-3sin α=_______________=________________sin2α=cos2α= = = tan2α=(sin α±cos α)2=__________________________sin 2α= cos 2α= B(08山东10)已知cos(α-π6)+sin α=435,则sin(α+7π6)的值是( )(A)-235(B)235(C)-45(D)45A(10烟台7)已知sin(π4-x)=35,则sin2x 的值为( )A.725B.1625C.1425D.1925A -B(10威海6)已知sin(α+π6)=13,则cos(2α-2π3)的值是( )A.79B.13C.-13D.-79A -B(08宁夏11)函数f(x)=cos2x +2sinx 的最小值和最大值分别为( )(A)-3,1(B)-2,2(C)-3,32(D)-2,32A -B(10烟台10)已知cos(α+π6)+sin α=235,则sin(α+π3)的值是( )A.-235B.235C.-45D.45A -B(10淄博6)已知函数f(x)=sin(x +π6).cos(x +π6)则下列判断正确的是( )A.f(x)的最小正周期为2π ,其图象的一条对称轴为x =π12B.f(x)的最小正周期为2π,其图象的一条对称轴为x =π6C.f(x)的最小正周期为π,其图象的一条对称轴为x =π12D.f(x)的最小正周期为π,其图象的一条对称轴为x =π6A -B(10青岛4)函数y =sinx.cosx +3cos 2x 的图象的一个对称中心是( )A.(π3,-32)B.(2π3,-32) C.(π3,32)D.(2π3,32) A -B(09湖北3) “sin α=12”是“cos2α=12”的( )条件A.充分而不必要B.必要而不充分C.充要D.既不充分与不必要A -B(08广东5)已知函数f(x)=(1+cos2x)sin 2x,x ∈R ,则f(x)是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数A(09全国Ⅰ卷4)已知tan α=4,tan β=3,则tan(α+β)=__________A(10浙江12)函数f(x)=sin 2(2x -π4)的最小正周期是 .A(08浙江12)若sin(π2+θ)=35,则cos2θ= .A -B(08四川13)函数f(x)=3sinx -cos 2x 的最大值是____________.B(10年全国Ⅰ卷14)已知α为第三象限的角,sin2α=35,则tan2α= 。
两角和与差及倍角公式【知识梳理】1.基本公式(1)sin(α±β)= . (2)cos(α±β)=. (3)tan(α±β)= . (4)sin2α= .(5)cos2α= = = 。
(6)tan2α= . 2.几个有用的公式变形式(1)变形: tan α±tan β=. (2)降幂:cos 2α= ,sin 2α= .3. 形如a sin α+b cos α的化简a sin α+b cos α=a 2+b 2sin(α+β).其中cos β= , sin β= ,tan β= ,β的终边所在象限由a 、b 的值来确定.【基础练习】1. (2010·福建)计算sin 43°cos 13°-cos 43° sin 13°的结果等于( )A. 12B. 33C. 22D. 322.sin163sin 223sin 253sin313+= ___________.3. (教材改编题)已知cos 2α=12,其中α∈⎝⎛⎭⎫-π4,0,则sin α的值为( ) A. 12 B. -12 C. 32 D. -324. 下列各式中,值为32的是( ) A. 2sin 15°cos 15° B. cos 215°-sin 215°C. 2sin 215°-1D. sin 215°+cos 215°5. 1sin 2x x -=___________ 【题型探究】1.求tan20°+tan40°+3tan20°tan40°的值;2. 已知cos α=17,cos(α+β)=-1114,α、β∈(0,π2),则cos β=________.【当堂检测】08.11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32 07.9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+的值为A.B.12- C.123. (2010·山东威海模拟)设sin α=35⎝⎛⎭⎫π2<α<π,tan(π-β)=12,则tan(α-2β)=( ) A. -247 B. -724 C. 247 D. 7244. (2010·聊城模拟)化简2+cos 2-sin 21的结果是( )A. -cos 1B. cos 1C. 3cos 1D. -3cos 1 5.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( )A. 2B.22C.12D.326. 函数y =sin x +cos ⎝⎛⎭⎫x -π6的最大值和最小值分别为____________ . 7.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是________. 8.(2008·上海春)化简:cos(π3+α)+sin(π6+α)=______ 9.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则tan(α+β)=________.10.已知α为第二象限角,sin α=53,β为第一象限角, cos β= 135,则tan(α-β)= .。
暑期培训专题三两角和差公式、二倍角公式1. 两角和与两角差公式: (2) sin( a + 3 )=(4) sin( a - 3 )=(6) tan( a - 3 )=2. 倍角公式: (1) sin2 a = ____________________________ :(2) COS2 a = _____________ = ________ (3) tan2 a =-,试求:(1) cos( ) ; (2) tan( ).5 4 3变式 1 cos75O =__________________________o2. tan 105 = ________________________54 3. 在△ ABC 中,已知 cosA =, cosB =,求 cosC 的值1354. △ ABC 不 是直角三角形,求证:tan A ta nB ta nC tan A?ta nB?ta nC1例 2、①已知 sin( + ) =, sin(2(1 ) COS ( a + 3 )= ______ (3)COS ( a - 3 )= _________(5) tan( a + 3 )=降幕公式:sin 2a2cos a = ________________;sin cos = ______例1设Q ),若sin)=—,求-tan—的值10 tan已知 sin +sin =3cos +cos—,求 cos(52变式(1)、( 07 福建)sin 15°cos75° cos15o sin105o例5、求证: cosx+sinx= ■, 2 cos(x)4二倍角公式应用:11、( 08 浙江)若 sin (— )—,贝U cos2 _____________________2 5(2) si n17 cos47sin 73 cos43 =例3.已知3■ ?, cos()44 44)的值.1 tan15 sin(—4tan1513’求 sin( +变式:已知壬 V aV, cos ( a — 3)=12 , sin ( a + 3)=—-,求 sin2 a 的值. 135例 4、tan10 tan 20 , 3(tan10 tan20 ) = __________变式〔、已知tan ,tan 是方程x 2 5x0的两个实根,求tan ( )的值。
2017年暑假补课查漏补缺两角和、差及倍角公式(1)【知识梳理】1、两角和与差的三角函数公式:=±)s i n (βα ;=±)cos(βα ; =±)tan(βα (注意:公式的逆用)2、二倍角公式:=α2sin ;=α2cos = = ; =α2tan . (注意:公式的变形运用,特别是正余弦倍角公式.)3、了解万能公式:=α2sin ;=α2cos ;=α2tan .4、辅助角公式:sin cos )a x b x x ϕ+=+,其中辅助角ϕ满足a b =ϕtan . 1、=+-)12sin 12)(cos 12sin 12(cos ππππ2、已知215sin -=α,则)4(2sin πα-= 3、若,23,54cos παπα<<-=,则=2cos α 4、000040tan 20tan 340tan 20tan ++=5、=⋅⋅⋅000080cos 60cos 40cos 20cos6、若81cos sin =x x ,且24ππ<<x ,则=-x x sin cos 7、已知βα,为锐角,552sin =α,53)cos(=+βα,则βcos 等于 8= 9、当20π<<x 时,xx y 2sin 1sin 22+=的最小值是 例1、化解下列各式: ① )4sin()4cos()4sin()4cos(x x x x ++++-+ππππ ②(1sin cos )(sin cos ))θθθθθπ++-<<例2、求值:(1))310(tan 40sin 00- (2)000010cos 1)10tan 31(80sin 50sin 2+++例3、已知tan()2tan αββ+=,求证3sin sin(2)ααβ=+例3、已知)20(πβα,、∈,且满足)cos(sin sin βααβ+=.(1)求证:αααβ2sin 1cos sin tan +=; (2)求βtan 表示成αtan 的函数关系;(3)求βtan 的最大值,并求当βtan 取得最大值时)tan(βα+的值.【巩固练习】1、0322tan 0367tan '-' =2、若==+θθπ2cos 53)2sin(,则 3、=⋅+⋅ 12sin 48cos 78sin 42cos4、=πππ145sin 143sin 14sin 5、已知1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ的值为 6、已知=+++=-22)cos (cos )sin (sin ,31)cos(βαβαβα则 7、=++ 42tan 18tan 342tan 18tan8、已知=≤≤=+θπθπθθ2cos 43251cos sin ,则,且 9、)πθπθ223_(__________2cos 21212121<<=++ 10、若=+=+αααα2sin cos 10cos sin 32,则 11、当40π<<x 时,xx x x x f 22sin sin cos cos )(-=的最小值是 12、若22sin 12()2tan sin cos 22f ααααα-=-,则()12f π= 13、求值:(1) 80sin 310sin 1- ;(3)求170sin 160tan 170cos 35cos 42⋅--的值. 14、已知)0(55cos 31tan πβαβα,、,,∈=-=.求)tan(βα+的值; (1) 求函数)cos()sin(2)(αα++-=x x x f 的最 15、已知函数f (x )=x x x 2cos cos sin 2+⋅.(1) 求)4(πf 的值; (2) 设α∈(0,π),f (2α)=22,求sin α的值. 16、证明下列各式:(1)sin(2)sin 2cos()sin sin A B B A B A A +-+= ;。
第24课两角和与差公式及二倍角公式基础知识:1.两角和与差的正弦、余弦、正切公式(1)公式①()cos cos cos :(sin sin ) C αβαβαβαβ--+=;②()cos cos cos :(sin sin ) C αβαβαβαβ-=++③():sin sin cos o n )i (c s s S αβαβαβαβ-=--;④()sin sin cos :(cos sin ) S αβαβαβαβ+=++⑤()()tan tan :tan 1tan tan T αβαβαβαβ---=+;⑥()()tan tan :tan 1tan tan T αβαβαβαβ+++=-(2)公式变形①(tan tan tan 1tan ta )()n αβαβαβ++-=;②tan tan tan 1tan t ()n )(a αβαβαβ-=-+.2.二倍角公式(1)公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-.(2)公式变形①221cos 21cos 2cos ,sin 22αααα+-==;②()21sin 2sin cos ααα+=+,()21sin 2sin cos ααα-=-,sin cos 4αααπ⎛⎫±=± ⎪⎝⎭.一、典型例题1.若1sin ,3α=且ππ2α<<,则sin2α=().A. B. C. D.答案:B解析:∵1sin ,3α=且ππ2α<<,∴22cos 3α==-,∴1sin22sin cos 2339ααα⎛==⨯⨯-=- ⎝⎭,故选B.2.若1sin 33απ⎛⎫-= ⎪⎝⎭,则cos 23απ⎛⎫+= ⎪⎝⎭().A.79 B.23 C.23- D.79-答案:D 解析:sin sin cos 3266αααπ⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,1cos 63απ⎛⎫∴+= ⎪⎝⎭,217cos 2cos 22cos 12136699αααπππ⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选D.3.已知()()π3π123,cos ,sin 24135βααβαβ<<<-=+=-,则cos2α=__________.答案:3365-解析:∵π324βαπ<<<,()12cos 13αβ-=,()5sin 13αβ∴-==,()()34sin ,cos 55αβαβ+=-∴+==- ,则()()()()()()cos 2cos cos cos sin sin ααβαβαβαβαβαβ=++-=+--+-⎡⎤⎣⎦412533351313565⎛⎫=-⨯-⨯-=- ⎪⎝⎭.二、课堂练习1.已知31tan(),tan()534αββπ+=-=,那么tan()3απ+的值为().A.318B.1323C.723 D.717答案:C解析:由31tan(),tan()534αββπ+=-=,知tan(tan[()(33ααββππ+=+--=31tan()tan(735431231tan()tan()1354αββαββπ+---==π++-+⨯,故选C.2.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.答案:12-解析:sin cos 1 αβ+=,22sin 2sin cos cos 1a a b b \++=,又cos sin 0 αβ+=,22cos 2cos sin sin 0a a b b \++=,两式相加可得22sin()1a b ++=,1sin()a b \+=-.3.记直线:210l x y -+=的倾斜角为α,则1tan2sin2αα+的值为________.答案:112-解析:∵直线:210l x y -+=的斜率为2,∴tan 2α=,∴22222sin cos 2tan 224sin2=sin cos 1tan 125ααααααα⨯===+++,222tan 224tan21tan 123ααα⨯===---,∴1541tan2sin24312αα+=-=-.三、课后作业1.若1sin 3α=,则cos2α=().A.89B.79 C.79- D.89-答案:B解析:227cos2α12sin 199α=-=-=,故选B.2.已知cos 63θπ⎛⎫+=- ⎪⎝⎭,则sin 26θπ⎛⎫-= ⎪⎝⎭().A.13 B.23 C.13- D.23-答案:C解析:由已知得221cos 22cos 116633θθ⎡π⎤π⎛⎫⎛⎫+=+-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即1cos 233θπ⎛⎫+=- ⎪⎝⎭,1sin 2sin 2cos 262333θθθπ⎡ππ⎤π⎛⎫⎛⎫⎛⎫∴-=-+=+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选C.3.已知1sin 23α=,则2cos 4απ⎛⎫-= ⎪⎝⎭().A.13 B.13- C.23 D.23-答案:C 解析:由降幂公式可得,21cos 21111124cos sin 242222233αααπ⎛⎫+- ⎪π⎛⎫⎝⎭-==+=+⨯= ⎪⎝⎭,故选C.4.已知0α<<π2β<,满足cos 5α=,sin 10β=,求αβ+的值().A.π4 B.π4或3π4 C.π2π4k + D.3π4答案:D解析:由题意得sin αβ==()cos αβ+=-,又0παβ<+<,所以3π4αβ+=,故选D.5.已知(),0,παβ∈,且()1tan 2αβ-=,1tan 5β=-,则tan2α的值为__________.答案:3356解析:()()()tan tan tan tan 1tan tan αββααββαββ-+=-+=⎡⎤⎣⎦--11325,1111125-==⎛⎫-⨯- ⎪⎝⎭22322tan 3311tan 2.1tan 563111ααα⨯===-⎛⎫- ⎪⎝⎭6.在ABC 中,已知()()212cos cos sin sin cos 22A B B A B B A C ---++=,(1)求角A ;(2)若π0,3B ⎛⎫∈ ⎪⎝⎭,且()3sin 5A B -=,求sin B .答案:(1)π3A ∠=;(2)43310-解析:(1)由题可得,()()11cos cos sin sin cos 2AB B A B B B +----=⎡⎤⎣⎦,则()()1cos cos cos sin sin cos 2B A B B A B B B +----=,则1cos 2A =,∴π3A ∠=.(2)∵π3A ∠=,π0,3B ⎛⎫∈ ⎪⎝⎭,()3sin 5A B -=,∴()4cos 5A B -=,∴()()()413sin sin sin cos cos sin B A A B A A B A A B =--=---=-⨯=⎡⎤⎣⎦。
和角差公式与二倍角公式1. 两角和与差的三角比公式(1)cos()cos cos sin sin αβαβαβ+=-,cos()cos cos sin sin αβαβαβ-=+(2)sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-(3)tan tan tan()1tan tan αβαβαβ++=-,tan tan tan()1tan tan αβαβαβ--=+ 【注】①公式成立的条件:公式(1)、(2)中,αβ为任意角,公式(3)中,αβ和αβ±的值都不能为,2k k Z ππ+∈②公式的正用、逆用与变形用:如公式(3)的变形:tan tan tan()(1tan tan )αβαβαβ+=+-tan tan tan()(1tan tan )αβαβαβ-=-+2 二倍角公式222sin 22sin cos ,cos 2cos sin 2cos 1ααααααα==-=-212sin α=-22tan tan 21tan ααα=-(其中,2αα均不为,2k k Z ππ+∈) 【注】(1)广义理解二倍角,如4α的二倍角是2α,2αβ+的二倍角为αβ+,42πα+的二倍角是2πα+(2)二倍角公式的正用、逆用和变形用,如余弦二倍角公式的变形 221cos 21cos 2cos,sin 22αααα+-==典型例题例1 利用两角和的余弦公式求cos105的值例2 若,(0,)2παβ∈,且44sin ,cos 55αβ==,求αβ+例3 已知31sin 2,tan 57αβ==-,其中,044ππαβπ-<<<< 求:(1)sin(2)αβ-的值 (2)2αβ-的值例4 已知tan θ与tan()4πθ-是方程20x px q ++=的两根,且有3tan 2tan()4πθθ=-,求p ,q 的值例5 在ABC ∆中,化简:tantan tan tan tan tan 222222A B B C C A •+•+•例6 已知sin x =sin 2()4x π-的值例7 若32ππθ<<例8已知tan θ=22cos sin 12sin()4θθπθ--+例9 已知21sin(),cos()2329αββα-=-=,且,022ππαπβ<<<<,求cos()αβ+例10 求证:8821cos sin cos 2(1sin 2)2θθθθ-=-。
2008高考数学总复习 两角和与差、二倍角的公式(一)●知识梳理 1.C (α+β)的推导角α的始边为Ox ,交单位圆于P 1,终边OP 2交单位圆于P 2,角β的始边为OP 2,终边交单位圆于P 3,角-β的始边为Ox ,终边交单位圆于P 4,由|31P P |=|42P P |,得[cos (α+β)-1]2+sin 2(α+β)=[cos (-β)-cos α]2+[sin (-β)-sin α]2.∴cos (α+β)=cos αcos β-sin αsin β. 2.S (α±β)、C (α-β)、T (α±β)以及推导线索 (1)在C (α+β)中以-β代β即可得到C (α-β). (2)利用cos (2π-α)=sin α即可得到S (α+β);再以-β代β即可得到S (α-β). (3)利用tan α=ααcos sin 即可得到T (α±β). 说明:理清线索以及各公式间的内在联系,是记忆公式的前提.只有这样才能记牢公式,才能用活公式.●点击双基1.(2004年重庆,5)sin163°sin223°+sin253°sin313°等于A.-21 B.21C.-23D.23解析:原式=sin17°·(-sin43°)+(-sin73°)(-sin47°)=-sin17°sin43°+cos17°cos43°=cos60°=21. 答案:B2.(2005年春季北京,7)在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是 A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形解析:由2sin A cos B =sin C 知2sin A cos B =sin (A +B ), ∴2sin A cos B =sin A cos B +cos A sin B .∴cos A sin B -sin A cos B =0. ∴sin (B -A )=0.∴B =A . 答案:B 3.︒︒-︒70sin 20sin 10cos 2的值是A.21B.23 C.3 D.2解析:原式=︒︒-︒-︒70sin 20sin 2030cos 2)(=︒︒-︒⋅︒+︒⋅︒70sin 20sin 20sin 30sin 20cos 30cos 2)(=︒︒20cos 20cos 3=3.答案:C4.已知α∈(0,2π),β∈(2π,π),sin (α+β)=6533,cos β=-135,则sin α=_______.解析:由0<α<2π,2π<β<π,得2π<α+β<2π3. 故由sin (α+β)=6533,得cos (α+β)=-6556. 由cos β=-135,得sin β=1312. ∴sin α=sin [(α+β)-β]=sin (α+β)cos β-cos (α+β)sin β=6533·(-135)-(-6556)·1312=-845507.答案:-8455075.△ABC 中,若b =2a ,B =A +60°,则A =_______.解析:利用正弦定理,由b =2a ⇒sin B =2sin A ⇒sin (A +60°)-2sin A =0⇒3cos A -3sin A =0⇒sin (30°-A )=0⇒30°-A =0°(或180°)⇒A =30°.答案:30° ●典例剖析【例1】 设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π,求cos (α+β).剖析:2βα+=(α-2β)-(2α-β).依上述角之间的关系便可求之. 解:∵2π<α<π,0<β<2π, ∴4π<α-2β<π,-4π<2α-β<2π. 故由cos (α-2β)=-91,得sin (α-2β)=954.由sin (2α-β)=32,得cos (2α-β)=35.∴cos (2βα+)=cos [(α-2β)-(2α-β)]=…=2757. ∴cos (α+β)=2cos 22βα+-1=…=-729239.评述:在已知角的某一三角函数值而求另外一些角的三角函数值时,首先要分析已知和要求的角之间的关系,再分析函数名之间的关系.其中变角是常见的三角变换.【例2】 (2000年春季京、皖)在△ABC 中,角A 、B 、C 对边分别为a 、b 、c . 证明:222c b a -=CB A sin sin )(-.剖析:由于所证结论是三角形的边、角关系,很自然地使我们联想到正弦定理、余弦定理. 证明:由余弦定理a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , 整理得222c b a -=cAb B a cos cos -.依正弦定理有c a =C A sin sin ,c b =CB sin sin , ∴222c b a -=CAB B A sin cos sin cos sin -=CB A sin sin )(-.评述:在解三角形中的问题时,首先应想到正余弦定理,另外还有A +B +C =π,a +b >c ,a >b ⇔A >B ⇔sin A >sin B 等.【例3】 已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.剖析:由已知首先消去γ是解题关键.解:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β. 平方相加得(sin β-sin α)2+(cos α-cos β)2=1. ∴-2cos (β-α)=-1.∴cos (β-α)=21. ∴β-α=±3π. ∵sin γ=sin β-sin α>0,∴β>α.∴β-α=3π. 评述:本题极易求出β-α=±3π,如不注意隐含条件sin γ>0,则产生增根.因此求值问题要注意分析隐含条件.●闯关训练 夯实基础1.(2004年上海,1)若tan α=21,则tan (α+4π)=____________. 解析:tan (α+4π)=4πtan tan 14πtantan ⋅-+αα=1211121⨯-+=3.答案:32.要使sin α-3cos α=m m --464有意义,则应有 A.m ≤37 B.m ≥-1 C.m ≤-1或m ≥37D.-1≤m ≤37 解析:2sin (α-3π)=m m --464⇒sin (α-3π)=m m --432. 由-1≤m m --432≤1⇒-1≤m ≤37. 答案:D3.(2004年福建,2)tan15°+cot15°等于 A.2B.2+3C.4D.334解析一:tan15°+cot15°=︒︒15cos 15sin +︒︒15sin 15cos =︒︒︒+︒15sin 15cos 15cos 15sin 22=︒⋅30sin 211=4.解析二:由tan15°=tan (45°-30°)=︒︒+︒-︒30tan 45tan 130tan 45tan =331331+-=3333+-. ∴原式=3333+-+3333-+=4.答案:C 4.在△ABC 中,若22b a =BAtan tan ,则△ABC 的形状为_______. 解析:左边利用正弦定理,右边“切变弦”,原式可化为BA 22sin sin =B A B A sin cos cos sin ⇒B A sin sin =⇒ABcos cossin2A =sin2B ⇒2A =2B 或2A =π-2B ⇒A =B 或A +B =2π. 答案:等腰三角形或直角三角形 5.(2004年湖南,17)已知tan (4π+α)=2,求ααα2cos cos sin 21+的值. 解:由tan (4π+α)=ααtan tan 1-1+=2,得tan α=31.于是ααα2cos cos sin 21+=ααααα222cos cos sin 2cos sin ++=1+1+ααtan 2tan 2=13121312+⨯+)(=32. 6.已知cos α=71,cos (α+β)=-1411,α、β∈(0,2π),求β. 解:由cos α=71,cos (α+β)=-1411, 得cos β=cos [(α+β)-α]=21, 得β=3π. 培养能力7.已知sin (4π-x )=135,0<x <4π,求)(x x +4πcos 2cos 的值.分析:角之间的关系:(4π-x )+(4π+x )=2π及2π-2x =2(4π-x ),利用余角间的三角函数的关系便可求之.解:∵(4π-x )+(4π+x )=2π, ∴cos (4π+x )=sin (4π-x ). 又cos2x =sin (2π-2x ) =sin2(4π-x )=2sin (4π-x )cos (4π-x ), ∴)(x x +4πcos 2cos =2cos (4π-x )=2×1312=1324.8.已知sin β=m sin (2α+β)(m ≠1),求证:tan (α+β)=mm-+11tan α. 证明:∵sin β=m sin (2α+β),∴sin [(α+β)-α]=m sin [(α+β)+α]. ∴sin (α+β)cos α-cos (α+β)sin α =m sin (α+β)cos α+m cos (α+β)sin α. ∴(1-m )sin (α+β)cos α =(1+m )cos (α+β)sin α. ∴tan (α+β)=mm-+11tan α. 9.(2005年北京西城区抽样测试)已知sin2α=53,α∈(4π5,2π3). (1)求cos α的值;(2)求满足sin (α-x )-sin (α+x )+2cos α=-1010的锐角x . 解:(1)因为4π5<α<2π3, 所以2π5<2α<3π.所以cos2α=-α2sin 12-=-54. 由cos2α=2cos 2α-1,所以cos α=-1010. (2)因为sin (α-x )-sin (α+x )+2cos α=-1010, 所以2cos α(1-sin x )=-1010. 所以sin x =21. 因为x 为锐角,所以x =6π. 探究创新 10.sin α+sin β=22,求cos α+cos β的取值范围. 解:令t =cos α+cos β, ① sin α+sin β=22,②①2+②2,得t 2+21=2+2cos (α-β). ∴2cos (α-β)=t 2-23∈[-2,2]. ∴t ∈[-214,214]. ●思悟小结1.不仅要能熟练推证公式(建议自己推证一遍所有公式)、熟悉公式的正用逆用,还要熟练掌握公式的变形应用.2.注意拆角、拼角技巧,如α=(α+β)-β,2α=(α+β)+(α-β)等.3.注意倍角的相对性,如3α是23α的倍角. 4.要时时注意角的范围的讨论. ●教师下载中心 教学点睛1.本节公式多,内在联系密切,建议复习时,要使学生理清公式间的推导线索,让学生亲自推导一下C (α+β).2.公式应用讲究一个“活”字,即正用、逆用、变形用,还要创造条件应用公式.如拆角、拼角技巧等,要注意结合题目使学生体会其间的规律.拓展题例【例1】 已知a =(cos α,sin α),b =(cos β,sin β),(a ≠b ). 求证:(a +b )⊥(a -b ).分析:只要证(a +b )·(a -b )=0即可.证法一:(a +b )·(a -b )=|a |2-|b |2=1-1=0,∴(a +b )⊥(a -b ).证法二:在单位圆中设OA =a ,OB =b ,以OA 、OB 为邻边作□OACB ,则OACB 为菱形.∴OC ⊥BA . ∴OC ·BA =0, 即(a +b )·(a -b )=0. ∴(a +b )⊥(a -b ). 【例2】 α、β∈(0,2π),3sin 2α+2sin 2β=1,① 3sin2α-2sin2β=0②,求α+2β的值.解:由①得3sin 2α=1-2sin 2β=cos2β. 由②得sin2β=23sin2α. ∴cos (α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·23sin2α=0. ∵α、β∈(0,2π),∴α+2β∈(0,2π3). ∴α+2β=2π.。
§15 两角和、差及倍角公式(一)班级 姓名等级一.双基巩固1.设)17cos 17(sin 2200+=a ,113cos 202-=b ,23=c ,则 ,,a b c 的大小关系是 ;b a c << 解题分析2.求值:sin7sin8cos15cos7sin8sin15︒+︒︒︒-︒︒= . 2解题分析3.化简⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-απαπαα4cos 4cot 2sin cos 222= .1 解题分析4.已知:3(,)2παπ∈,化简)= .cos2α-解题分析5.若c o s 22πs i n 4αα=⎛⎫- ⎪⎝⎭,则c o s s i n αα+的值为 .12 解题分析 6.(1tan1)(1tan 2)(1tan 44)(1tan 45)︒︒︒+++︒+=.232解题分析7.已知53cos ,,,132πθθπ⎛⎫=-∈ ⎪⎝⎭则cos 3πθ⎛⎫- ⎪⎝⎭的值为解题分析 8.已知()()44cos ,cos 55αβαβ-=-+=且()()3,,,222ππαβπαβπ⎛⎫⎛⎫-∈+∈ ⎪ ⎪⎝⎭⎝⎭则cos 2β= 1-解题分析9.已知函数π124()πsin 2x f x x ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭.(Ⅰ)求()f x 的定义域;(Ⅱ)若角α在第一象限且3cos 5α=,求()f α.解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===. 从而π124()πsin 2f ααα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ ππ1cos 2cos sin 2sin 44cos ααα⎫+⎪⎝⎭=21cos 2sin 22cos 2sin cos cos cos ααααααα+++== 142(cos sin )5αα=+=. 10.已知5tan cot 2αα+=,ππ42α⎛⎫∈ ⎪⎝⎭,.求cos 2α和πsin(2)4α+的值. 解法一:由5tan cot ,2αα+=得sin cos 5,cos sin 2αααα+=则4sin 2.5α= 因为(,),42ππα∈所以2(,),2παπ∈3cos 2,5α==- sin(2)sin 2.cos cos 2.sin 444πππααα+=+43525210=⨯-⨯= 解法二:由5tan cot ,2αα+=得15tan ,tan 2αα+= 解得tan 2α=或1tan .2α=由已知(,),42ππα∈故舍去1tan ,2α=得 tan 2.α=因此,sin αα==那么223cos 2cos sin ,5ααα=-=- 且4sin 22sin cos ,5ααα== 故sin(2)sin 2.cos cos 2.sin 444πππααα+=+4355=-= 11.已知θ是三角形中的一个最小内角,且2222cos sin cos sin 12222a a a θθθθ+--=+,求a 的取值范围。
两角和、差及倍角公式(一)
【考纲解读】
1. 掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系;
2. 能运用上述公式进行简单的恒等变换.
【基础回顾】
1. 和、差角公式:
sin()______________________αβ±=;
cos()______________________αβ±=;
tan()______________________αβ±=.
2. 二倍角公式:
sin 2______________________α=;
cos 2_____________________________________________α===; tan 2______________________α=.
3. 半角公式:
=αsin _________________;
_________________________________________________cos ===α;
________________tan =α.
4.降幂公式:
2sin _________________α=; 2cos _________________α=.
5.辅助角公式:
sin cos ______________a x b x +=, (其中sin ______cos ______ϕϕ==,).
【基础练习】
1. 已知),,2(
,53cos ππαα∈-= 的值求)4cos(απ-。
2. 已知)3
cos(,1715sin πθθθ-=
是第二象限角,求 3. 利用两角和差公式求下列各式的值
(1)︒15sin (2)︒75cos (3) ︒15tan
4. 的值求已知)3tan(,3tan παα+
=
5.求下列各式的值:
(1)︒︒+︒︒18sin 72cos 18cos 72sin
(2)︒︒+︒︒12sin 72sin 12cos 72cos
6.化归:))tan()(os A )sin(A (ϕωϕωϕω+++x x c x 、
、即化归成 (1)
=-x x sin 23cos 21 (2)=+x x cos sin 3
(3)=-)sin (cos 2x x
(4)=-x x sin 6cos 2
【高考例题】
4. (04重庆)sin163sin 223sin 253sin313_____︒︒+︒︒=.
5. (05北京)在ABC ∆中,已知2sin cos sin A B C =,那么ABC ∆是___三角形.
6. (06全国)若(sin )3cos 2f x x =-,则(cos )_________f x =.
7. ( 06陕西)等式()sin sin 2αγβ+=成立是,,αβγ成等差数列的____条件.
(以下三题在三角函数单调性教案的练习相同)
8.已知f(x)=2cos 2x+3sin2x+a (a ∈R , a 为常数)
(Ⅰ) 若x ∈R , 求f(x)的单调增区间; (Ⅱ) 若x ∈[0,
2
π]时, f(x)的最大值为4, 求a 的值。
9. 定义在R 上的函数()sin cos (000)f x a ωx b ωx a b ω=+>>>,,,的最小正周
期为π,()f x 的最大值为2,()4
πf =(1)写出函数()f x 的解析式;(2)写出函数()f x 的单调递增区间;
10.已知向量),(x x cos sin 2=,),(x x cos 2cos 3=,定义函数1-⋅=x f )(
(1)求函数)(x f 的最小正周期;(2)确定函数)(x f 的单调递增区间.
[补充练习]
1.若3,4παβπ⎛⎫∈
⎪⎝⎭,,()3sin 5αβ+=-,12sin 413πβ⎛⎫-= ⎪⎝⎭,求cos 4πα⎛⎫+ ⎪⎝⎭.
2.已知0cos cos 1sin sin =+=+βαβα,,求cos()αβ-的值.
3.已知,αβ是锐角,且sin αβ=
=,求αβ+.。