随机变量及其分布-离散型随机变量及其分布
- 格式:docx
- 大小:29.10 KB
- 文档页数:7
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
随机变量及其分布列.几类典型的随机分布一、离散型随机变量及其分布列随机变量是指在试验中可能出现的结果可以用一个变量X 来表示,并且X是随着试验的结果的不同而变化的。
离散型随机变量是指所有可能的取值都能一一列举出来的随机变量。
离散型随机变量常用大写字母X,Y表示。
离散型随机变量的分布列是将所有可能的取值与对应的概率列出的表格。
二、几类典型的随机分布1.两点分布二点分布是指随机变量X的分布列为X:1,P:pq,其中p 为0~1之间的参数,q为1-p。
伯努利试验只有两种可能结果的随机试验,因此又称为伯努利分布。
2.超几何分布超几何分布是指有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件,这n件中含有这类物品件数X 是一个离散型随机变量,它取值为m时的概率为C(n,m)C(M,m)/C(N,n)。
超几何分布只要知道N,M和n,就可以根据公式求出X取不同值时的概率P(X=m),从而列出X的分布列。
3.二项分布二项分布是指在n次独立重复试验中,事件A发生的次数X服从二项分布,事件A不发生的概率为q=1-p,事件A恰好发生k次的概率为P(X=k)=C(n,k)p^kq^(n-k)。
其中p为事件A发生的概率,k为事件A发生的次数,n为试验的总次数。
首先,将文章中的格式错误和明显有问题的段落删除。
然后对每段话进行小幅度改写。
对于二项分布,当一个试验重复进行n次,每次成功的概率为p,失败的概率为q=1-p时,事件发生k次的概率可以用公式P(n,k) = n。
/ (k!(n-k)!) * p^k * q^(n-k)来计算。
这个公式可以展开成X的分布列,其中X表示事件发生的次数。
因为每个值都可以对应到表中的某个项,所以我们称这样的散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p)。
二项分布的均值和方差可以用公式E(X) = np和D(X) = npq(q=1-p)来计算。
正态分布是一种连续型随机变量的概率分布。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1. 定义则称E(X)=人》• X2p2亠 '亠人口亠I•.亠X n P n为随机变量X的数学期望或均值。
2. 意义:反映离散型随机变量取值的平均水平。
3•性质:若X是随机变量,丫二aXF,其中a,b是实数,则Y也是随机变量,且E(aX b^aE(X) b二、离散型随机变量的方差1. 定义n则称D(X)八,(人-E(X))2p i为随机变量的方差。
i=12. 意义:反映离散型随机变量偏离均值的程度。
23. 性质:D(aX b)二a D(X)三、二项分布的均值与方差如果X ~ B(n, p),则E(X)二np , D(X)二叩(1 - p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)= 1.6,则a— b =( )A.0.2 B . 0.1C.—0.2 D . 0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数E的数学期望为()A . 0.6B . 1C. 3.5 D . 2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为________________________ .【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰•机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;⑵若要求P(X W n)> 0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n= 19与n= 20之中选其一,应选用哪个?【过关练习】1•今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为匕则E( 3等于()A . 0.765B . 1.75C . 1.765D . 0.222•某射手射击所得环数 3的分布列如下:3•已知随机变量 3的分布列为则 x = _______ , P(1< 33) = __________ , E( 3 = ________.4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有 10个粽子,其中豆沙粽 2个,肉粽 3个,白棕5个,这三种粽子的外观完全相同•从中任意选取 3个.(1) 求三种粽子各取到1个的概率;(2) 设X 表示取到的豆沙粽个数,求 X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中 p € (0,1),则( )A . D(X) = p 3B .C . D(X) = p — p 2D .0.9和0.85,设发现目标的雷达的台数为D(X)= p 2 D(X)= pq 2A . 8B . 12 2 C.9D . 16【例 3】若 D(3= 1 ,则 D( 3- D( 3) = _________ .3【例 4】若随机变量 X 1 〜B(n,0.2), X 2〜B(6, p), X 3〜B(n , p),且 E(X 1)= 2, D(X 2)=刁 贝卩 c(X 3)=( )A . 0.5 B. 1.5 C. 2.5D . 3.5【例5】根据以往的经验,某工程施工期 间的降水量X(单位:mm)对工期的影响如下表:降水量X X<300300W X<700700 W X<900X > 900工期延误 天数Y2610该工程施工期间降水量 的均值与方差.【过关练习】1•某人从家乘车到单位,途中有3个路口 .假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为 ( )A . 0.48B . 1.2C . 0.72D . 0.62.设投掷一个骰子的点数为随机变量 X ,则X 的方差为 .3.盒中有2个白球,3个黑球,从中任取 3个球,以X 表示取到白球的个数,n 表示取到黑球的个数.给出6 9 9下列结论:① E(X)= 5, E (n= 5;② E(X 2) = E (n ;③ E (n )= E(X);④ D(X) = D (n = 25. 其中正确的是 _________ .(填上所有正确结论的序号) 4.海关大楼顶端镶有 A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:【例2】设随机变量 ,k = 0,1,2,…,n ,且 E(8 = 24,则 D( 3的值为(历年气象资料表明, E 的分布列为P(E= k) = C n课后练习【补救练习】1. 若随机变量E〜B(n,0.6),且E(8= 3,贝U P( 1)的值为()A . 2 X 0.44B . 2X 0.45C. 3X 0.44 D . 3X 0.642•已知〜B(n, p), E(8= 8, D(3= 1.6,则n与p的值分别为()A . 100 和0.08B . 20 和0.4C. 10 和0.2 D . 10 和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X 甲)= E(X 乙),方差分别为D(X()甲)= 11, D(X乙)=3.4.由此可以估计A •甲种水稻比乙种水稻分蘖整齐B•乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D•甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为__________ ;方差为________ .【巩固练习】1. 现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A. 6B. 7.8C . 9D . 122. —射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A . 2.44 B. 3.376C . 2.376 D. 2.43. 已知随机变量X + Y= 8,若X〜B (10,0.6),贝U E(Y), D(Y)分别是()A . 6,2.4 B. 2,2.4C . 2,5.6 D. 6,5.64•马老师从课本上抄录一个随机变量E的概率分布列如下表:请小牛同学计算E的数学期望•尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(3 = __________ .5•某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历•假定该毕业生得到甲公司面试的2概率为2得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生1得到面试的公司个数,若P(X= 0) = 12,则随机变量X的数学期望E(X) = _____________ .6•随机变量E的分布列如下:1其中a, b, c成等差数列,若E( 3= 3则D(3 = _______________ •7•某城市出租汽车的起步价为6元,行驶路程不超出3 km时按起步价收费,若行驶路程超出3 km,则按每超出1 km加收3元计费(超出不足 1 km的部分按 1 km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18, 0.20, 0.20,0.18,0.12,设出租车行车路程3是一个随机变量,司机收费为n元),则n= 3 3- 3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设3为成活沙柳的株数,数学期望E(3= 3,标准差D 3为中.(1)求n, p的值并写出3的分布列;⑵若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E(3 —3 =( )A . 0B . 1C. 2 D .不确定2•甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛•假设每局甲获胜的概率为2,乙获胜的概率为3各局比赛结果相互独立.(1)求甲在4局以内洽4局)赢得比赛的概率;⑵记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3. A, B两个投资项目的利润率分别为随机变量X i和X2.根据市场分析,X i和X2的分布列分别为:(1)在A, B两个项目上各投资100万元,Y i(万元)和丫2(万元)分别表示投资项目A和B所获得的利润,求方差D(Y”, D(Y2);⑵将x(0w X W 100)万元投资A项目,(100 —x)万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和•求f(x)的最小值,并指出x为何值时,f(x)取到最小值.。
离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。
离散型随机变量及其分布列
知识点
1随机变量的有关概念
(1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示.
(2) 离散型随机变量:所有取值可以一- 变量.
2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量
X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n)
的概率P(X = X i )= P i ,以表格的形式表示如下:
此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…,
n 表示X 的分布列.
(2)分布列的性质: n
① p i >0 i = 1,2,3,…,n ;①
P i 1
i 1
3. 常见的离散型随机变量的分布列 (1)两点分布
若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率.
(2)超几何分布
其中 m = min{ M , n},且 n 汆,
M 哥,n , M , N ①N *.
如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布.
题型一离散型随机变量的理解
【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X
B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X
C .某超市一天中来购物的顾客数 X
在含有M 件次品的N 件产品中,任取
n 件,其中恰有X 件次品,则
P(X = k)= c M c N —M
c N
,k = 0,1,2,
m ,
1,小胡在线
D .小马登录QQ找小胡聊天,设X= 、口十亠/4
0,小胡不在线
【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.
(1) 抛掷甲、乙两枚骰子,所得点数之和X;
(2) 某汽车在开往目的地的道路上需经过5盏信号灯,Y表示汽车首次停下时已通过的信号灯的盏数.
【例3】袋中装有10 个红球、 5 个黑球.每次随机抽取 1 个球,若取得黑球则另换 1 个红球放回袋中,直到取到红球为止•若抽取的次数为E,则表示事件“放回5个红球”的是()
A . E= 4
B . E= 5
C. E= 6 D .葺5
【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,
设两个球号码之和为随机变量E,则E所有可能取值的个数是()
A. 5
B. 9
C. 10
D. 25
【过关练习】
1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.
①掷一枚质地均匀的硬币 5 次,出现正面向上的次数;
②掷一枚质地均匀的骰子,向上一面出现的点数;
③某个人的属相随年龄的变化;
④在标准状态下,水结冰的温度.
2•某人射击的命中率为p(0<p<1),他向一目标射击,若第一次射中目标,则停止射击,射击次数的取值是()
A. 1,2,3,…,n B . 1,2,3,…,n,…
C. 0,1,2,…,n D . 0,1,2,…,n,…
3•同时抛掷5枚硬币,得到硬币反面向上的个数为 E,贝U E 的所有可能取值的集合为 ________ .
4•一木箱中装有8个同样大小的篮球,编号为 123,4,5,6,7,8,现从中随机取出3个篮球,以E 表示取出的篮
球的最大号码,则
8表示的试验结果有 _________ 种.
5.一个袋中装有5个白球和5个黑球,从中任取 3个,其中所含白球的个数为 E,
(1) 列表说明可能出现的结果与对应的
E 的值;
(2) 若规定抽取3个球中,每抽到一个白球加 5分,抽到黑球不加分,且最后不管结果都加上 6分,求最终
得分n 的可能取值,并判定
n 的随机变量类型.
题型二离散型随机变量分布列的求法及性质
【例1】某一随机 变量E 的概率分布列如表,且 m + 2n = 1.2,则m —号的值为(
)
A. — 0.2 B . 0.2 C . 0.1
D . — 0.1
【例2】已知离散型随机变量X 的分布列如下:
则P(X = 10)等于(
)
1
D ・109
【例3】已知随机 变量X 只能取三个 值X1,X2,X3,其概率依次成等差数列,则公差d 的取值范围为 _____________
【过关练习】
1.随机变量E 的分布列如下:
C.39
则E为奇数的概率为 _________
2•若离散型随机变量 X 的分布列为:
则常数c 的值为( )
2 3
1 C.3
D -
1
3•由于电脑故障,随机变量 X 的分布列中部分数据丢失,以’—I 代替,其表如下:
根据该表可知X 取奇数值时的概率为 ____________
题型三两种特殊分布的应用
【例1】某10人组成兴趣小组,其中有 团员人数,则P(X = 3)=( )
5名团员,从这10人中任选4人参加某种活 动,用X 表示4人中的 4 A.21 9
B.21
C.21
時
【例2】一个袋中有形状、大小完全相同的
3个白球和4个红球•从中任意摸出两个球,用
X = 0”表示两个
球全是白球,用 X = 1”表示两个球不全是白球,求 X 的分布列.
【过关练习】
1•从装有除颜色外其余均相同的 3个红球,2个白球的袋中随机取出 2个球,设其中有 E 个红球,随机变量
E 的概率分布列如下:
则X 1 , X 2, X 3的值分别为 ________
2 1 A -或- A3或3
2•在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,
每张可获价值10元的奖品;其余6张没有奖•某顾客从这10张奖券中任抽2张,求:
(1)该顾客中奖的概率;
⑵该顾客获得的奖品总价值X(元)的分布列.
课后练习
【补救练习】
1 .袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X,则X所有可能值的个数是()
A . 6
B . 7
C. 10 D . 25
2•甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0 分, 抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得一1分)•若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是 _______ .
3•在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X的分布列. 【巩固练习】
1•设实数x€ R,记随机变量片1, x€ 0,+^ ,
1
0, x- 0, 则不等式1的解集所对应的E的值为(
)
x
A. 1 B . 0 C.—1 D . 1 或0
2.若P( W n) = 1 —a, P( m) = 1 —b,其中m v n,贝U P(m w gw n)等于()
A . (1 —a)(1 —b)
B . 1—a(1 —b)
C. 1 —(a + b) D . 1 —b(1 —a)
3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的
C4C6
村庄数,下列概率中等于CC8的是()
A. P(X= 2) B . P(X w 2)
C. P(X= 4) D . P(X w 4)
4•某篮球运动员在一次投篮训练中的得分E的分布列如下表,其中a, b, c成等差数列,且c= ab,
则这名运动员投中3分的概率是
5•在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、
负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.
(1)求该班级胜场多于负场的所有可能的个数和;
(2)若胜场次数为X,求X的分布列.
【拔高练习】
a 1 5
1. 随机变量E的概率分布列为P(E= n)= n n+ 1, n= 1,2,3,4,其中a是常数,则P 2<氏?的值为()
2 3
A.3
B.4
4 5
C.5
D.6
2. 小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一
关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为 1 000元, 3 000元,6 000元的奖品(不重复设奖),每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果.。