16.1.2分式的基本性质学案
- 格式:doc
- 大小:168.50 KB
- 文档页数:4
初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x 3-, n m --2, n m 67--, yx 43---。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 5 课时 姓名:________课题:16.1.2分式的基本性质(第1课时)学习目标 我的目标 我实现 1.理解分式的基本性质. 2.会用分式的基本性质将分式变形.学习过程 我的学习 我作主导学活动1知识回顾1.c ab bc a 2321525+- 2.42-x 3.962++x x4.x x -3 5.2732-x导学活动2知识引入填一填: ()9_______32= , ()6______1210= 想一想:类比分数的基本性质得出分式的基本性质:___________________________。
用式子表示:C B C A B A ⋅⋅=,CB C A B A ÷÷= (0≠C ,A 、B 、C 为整式) 导学活动3:知识转化1、约分:=106 ;=-2415 . 类比分数的约分得出分式的约分:1.目的:将分式化成最简分式2.步骤:⑴确定分式的符号;⑵分子、分母进行因式分解;⑶确定分子和分母的公因式 ⑷ 约分化成最简分式练习:约分:⑴ac bc 2 ⑵()2xy y y x + ⑶()22y x xy x ++徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!2、通分:通分的步骤:1、_______________ 。
2、_____________ 。
3、__________________。
练习:通分(1)yx x y 2211--与 (2)x x y x x ++222与学习评价 我的评价 我自信自我评价我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(限时:5分钟 )我自信 我进取1、约分:⑴ c ab bc a 2321525- ⑵ 96922++-x x x (3) ()222y x y x --2、通分:(1)c ab b a b a 2223-与 (2)222yxy x b y x a +--与课后作业 我的作业 我承担课本(P9)习题16.1 第7题。
八年级数学下册 16.1.2分式的基本性质教案(1)新人教版16、1、2分式的基本性质(1)教学目标:1、理解分式的基本性质、2、会用分式的基本性质将分式变形、教学重点:理解分式的基本性质、分式的分子、分母和分式本身符号变号的法则。
教学难点:灵活应用分式的基本性质将分式变形。
利用分式的变号法则,把分子或分母是多项式的变形。
教学过程:一预习完成1、请同学们考虑:与相等吗?与相等吗?为什么?2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?3、提问分数的基本性质,让学生类比猜想出分式的基本性质、分式的基本性质:分式的分子、分母同乘以(或除以)同一个整式,使分式的值不变、可用式子表示为:==(C≠0)(预设:学生对C≠0理解不容易掌握,且在运用中容易出错,提醒学生多思考,深入理解。
)二探索建模(一)、分式性质的应用1、提出问题:P5例2、填空。
2、学生独立思考完成以下问题:你是怎样观察完成等式前后式子变化的?第(2)小题最后一题为什么要加b≠0?(二)、分式的分子、分母和分式本身符号变号的法则补充例、不改变分式的值,使下列分式的分子和分母都不含“-”号、,,,,。
引导学生分析:每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变、三训练1、填空:(1)= (2)= (3)= (4)=2、不改变分式的值,使下列分式的分子和分母都不含“-”号、 (1)(2)(3)(4)3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)(2)(3)4、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号、(1)(2)。
备课教师 田建军、王洁 备课组长 王文忠 教导主任 王巧娥 班级 组别 姓名 2012 年 3 月 2 日学习内容:16-1-2 分式的基本性质学习目标:1.理解并掌握分式的基本性质,并会运用它将分式进行变形。
2.能类比分数的基本性质,推测出分式的基本性质。
3.理解和掌握分式变形中的符号法则。
学习重点、难点:运用分式的基本性质,将分式进行变形. 学习过程:一、自主预习问题1 小学学过分数计算,请你快速计算下列各式,并说出计算根据 (3)cc 32= (c ≠0)分数的基本性质:____________________________________________________ ____________________________________________________________________.问题2.下列从左到右的变形成立吗?为什么④ca ba ∙=(c ≠0) ⑤cb ba ÷=(c ≠0)2.你能归纳出以上所体现的变形吗?3.会用字母表达式表示吗?分式的基本性质:__________________________________________ ____ 用式子表示为:若我们设一个分式为BA ,而C ≠0,则有:______________________________________________________修改、补充 二、合作探究例1下列等式的右边是怎样从左边得到的?分子分母都分子分母都分子分母都例2填空根据以上例题,结合分数的性质,试归纳分式的性质。
用式子可以表示为: 。
例3.不改变分式的值,使下列分式的分子与分母都不含“—”号:归纳符号法则:。
任何改革必须具备坚持、坚持再坚持,落实、落实再落实的精神才能成功!——王永恒磴 口 一 中 “十 六 字 ”高 效 教 学 法 学 案 (电子版)=861)(=36002402)()3(1)3(11,111,3311-⨯-⨯=⨯⨯=⨯⨯=a a a b ba a a ③②①2223321ca ab ac b 2=)()0(≠a )1(32)164)2(-=-a a a b ab (aba a ab a a )1()1)1)1)3(+=-+-(((2)(2)1(2-=-x xx x )(633,22 y x xxy x +=+ba ab b a 22) ( )(=+ba ab a 222,) ( =-=--ab321)(=-yx232)(=--yx 23)(三、课堂检测1、判断下列变形是否正确.(1) ( ) (2) (c ≠0) ( )(3) ( ) (4) ( )2、填空3、不改变分式的值,使下列分式的分子与分母都不含“—”号:(1) (2) (3) (4) 4、下列各组中两个分式是否相等?为什么?(1) 与 (2) 与(3) 与222)(y x y x +- (4) 与5、 下列各式的变形中,正确的是( ) A. 2a a ab aa b -=-B.c bac ab =--11C.1313-=--b abaD. yxy x 255.0=6、 下面两位同学做的两种变形,请你判断正误,并说明理由. 甲生:2222)()())((y x y x y x y x y x yx y x +-=++-=+-;乙生:2222)())(()(yxy x y x y x y x yx y x --=-+-=+-四、课时小结 分式的性质。
教学设想:本节是本单元的基础,可以结合正式和分数的特点来安排教学,教学时运用观察和类比的方法,可以帮助学生记忆和理解,又培养了学生的推理能力。
教学突破:分式是分数的代数化,因此在教学中应用观察和类比来学习,有助于提高教学效果,分式的基本性质是分式通分、约分的根据,是学好本节内容的关键,因此要注意引导学生准确地找到公因式和公分母。
教学课题:16.1.2 分式的基本性质 教学目标:1、理解分式的基本性质2、会用分式的基本性质进行简单的恒等变形3、比较分数与分式的基本性质,体会类比思想方法 教学重点:分式的基本性质及简单运算 教学难点:利用分式的基本性质进行恒等变形 教学流程:一、 知识回顾:1、下列代数式中212x -32a ,b+3b ,3x 5+,53x +,b2x 整式有哪些,分式有哪些? 答:分式有3x 5+,整式有212x -32a ,b+3b ,3x 5+, b2x2、当x=?时,分式2-x 4-x 2无意义;当x=?时的值为0,当x=?时分式有意义。
(同桌之间互相讨论交流得出结论)。
答:x=2时无意义,x=-2时为0,x ≠2时分式有意义二、学习与探究:有分数的基本性质可知,如果c ≠0,那么有32=c 3c 2,c 5c 4=54。
一般的,对于任意一个分b a 有b a =c b c a ⋅⋅,b a =cb c a ÷÷(c ≠0),其中a 、b 、c 是数。
由此可以类推若a 、x 、y 都不为0,将x 1分子分母同时乘以y 得xy y ,x 1与xyy相同吗?将ax x 2的分子分母同时除以x 得a 2,可知ax x 2与a2相同吗? 结论(分式的基本性质):分式的分子与分母同时乘以(除以)一个不等于0的整式,分式的值不变。
上述性质可以用式子表示为:B A =C B C A ⋅⋅,,B A =CB CA ÷÷,(C ≠0),其中A 、B 、C 都为整式。
初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。
具体内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。
2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。
3. 学会分式的约分方法,能够熟练地进行分式的约分。
三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。
教学重点:分式的概念、分式的约分。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。
2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。
(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。
(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。
3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。
(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。
2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。
2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。
重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。
分式的基本性质(第1课时)教案课题:《分式的基本性质(第1课时)》授课教师:教材:人教版一、教学目标知识与技能:1、了解分式的基本性质。
灵活运用“性质”进行分式的变形。
、通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法通过探索分式的基本性质积累数学活动经验。
通过研究解决问题的过程,培养交流的意识。
重点:理解并掌握分式的基本性质,及其初步运用。
难点:灵活运用分式的基本性质,进行分式化简、变形。
本节课主要采用启发引导探索的教学方法。
学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
在教学过程中,为了达到激活学生原有的知识,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:1、进行变形的依据是什么?2、分数的基本性质是什么?怎样用式子表示?分数的基本性质:一个分数的分子、分母同乘(或除以)一个不为0的数,分数的值不变。
一般地,对于任意一个分数有老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:1、类比分数的基本性质,你能猜想出分式有什么性质吗?2、你能用语言来描述分式的基本性质吗?3、老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。