统计基础知识讲义
- 格式:pptx
- 大小:2.72 MB
- 文档页数:112
初级统计师《统计基础知识》讲义:时间数列初级统计师《统计基础知识》讲义:时间数列导语:将反映某一现象的各个时期(或时点)的指标数值,按照时间顺序排列形成的数列。
亦称动态数列。
我们一起来看看相关的考试内容吧。
第一部分本章主要内容一、时间数列的概念和种类(一)时间数列的概念将同一统计指标的数值按其发生的时间先后11.roi,序排列而成的数列称为时间数列。
时间数列一般由两个基本要素构成:1.现象所属的时间;2.反映该现象不同时间的统计指标数值。
(二)时间数列的作用1.时间数列可以描述社会经济现象的发展状态和结果;2.通过时间数列资料可以研究社会经济现象的发展趋势和发展速度;3.通过对时间数列进行分析可以探索社会经济现象发展变化的规律性;4.通过时间数列对某些社会经济现象进行预测,是统计预测方法的一个重要内容;5.把不同的时间数列进行对比,是对社会经济现象进行统计分析的重要方法之一。
(三)时间数列的种类时间数列按其排列的统计指标不同,可分为:总量指标时间数列、相对指标时间数列和平均指标时间数列三种。
其中:总量指标时间数列是基本数列,其余两种是派生数列。
1.将同一总量指标的数值按其发生的'时间先后顺序排列而成的数列叫做总量指标时间数列。
时期数列:当时间数列中所包含的总量指标都是反映社会经济现象在某一段时期内发展过程的总量时,这种总量指标时间数列就称为时期数列。
时点数列:当时间数列中所包含的总量指标都是反映社会经济现象在某一瞬间上所达到的水平时,这种总量指标时间数列就称为时点数列。
2.将同一相对指标的数值按其发生的时间先后顺序排列而成的数列叫做相对指标时间数列。
3.将同一平均指标的数值按其发生的时间先后顺序排列而成的数列叫做平均指标时间数列。
(四)时间数列的特征时间数列一般表现出四种特征:长期趋势、季节变动、循环变动、不规则变动。
(五)时间数列的编制原则1.指标数值所属的时期长短或时间间隔应该一致;2.指标数值所属的总体范围应该一致。
统计基础知识讲义第一章总论第一节统计的涵义一、统计的概念、统计的三种涵义(一)统计的概念统计,是指对某一现象有关数据的搜集、整理、计算和分析等活动。
(二)统计的三种涵义统计工作、统计资料、统计学(三)统计工作、统计资料和统计学三者的关系第一、统计工作与统计资料是过程与成果的关系;第二、统计工作与统计学是实践与理论的关系;第三、统计工作与统计学是前与后的关系。
第二节统计学中的基本概念一、总体与总体单位(一)总体所谓总体,是指客观存在的,在同一性质基础上结合起来的许多个别事物的整体,称为统计总体,简称总体。
(二)总体单位构成总体的每个事物称为总体单位。
(三)总体与总体单位的关系总体由总体单位构成,它是全部和部分的关系。
总体和总体单位是相对而言的,总体和总体单位可以相互转化。
总体的基本特征:同质性,大量性,差异性。
二、指标与标志(一)指标有两种理解一是:指标是反映总体现象数量特征的概念。
二是:指标是反映总体现象数量特征的概念和具体数值。
如,2008年江苏省地区生产总值(GDP)达30312.61亿元。
(二)标志标志是说明总体单位特征的名称。
标志按性质不同,分为品质标志和数量标志。
标志按表现不同,分为不变标志和变异标志。
变异标志又分为品质变异标志和数量变异标志。
(三)指标与标志的区别1、指标说明总体特征,标志说明总体单位特征;2、标志分为有不能用数值表示的品质标志和能用数值表示的数量标志两种,但指标必须都能用数值表示。
(四)指标与标志的联系1、统计指标的数值直接汇总于总体单位的数量标志值;2、指标与数量标志之间存在着转化的关系。
三、变异与变量(一)变异标志在同一总体不同总体单位之间的差别,称为变异。
(二)变量数量变异标志就是变量数量变异标志的具体数值表现,称为变量值。
几个基本概念之间的联系第三节统计的任务与过程一、统计的任务《统计法》规定,统计的基本任务是:对国民经济和社会发展情况进行统计调配、统计分析,提供统计资料和统计咨询意见,实行统计监督。
第二节统计学的理论基础和研究方法第三节统计学的基本范畴一、统计总体与总体单位(一)概念统计总体和总体单位,又可以简称为总体和个体,是反映统计认识对象的基本概念.凡是客观存在的,在同一性质基础上结合起来的许多事物的整体,就是统计总体.组成统计总体的个体称为总体单位.例如,一个工业企业,有以职工为单位组成的职工总体,有以每台设备组成的设备总体,有以产品为单位组成的产品总体,有以销售行为为单位组成的销售总体等。
总体和个体是多种多样的,常见的主要有两种,即:以某种客观存在的实体为单位组成的总体,如以个人、家庭、学校、设备、产品、商品等为单位组成的总体称作实体总体;以某种行为、事件为单位组成的总体,如买卖行为、工伤事故、犯罪事件、体育活动等为单位组成的总体称作行为总体。
一个统计总体中所包括的总体单位数可以是无限的,这样的总体称为无限总体;也可以是有限的,则称为无限总体.在社会经济现象中统计总体大多是有限的。
在统计调查中,对无限总体不能进行全面调查,只能调查其中一小部分单位,据以推断总体.对有限总体既可作全面调查,也可只调查其中的一小部分.(二)特点统计总体的形成必须具备一定的条件,作为统计研究具体对象的统计总体,其形成条件主要有三条:第一,同质性。
组成统计总体的所有单位必须是在某些性质上是相同的,例如工业企业总体,必须是由进行工业生产经营的基层单位组成的。
如果是国有工业企业总体,便又多了一个所有制性质上的相同标志,它的范围便小于工业企业总体了。
或数量标志数值;第二,大量性。
统计总体是由许多总体单位构成的。
小型总体(抽样总体)的单位数要足够多;第三,差异性。
构成总体的各单位除了同质性一面还必须有差异性一面,否则便不需要进行统计调查研究了。
例如职工总体中的每个职工,在工种、性别、年龄、文化程度、工资等方面都有差异,这样才构成社会经济统计调查的内容。
二、标志与指标(一)概念标志是说明总体单位属性和特征的名称。
标志按其表现形式有数量标志与品质标志两种。
统计基础知识精品课程摘要:一、统计学概述1.统计学的定义2.统计学的研究对象3.统计学的应用领域二、统计数据的收集与整理1.统计数据的来源2.统计数据的收集方法3.统计数据的整理三、统计数据的描述1.数据的图表展示2.数据的数字描述3.数据的分布特征四、统计推断1.参数估计2.假设检验3.回归分析五、统计学在实际应用中的案例1.金融领域2.医疗领域3.市场营销正文:一、统计学概述统计学是一门研究如何收集、整理、分析、解释以及展示数据的方法论学科。
统计学的研究对象包括各种数据,例如数值型数据、分类数据、顺序数据等。
统计学的应用领域广泛,包括自然科学、社会科学和商业等领域。
二、统计数据的收集与整理统计数据的来源多样,包括问卷调查、实验数据、政府发布的数据等。
收集数据的方法有抽样调查、全面调查等。
在收集到数据后,需要进行整理,包括数据清洗、数据转换、数据汇总等步骤,以便进一步分析。
三、统计数据的描述数据的描述包括数据的图表展示和数据的数字描述。
图表展示包括条形图、折线图、饼图等。
数据的数字描述包括平均数、中位数、众数、方差等。
此外,还需要了解数据的分布特征,如正态分布、偏度、峰度等。
四、统计推断统计推断是通过样本数据对总体参数进行估计和推断的过程。
参数估计是利用样本数据估计总体参数,例如均值、方差等。
假设检验是利用样本数据判断关于总体的某个假设是否成立。
回归分析是研究两个或多个变量之间关系的方法。
五、统计学在实际应用中的案例统计学在实际应用中具有广泛的应用价值。
例如,在金融领域,可以通过统计分析预测股票价格走势;在医疗领域,可以通过统计分析研究某种疾病的发病率、死亡率等;在市场营销中,可以通过统计分析了解消费者需求、市场占有率等。
高中数学必修2《统计》知识点讲义一、引言高中数学必修2中的《统计》部分是我们在日常生活中应用广泛的数学知识。
通过学习统计,我们可以更好地理解世界,做出更明智的决策。
本篇文章将详细讲解统计部分的重要知识点。
二、知识点概述1、描述性统计描述性统计是统计学的基石,它主要研究如何用图表和数值来描述数据的基本特征。
这部分内容将介绍如何制作频数分布表、绘制条形图、饼图和折线图等。
2、概率论基础概率论是统计学的核心,它研究随机事件发生的可能性。
在本部分,我们将学习如何计算事件的概率,了解独立事件与互斥事件的概念。
3、分布论基础分布论是研究随机变量及其分布的数学分支。
本部分将介绍如何计算随机变量的期望和方差,了解正态分布的特点及其在日常生活中的应用。
三、知识点详解1、描述性统计本文1)频数分布表:频数分布表是一种用于表示数据分布情况的表格,其中每一列表示数据的一个取值,每一行表示该取值的频数。
通过频数分布表,我们可以直观地看到数据分布的集中趋势和离散程度。
本文2)图表:图表是描述数据的一种有效方式。
通过绘制条形图、饼图和折线图,我们可以直观地展示数据的数量关系和变化趋势。
2、概率论基础本文1)概率:概率是指事件发生的可能性,通常用P表示。
P(A)表示事件A发生的概率,其值在0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。
本文2)独立事件与互斥事件:独立事件是指两个事件不相互影响,即一个事件的发生不影响另一个事件的概率;互斥事件是指两个事件不包括共同的事件,即两个事件不可能同时发生。
3、分布论基础本文1)期望:期望是随机变量的平均值,通常用E表示。
E(X)表示随机变量X的期望,它是所有可能取值的概率加权平均值。
期望对于预测随机变量的行为非常有用。
本文2)方差:方差是衡量随机变量取值分散程度的指标,通常用D表示。
D(X)表示随机变量X的方差,它是每个取值与期望之差的平方的平均值。
方差越大,随机变量的取值越分散;方差越小,取值越集中。
《统计》讲义一、什么是统计在我们的日常生活和工作中,常常会听到“统计”这个词。
那到底什么是统计呢?简单来说,统计就是对数据的收集、整理、分析和解释的过程。
比如说,一个学校想要了解学生的考试成绩情况,就需要对每个学生的各科成绩进行收集,然后按照班级、年级等进行分类整理,通过计算平均分、最高分、最低分等指标来进行分析,最后得出关于学生学习情况的结论,这就是一个简单的统计过程。
再比如,一家企业想要知道自己产品在市场上的销售情况,会收集各个地区的销售数据,包括销售量、销售额、销售渠道等,整理这些数据后,分析不同地区、不同时间段的销售趋势,从而判断产品的市场表现,为后续的生产和营销策略提供依据。
统计并不仅仅是简单地罗列数据,更重要的是从数据中发现规律、趋势和问题,为决策提供有价值的信息。
二、统计的重要性统计在各个领域都发挥着至关重要的作用。
在经济领域,政府需要通过统计来了解国家的经济运行状况,包括国内生产总值(GDP)、通货膨胀率、失业率等重要指标。
企业也需要统计来分析市场需求、预测销售趋势、评估投资风险等,以制定合理的发展战略。
在医学领域,统计可以帮助研究人员评估药物的疗效、分析疾病的发病率和死亡率,为医疗决策提供依据。
例如,在新冠疫情期间,通过对感染人数、康复人数、死亡人数等数据的统计和分析,政府能够制定相应的防控措施,合理调配医疗资源。
在社会科学领域,统计可以用于研究人口结构、教育水平、收入分配等问题,帮助我们了解社会的发展变化。
在自然科学领域,实验数据的统计分析可以帮助科学家验证假设、发现新的规律。
总之,无论是宏观的国家决策,还是微观的个人生活,统计都在其中扮演着不可或缺的角色。
它能够帮助我们更好地理解世界,做出更明智的决策。
三、统计中的数据收集数据收集是统计的第一步,也是非常关键的一步。
如果收集的数据不准确或者不完整,那么后续的分析和结论就可能出现偏差。
数据收集的方法有很多种,常见的包括普查和抽样调查。
中级统计师统计基础知识与统计实务讲义(精华版)《统计基础知识与统计实务》一、总论统计是指对与某一现象有关的数据的搜集、整理、计算和分析等的活动。
一般理解为三个含义:统计工作、统计资料和统计学。
统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称。
统计资料是指通过统计工作取得的、用来反映社会经济现象的数据资料的总称。
统计学是指研究如何对统计资料进行搜集、整理和分析的理论与方法的科学。
三者的关系:联系:1、统计工作与统计资料是统计活动过程与活动成果的关系。
2、统计工作与统计学是统计实践与统计理论的关系。
3、统计工作是先于统计学而发展起来的。
(一)统计学中的基本概念P41、总体与总体单位(1)总体:凡是客观存在的,在同一性质基础上结合起来的许多个别事物的整体就是统计总体,简称总体。
(2)总体单位:构成统计总体的个别事物称总体单位。
一个统计总体中所包括的单位数如果是有限的,称为有限总体;如果是无限的,则称为无限总体。
对无限总体不能进行全面调查,只能调查其中一小部分,据以推算总体;对有限总体既可以进行全面调查,也能够只调查其中的一部分单位。
总体是由总体单位构成的,可是总体和总体单位的观点不是牢固不变的,随着研究目的的不同,总体和总体单位也会由所不同。
12、指标与标志目标是反映总体现象数量特性的观点。
目标还可以是反映总体现象数量特性的观点及其具体数量。
都能用数值表示。
如:GDP、人口数等。
标志是说明总体单位特征的名称。
可分为:品质标志,不能用数值表示,如性别、民族等;数量标志,可以数值表示,如年龄、工资等。
指标与标志的区别:1、指标是说明总体特征的;而标志是说明总体单位特征的。
2、标志可以分为不能用数值表示的品质标志与能用数值表示的数量标志两种;而指标都是用数值表示的,没有不能用数值表示的指标。
联系:1、有许多指标的数值是从总体单位的数量标志值汇总而来的。
2、指标与数量标志之间存在着变换关系。
《统计》讲义一、什么是统计在我们的日常生活和工作中,常常会听到“统计”这个词。
那么,究竟什么是统计呢?简单来说,统计就是对数据的收集、整理、分析和解释的过程。
想象一下,我们要了解一个班级学生的学习情况。
我们可以收集每个学生的考试成绩,这就是数据收集。
然后,把这些成绩按照从高到低进行排序,或者计算平均分、及格率等,这就是数据整理。
接着,通过分析这些数据,比如比较不同学科的成绩差异,或者观察成绩的分布情况,来发现一些规律和趋势,这就是数据分析。
最后,根据分析的结果,得出关于这个班级学习状况的结论,比如哪个学科需要加强教学,或者哪些学生需要更多的帮助,这就是数据解释。
统计不仅仅局限于学术领域,它在商业、医疗、政府、体育等各个领域都有着广泛的应用。
比如,企业通过统计销售数据来了解市场需求,制定营销策略;医院通过统计病人的病历数据来研究疾病的发病规律,提高治疗效果;政府通过统计人口数据来规划公共服务设施的建设。
二、统计的基本步骤1、数据收集这是统计工作的第一步,也是非常关键的一步。
数据的质量和完整性直接影响到后续的分析结果。
数据收集的方法有很多种,常见的有普查、抽样调查、问卷调查、实验等。
普查就是对研究对象的全体进行调查,比如全国人口普查。
这种方法可以得到全面、准确的信息,但往往需要耗费大量的人力、物力和时间。
抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的情况。
抽样方法要科学合理,以保证样本具有代表性。
问卷调查是通过设计一系列问题,让被调查者回答来获取数据。
在设计问卷时,要注意问题的清晰性、合理性和有效性。
实验则是在控制其他因素不变的情况下,改变某个因素,观察其对结果的影响。
2、数据整理收集到的数据往往是杂乱无章的,需要进行整理。
这包括对数据进行分类、编码、录入等操作。
比如,将学生的成绩按照学科、分数段进行分类,给不同的类别赋予相应的代码,然后将数据录入到电子表格中。
3、数据分析这是统计的核心环节。
第一章总论一、统计的涵义(一)什么是统计统计的概念:统计,是指对于某一现象有关的数据的搜集、整理、计算和分析等的活动。
在实际应用屮,统计的三种涵义:统计工作、统计资料和统计学。
(二)统计工作、统计资料和统计学三者之间的关系第一,统计工作与统计资料是统计活动过程与活动成果的关系。
第二,统计工作与统计学是统计实践与统计理论的关系。
第三,统计工作是先于统计学而发展起來的。
二、统计雪中的基本概念(一)总体与总体单位总体是指客观存在的,在同一性质基础上结合起来的许多个别事物的整体, 亦称统计总体。
总体单位是指构成统计总体的个别事物。
总体与总体单位的概念不是固定不变的,随着研究H的不同,总体和总体单位也会有所不同。
(-)指标与标志指标是反映总体现象数量特征的概念;指标还可以是反映总体现象数量特征的概念及其具体数值。
指标与标志既有明显的区别,又有密切的联系。
(三)变并与变量标志在同一总体不同总体单位之间的差别就称为变异。
标志按其总体单位的表现不同,分为不变标志和变异标志。
变异标志有詁质变异标志和数量变异标志之分。
总体的基本特征:同质性、大量性、差异性。
习惯上将数量变界标志称为变量。
数量变界标志的表现形式是具体的数值, 称为变量值。
按变量值的连续性可把变量分为连续变量与离散变量两种。
三、统计的任务与过程(一)统计的任务对国民经济和社会发展情况进行统计调查、统计分析、提供统计资料和统计咨询意见,实行统计监督。
(二)统计的过程统计的工作过程划分为统计设计、统计调查、统计整理和统计分析四个阶段。
统计的认识过程是:从定性认识到定量认识,再到定量认识与定性认识相结合。
第二章统计调查一、统计调查的概念与种类(-)统计调查的概念与作用统计调查是按照预定的H的和任务,运行科学的统计调查方法,有计划、有组织地向客观实际搜集统计资料的过程。
(二)统计调查的要求统计调查的基本要求是准确性和及吋性,它们是衡量统计工作质量的重要标JoS O(三)统计调查的种类1.按调查对象的范围不同,可以分为全而调查和非全而调查。