人教版小学四年级数学下册期中复习知识点
- 格式:doc
- 大小:55.00 KB
- 文档页数:14
人教版小学数学四年级下册知识点(1—8单元)一、四则运算:1、加法、减法、乘法和除法统称为四则运算。
2、把两个数合并成一个数的运算,叫加法。
3、加法各部分之间的关系:和=加数+加数加数=和-另一个加数4、已知两个数的和与其中的一个加数,求另一个加数的运算叫减法。
5、减法各部分之间的关系:差=被减数-减数减数=被减数-差被减数=减数+差6、求几个相同加数和的简便运算,叫乘法。
7、乘法各部分之间的关系:积=因数×因数因数=积÷另一个因数8、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
除法是乘法的逆运算。
9、除法各部分之间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数※10、除和除以不同。
A除以B,写成A÷B。
A除B,写成B÷A。
※11、列综合算式时,如果含有乘除法和加减法时,如果要先算加减法,一定要给加减法加上小括号。
如:章师傅要生产600个零件,已经生产了120个,剩下的要十天完成,平均每天生产多少个?(600-120)÷10=48(个)※12、:把两个算式合并成一个综合算式:找相同数替换,把含有相同数结果的算式往里代。
如:59+80=139和320÷4=80列综合算式,80两个算式都有,把第二个含有相同数结果的算式往第一个里代,59+320÷4。
如:76-52=24,24÷4=6合成()※13、填□,列综合,从最上面的算式写起,看清运算顺序,该加括号的加括号。
如: 77 + 23﹨∕25 ×□\/□25×(77+23)14、运算顺序:1)、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。
2)、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。
3)、算式里有括号时,要先算括号里面的。
4)、在一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
最新最全面人教版小学数学四年级下册知识点总结第一章、四则运算1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.(无意义)第二章、观察物体(二)1、正确辨认从上面、前面、左面观察到物体的形状。
2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5、从不同的位置观察,才能更全面地认识一个物体。
第三章、运算定律及简便运算一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
人教版四年级下册数学期中考试培优专项复习【专题1:加、减法的意义和各部分间的关系】姓名:__________ 班级:__________考号:__________题号一二三四五总分评分一、单选题:1.根据线段图列式,下面错误的算式是()A. ()+200=500B. 200+()=500C. 200+500D. 500-2002.被减数是536,已知差求减数,用()计算.A. 加法B. 减法C. 乘法D. 除法3.被减数是520,减数减少10,差()。
A. 随减数减少10B. 反而增加10C. 4504.用加法验算606-415=191,正确的算式是()A. 606+191B. 415+191C. 606+4155.一件儿童上衣36元,一条长裤比上衣便宜7元,一条裙子又比长裤贵6元.这条裙子()钱.A. 42 元B. 37 元C. 35元D. 38元6.已知◆+●=▲,■×●=★,下面算式中,正确的是()。
A. ▲+●=◆B. ◆-●=▲C. ★÷■=●D. ★×●=■7.两个数的差是105,被减数减少5,减数增加5,它们的差是()A. 105B. 100C. 95D. 908.一个减法算式中,被减数、减数、差的和是560,减数是80,差是()A. 200B. 280C. 4809.东东把719﹣102错算成了719﹣100+2,计算结果比正确结果()A. 多2B.多4C. 少210.根据3043-575=2468,不用计算可以直接得到575+2468=3043,依据是()A. 和=加数+加数B. 减数=被减数-差C. 被减数=减数+差D. 差=被减数-减数二、判断题:11.减法是加法的逆运算,除法是乘法的逆运算。
()12.一个加数增加5,另一个加数减少5,它们的和增加10。
()13.如果☆-351=△,那么△-☆=351。
()14.被减数、减数与差的和是减数与差的和的2倍.( )15.被减数减少2.4,减数增加2.4,差不变。
四年级下数学期中知识点整理与复习一、四则运算姓名:____________1、加法、减法、乘法、除法统称四则运算。
2、在没有括号的算式里:如果只有加、减法或者乘、除法,要从左往右按顺序计算;如果既有加、减法又有乘、除法,要先算乘、除法,后算加、减法。
3、在有括号的算式里:要先算小括号里面的,再算中括号里面的,最后算括号外面的。
4、有0的运算:一个数加上0,还得原数;被减数等于减数,差是0;一个数和0相乘,仍得0;0除以一个非0的数,还得0;0不能作除数。
二、位置与方向1、根据方向和距离这两个条件确定物体的位置时,我们需要选定一个统一的参照点,要注意从两个条件上确定,一个是方向,另一个是距离,缺一不可。
2、在表述物体的方向时,有两种不同的说法。
例如:学校大门在综合办公楼的南偏西10°的方向上,也可以说是在西偏南80°的方向上。
但生活中习惯先说与物体所在方向离得较近(夹角较小)的方位。
三、加减法的速算与巧算1、加法运算定律(2个)加法交换律:两个加数交换位置,和不变。
即:a + b = b + a加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
即:(a + b) + c = a + (b + c)2、减法的性质一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)3、加减法混合运算的性质在加、减法混合运算时,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
即:a + b – c = a – c + b在加、减法混合运算中添括号时,如果添加的括号前面是“+”,那么括号内的数原运算符号不变;如果添加的括号前面是“-”,则括号内的原运算符号要变号。
即:a + b – c = a + (b – c); a - b + c = a – (b – c)四、乘、除法的速算与巧算1、乘法运算定律(3个)乘法交换律:两个因数交换位置,积不变。
六三制四年级下册人教版数学知识点
六三制四年级下册人教版数学知识点主要包括以下几个方面:
1. 数的认识:学生需要掌握整数的读法、写法,以及整数的四则运算,包括加、减、乘、除。
此外,学生还需要了解小数和分数的基本概念和性质,以及小数和分数的四则运算。
2. 数的运算:学生需要掌握四则运算的法则和运算顺序,能够进行复杂的混合运算。
同时,学生还需要掌握一些简便运算的技巧,如分配律、结合律等。
3. 图形与几何:学生需要了解平面图形的基本特征和周长、面积的计算方法。
此外,学生还需要了解立体图形的基本特征和表面积、体积的计算方法。
4. 统计与概率:学生需要了解统计图表的制作方法,包括条形统计图、折线统计图等。
同时,学生还需要了解概率的基本概念和简单概率事件的计算方法。
5. 数学思维:学生需要掌握一些基本的数学思维方法,如比较、分类、归纳、演绎等。
此外,学生还需要了解一些数学中的常用策略和方法,如数形结合、方程求解等。
以上是六三制四年级下册人教版数学知识点的主要内容,学生需要在学习过程中逐步掌握和应用这些知识,以提升自己的数学素养和能力。
四年级数学下册期中复习知识点一、四则运算1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.三、运算定律及简便运算:(一)、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
A+ b=b+ a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+ b)+ c=a+ (b +c) 加法的这两个定律往往结合起来一起使用。
如:165+ 93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+ c)(二)、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
【人教版】小学数学四年级下册学问点总结第一单元、四则运算1、整数加法(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。
(3)关系式:加数+加数=和;加数=和-另一个加数2、整数减法(1)已知两个加数的和及其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
(3)关系式:被减数-减数=差;减数=被减数-差;被减数=减数+差总结:加法和减法互为逆运算。
3、整数乘法(1)求几个一样加数的和的简便运算叫做乘法。
(2)在乘法里,一样的加数和一样加数的个数都叫做因数。
一样加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0。
(4)1和任何数相乘都得任何数。
(5)关系式:因数×因数=积;一个因数=积÷另一个因数4、整数除法(1)已知两个因数的积及其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
(3)在除法里,0不能做除数。
因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
(4)关系式:被除数÷除数=商;除数=被除数÷商;被除数=商×除数。
(5)有余数的关系式:被除数=商×除数+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数总结:乘法和除法互为逆运算。
5、关于“0”的运算。
一个数加上0还得原数;字母表示:a+0= a一个数减去0还得原数;字母表示:a-0= a被减数等于减数,差是0;或任何数减去它自己,都得0;字母表示:a-a =0被除数等于除数,商是1;或任何不是0的数除以它自己,都得0 字母表示:a÷a =1一个数和0相乘,仍得0;字母表示:a×0= 00除以一个非0的数,还得0;字母表示:0÷a(a≠0)= 0 留意:“0”不能做除数;字母表示:a÷0(错误)6、运算依次1、没有括号的混合运算。
人教版小学四年级数学下册知识点总结第一单元四则运算1、加、减的意义和各部分间的关系(1)把两个数合并成一个数的运算,叫做加法。
(2)相加的两个数叫做加数。
加得的数叫做和。
(3)已知两个数的积与其中的一个加数,求另一个加数的运算,叫做减法。
(4)在减法中,已知的和叫做被就减数……。
减法是加法的逆运算。
(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数(6)减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差2、乘、除法的意义和各部分间的关系(1)求几个相同加数的和和的简便运算,叫做乘法。
(2)相乘的两个数叫做因数。
乘得的数叫做积。
(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
(4)在除法中,已知的积叫做被除数…… 。
除法是乘法的逆运算。
(5)乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(6)除法各部分间的关系:商=被除数÷除数除数=被除数×商被除数=商×除数(7)有余数的除法,被除数=商×除数+余数3、加法、减法、乘法、除法统称为四则运算4、四则混和运算的顺序(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)(3)在有括号的算式里,要先算括号里面的,后算括号外面的。
5、有关0的计算①一个数和0相加,结果还得原数:a + 0 =a 0 + a = a②一个数减去0,结果还得这个数:a - 0 = a③一个数减去它自己,结果得零:a - a = 0④一个数和0相乘,结果得0:a × 0 = 0 ; 0 × a = 0⑤0除以一个非0的数,结果得0:0 ÷ a = 0⑥ 0不能做除数:a÷0 = (无意义)6、租船问题。
人教版小学四年级数学下册知识点归纳总结四则运算1.加法.减法.乘法和除法统称四则运算·2.在没有括号的算式里.如果只有加.减法或者只有乘.除法.都要从左往右按顺序计算·3.在没有括号的算式里.有乘.除法和加.减法.要先算乘除法.再算加减法·4.算式有括号.要先算括号里面的.再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序·5.先乘除.后加减.有括号.提前算关于“0”的运算1.“0”不能做除数;字母表示:a÷0错误2.一个数加上0还得原数;字母表示:a+0= a3.一个数减去0还得原数;字母表示:a-0= a4.被减数等于减数.差是0;字母表示:a-a = 05.一个数和0相乘.仍得0;字母表示:a×0= 06.0除以任何非0的数.还得0;字母表示:0÷a(a≠0)= 07.0÷0得不到固定的商;5÷0得不到商.(无意义)运算定律及简便运算:一.加法运算定律:1.加法交换律:两个数相加.交换加数的位置.和不变·a+b=b+a2.加法结合律:三个数相加.可以先把前两个数相加.再加上第三个数;或者先把后两个数相加.再加上第一个数.和不变·(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用·如:165+93+35=93+(165+35)依据是什么?3.连减的性质:一个数连续减去两个数.等于这个数减去那两个数的和·a-b-c=a-(b+c)二.乘法运算定律:1.乘法交换律:两个数相乘.交换因数的位置.积不变·a×b=b×a2.乘法结合律:三个数相乘.可以先把前两个数相乘.再乘以第三个数.也可以先把后两个数相乘.再乘以第一个数.积不变·( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用·如:125×78×8的简算3.乘法分配律:两个数的和与一个数相乘.可以先把这两个数分别与这个数相乘.再把积相加·(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c②类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)③类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2简便计算1.连加的简便计算:①使用加法结合律(把和是整十.整百.整千.的结合在一起)②个位:1与9.2与8.3与7.4与6.5与5.结合·③十位:0与9.1与8.2与7.3与6.4与5.结合·2.连减的简便计算:①连续减去几个数就等于减去这几个数的和·如:106-26-74=106-(26+74)②减去几个数的和就等于连续减去这几个数·如: 106-(26+74)=106-26-743.加减混合的简便计算:第一个数的位置不变.其余的加数.减数可以交换位置(可以先加.也可以先减)例如:123+38-23=123-23+38 146-78+54=146+54-784.连乘的简便计算:使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80等.看见25就去找4.看见125就去找8;5.连除的简便计算:①连续除以几个数就等于除以这几个数的积·②除以几个数的积就等于连续除以这几个数·6.乘.除混合的简便计算:第一个数的位置不变.其余的因数.除数可以交换位置·(可以先乘.也可以先除)例如:27×13÷9=27÷9×13四.连除的性质:一个数连续除以两个数.等于除以这两个数的积·a÷b÷c = a÷(b×c)1.常见乘法计算:25×4=100 125×8=10002.加法交换律简算例子:3.加法结合律简算例子:50+98+50 488+40+60=50+50+98 =488+(40+60)=100+98 =488+100=198 =5884.乘法交换律简算例子:5.乘法结合律简算例子:25×56×4 99×125×8=25×4×56 =99×(125×8)=100×56 =99×1000=5600 =990006.含有加法交换律与结合律的简便计算:65+28+35+72=(65+35)+(28+72)=100+100=2007.含有乘法交换律与结合律的简便计算:25×125×4×8=(25×4)×(125×8)=100×1000=100000乘法分配律简算例子:1.分解式2.合并式25×(40+4) 135×12—135×2=25×40+25×4 =135×(12—2)=1000+100 =135×10=1100 =13503.特殊14.特殊299×256+256 45×102 =99×256+256×1 =45×(100+2)=256×(99+1)=45×100+45×2=256×100 =4500+90=25600 =45905.特殊36.特殊499×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4)=100×26—1×26 =35×10=2600—26 =350=2574一.连续减法简便运算例子:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =250二.连续除法简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32三.其它简便运算例子:256—58+44 250÷8×4=256+44—58 =250×4÷8=300—58 =1000÷8=242 =125五.有关简算的拓展:102×38-38×2125×25×32125×8837×96+37×3+37易错的情况: 38×99+99小数的意义和性质:1.小数的产生:在进行测量和计算时.往往不能正好得到整数的结果.这时常用小数来表示·2.分母是10.100.1000……的分数可以用小数来表示·3.小数是十进制分数的另一种表现形式·4.小数的计数单位是十分之一.百分之一.千分之一……分别写作0.1.0.01.0.001……5.每相邻两个计数单位间的进率是10·(2)6.378中有6个一.3个十分之一(0.1).7个百分之一(0.01).8个千分之一(0.001)·(3)6.378中有(6378)个千分之一(0.001)·(4)9.426中的4表示4个十分之一(0.1)[4在十分位]8.小数的读法:先读整数部分(按照原来的读法).再读小数点.再读小数部分·读小数部分.小数部分要依次读出每个数字.而且有几个0就读几个0·9.小数的写法:先写整数部分(按照原来的写法).再写小数点.再小数部分:写小数部分.小数部分要依次写出每个数字.而且有几个0就写几个0·10.小数的性质:小数的末尾添上“0”或去掉“0”.小数的大小不变·注意:小数中间的“0”不能去掉.取近似数时有一些末尾的“0”不能去掉·作用可以化简小数等·面积单位:平方千米———公顷———平方米————平方分米———平方厘米质量单位:吨————千克————克单位换算:(1)高级单位转化成低级单位=======乘以进率.小数点向右移动·(2)低级单位转化成高级单位=======除以进率.小数点向左移动·14.小数的近似数(用“四舍五入”的方法):(1)保留整数.表示精确到个位.就是要把小数部分省略.要看十分位.如果十分位的数字大于或等于5则向前一位进一·如果小于五则舍·(2)保留一位小数.表示精确到十分位.就要把第一位小数以后的部分全部省略. 这时要看小数的第二位.如果第二位的数字比5小则全部舍·反之.要向前一位进一·(3)保留两位小数.表示精确到百分位.就要把第二位小数以后的部分全部省略.这时要看小数的第三位.如果第三位的数字比5小则全部舍·反之.要向前一位进一·(4)为了读写的方便.常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数·改写成“万”作单位的数就是小数点向左移4位.即在万位的右边点上小数点.在数的后面加上“万”字·改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点.在数的后面加上“亿”字·注意:带上单位·然后再根据小数的性质把小数末尾的零去掉即可·(5)在表示近似数时.小数末尾的“0”不能去掉·小数的加减法:1.计算法则:相同数位对齐(小数点对齐).按照整数计算方法进行计算.得数的小数点要和横线上的小数的小数点对齐·结果是小数的要依据小数的性质进行化简·2.竖式计算以及验算·注意横式上要写上答案.不要写成验算的结果·3.整数的四则运算顺序和运算定律在小数中同样适用·(简算)平均数与条形统计图1.求平均数公式:总数量=每份数相加平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数2.平均数和平均分不一样.是两个不同的概念·3.比赛时.计算平均得分时.一般要去掉一个最高分和一个最低分·平均数能较好的反映一组数据的总体情况.而不能代表其中某个个体的情况·4.条形统计图可以看出数量的多少·复式条形统计图可以更清楚地看出两组数据不同的地方·5.复式条形统计图可分为:纵向复式条形统计图和横向复式条形统计图.必须要有图例·单位长度需统一·鸡兔问题公式(1)已知总头数和总脚数.求鸡.兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数·或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数·例如.“有鸡.兔共36只.它们共有脚100只.鸡.兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡·解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔·(答略)(2)已知总头数和鸡兔脚数的差数.当鸡的总脚数比兔的总脚数多时.可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数·(例略)(3)已知总数与鸡兔脚数的差数.当兔的总脚数比鸡的总脚数多时.可用公式·(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数·或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数·(例略)(4)得失问题(鸡兔问题的推广题)的解法.可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数·或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数·例如.“灯泡厂生产灯泡的工人.按得分的多少给工资·每生产一个合格品记4分.每生产一个不合格品不仅不记分.还要扣除15分·某工人生产了1000只灯泡.共得3525分.问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”.运到完好无损者每只给运费××元.破损者不仅不给运费.还需要赔成本××元……·它的解法显然可套用上述公式·)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数.求鸡兔各多少的问题).可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数·例如.“有一些鸡和兔.共有脚44只.若将鸡数与兔数互换.则共有脚52只·鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼1.鸡兔同笼属于假设问题.假设的和最后结果相反·2.“鸡兔同笼”问题的解题方法假设法:①假如都是兔②假如都是鸡③古人“抬脚法”:解答思路:假如每只鸡.每只兔各抬起一半的脚.则每只鸡就变成了“独脚鸡”.每只兔就变成了“双脚兔”·这样.鸡和兔的脚的总数就少了一半·这种思维方法叫化归法·3.公式:鸡兔总脚数÷2-鸡兔总数 = 兔的只数;鸡兔总数-兔的只数 = 鸡的只数·观察物体(二)1.正确辨认从上面.前面.左面观察到物体的形状·2.观察物体有诀窍.先数看到几个面.再看它的排列法.画图形时要注意.只分上下画数量·3.从不同位置观察同一个物体.所看到的图形有可能一样.也有可能不一样·4.从同一个位置观察不同的物体.所看到的图形有可能一样.也有可能不一样·5.从不同的位置观察.才能更全面地认识一个物体·图形的运动(二)1.把一个图形沿着某一条直线对折.如果直线两旁的部分能够完全重合.我们就说这个图形是轴对称图形.这条直线叫做这个图形的对称轴·2.轴对称的性质:对应点到对称轴的距离都相等·3.对称轴是一条直线.所以在画对称轴时.要画到图形外面.且要用虚线·4.正方形的对角线所在的直线是它的对称轴·轴对称图形可以有一条或几条对称轴·5.画对称轴时.先找到与相反方向距离对称轴相同的对应点.最后连线·6.长方形.正方形.等腰梯形.等腰三角形.等边三角形.线段.菱形都是轴对称图形·长方形有2条对称轴.正方形有4条对称轴.等腰梯形有1条对称轴.等腰三角形有一条对称轴.等边三角形有3条对称轴.线段有1条对称轴.菱形有2条对称轴.圆有无数条对称轴.半圆有一条.圆环有无数条.半圆环有一条·7.平行四边形不是轴对称图形.没有对称轴·(长方形和正方形除外)8.梯形不一定是轴对称图形·只有等腰梯形是轴对称图形·9.古今中外.许多著名的建筑就是对称的·比如:中国的赵州桥.印度泰姬陵.英国塔桥.法国埃菲尔铁塔·10.平移先找图形点.平移完点连起来.注意数点数要数十字·11.平移不改变图形的大小.形状.只改变图形的位置·12.利用平移.可以求出不规则图形的面积·三角形:1.三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合).叫三角形·2.从三角形的一个顶点到它的对边做一条垂线.顶点和垂足间的线段叫做三角形的高.这条对边叫做三角形的底·三角形只有3条高·重点:三角形高的画法·3.三角形的特性:1.物理特性:稳定性·如:自行车的三角架.电线杆上的三角架·4.边的特性:任意两边之和大于第三边·5.为了表达方便.用字母A.B.C分别表示三角形的三个顶点.三角形可表示成三角形ABC·6.三角形的分类:按照角大小来分:锐角三角形.直角三角形.钝角三角形·按照边长短来分:三边不等的△.等腰△(等边三角形或正三角形是特殊的等腰△)·等边△的三边相等.每个角是60度·(顶角.底角.腰.底的概念)7.三个角都是锐角的三角形叫做锐角三角形·8.有一个角是直角的三角形叫做直角三角形·9.有一个角是钝角的三角形叫做钝角三角形·10.每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角·11.两条边相等的三角形叫做等腰三角形·12.三条边都相等的三角形叫等边三角形.也叫正三角形·13.等边三角形是特殊的等腰三角形14.三角形的内角和等于180度·四边形的内角和是360°有关度数的计算以及格式·15.图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形·16.用2个相同的三角形可以拼成一个平行四边形·17.用2个相同的直角三角形可以拼成一个平行四边形.一个长方形.一个大三角形·18.用2个相同的等腰的直角的三角形可以拼成一个平行四边形.一个正方形·一个大的等腰的直角的三角形·19.密铺:可以进行密铺的图形有长方形.正方形.三角形以及正六边形等·20.多边形内角和计算公式:(n-2)×180°=多边形内角和(其中n表示多边形边数.n-2表示多边形可以分为对少个三角形)11 / 11。
人教版小学四年级数学下册期中复习知识点一、四则运算1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a (a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.二、位置与方向:1、根据方向和距离确定或者绘制物体的具体地点。
(比例尺、角的画法和度量)注意:1、比例尺2、正北方向3、角的画法2、位置间的相对性。
会描述两个物体间的相互位置关系。
(观测点的确定)3、简单路线图的绘制。
4.地图的三要素:图例、方向、比例尺。
5.确定方向时:A、先确定观测点(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:①东偏南25°(标25°的那个角就靠近东)②西偏北35°(标35°的那个角就靠近西)6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。
三、运算定律及简便运算:(一)、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
A+ b=b+ a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+ b)+ c=a+ (b +c) 加法的这两个定律往往结合起来一起使用。
如:165+ 93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+ c)(二)、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+ b)×c=a×c b×c (a-b)×c=a×c-b×c4、连除的性质:一个数连续除以两个数,等于除以这两个数的和。
a÷b÷c= a÷(b×c)乘法分配律的应用:①类型一:(a+ b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+ b)×c =(a-b)×c③类型三:a×99+a a×b-a= a×(99 +1) = a×(b-1)④类型四:a×99 a×102= a×(100-1)= a×(100+ 2)= a×100-a×1 = a×100+ a×2(三)、简便计算①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:①连续减去几个数就等于减去这几个数的和。
如:106-26-74=106-(26 +74)②减去几个数的和就等于连续减去这几个数。
如:106-(26 +74)=106-26-743.加减混合的简便计算:第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38-23=123-23+38 146-78+54=146+54-78 4.连乘的简便计算:使用乘法结合律:把常见的数结合在一起25与4;125与8 ;125与80 等看见25就去找4,看见125就去找8;①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:第一个数的位置不变,其余的因数、除数可以交换位置。
(可以先乘,也可以先除)例如:27×13÷9=27÷9×13(四)、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
a÷b÷c = a÷(b×c)1、常见乘法计算:25×4=100 125×8=10002、加法交换律简算例子:3、加法结合律简算例子:50 +98 +50 488+ 40+ 60=50 +50 +98 =488 +(40+ 60)=100 +98 =488+ 100=198 =5884、乘法交换律简算例子:5、乘法结合律简算例子:25×56×4 99×125×8=25×4×56 =99×(125×8)=100×56 =99×1000=5600 =990006、含有加法交换律与结合律的简便计算:65 +28+ 35+ 72=(65 +35)+ (28 +72)=100 +100=2007、含有乘法交换律与结合律的简便计算:25×125×4×8=(25×4)×(125×8)=100×1000=100000乘法分配律简算例子:1、分解式2、合并式25×(40+ 4)135×12—135×2 =25×40 +25×4 =135×(12—2)=1000 +100 =135×10=1100 =13503、特殊14、特殊299×256+ 256 45×102=99×256+ 256×1 =45×(100 +2)=256×(99+ 1)=45×100+ 45×2 =256×100 =4500+ 90=25600 =45905、特殊36、特殊499×26 35×8+35×6—4×35=(100—1)×26 =35×(8 +6—4)=100×26—1×26 =35×10=2600—26 =350=2574一、连续减法简便运算例子:528—65—35 528—89—128 528—(150 +128)=528—(65+35)=528—128—89 =528—128—150 =528—100 =400—89 =400—150=428 =311 =250二、连续除法简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32三、其它简便运算例子:256—58 +44 250÷8×4=256 +44—58 =250×4÷8=300—58 =1000÷8=242 =125五、有关简算的拓展:102×38-38×2125×25×32125×883.25+1.9810.32-1.9837×96+37×3+37易错的情况:0.6+0.4-0.6+0.4 38×99+99四、小数的意义和性质:1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。
整数部分的最低位是个位。
个位和十分位的进率是10。
7、小数的数位顺序表(书上)(1)6.378的计数单位是0.001。
(最低位的计数单位是整个数的计数单位)(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。
读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。
作用可以化简小数等。
11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动小数点向右移:移动一位,小数就扩大到原数的10倍;移动两位,小数就扩大到原数的100倍;移动三位,小数就扩大到原数的10 00倍;……小数点向左移:移动一位,小数就缩小10倍,即小数就缩小到原数的;(分数形式)移动两位,小数就缩小100倍,即小数就缩小到原数的;(分数形式)移动三位,小数就缩小1000倍,即小数就缩小到原数的;(分数形式)……13、生活中常用的单位:质量:1吨=1000千克;1千克=1000克长度:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米面积:1平方米=100平方分米1平方分米=100平方厘米1平方千米=100公顷1公顷=10000平方米人民币:1元=10角1角=10分1元=100分长度单位:千米??————米————分米————厘米面积单位:平方千米———公顷———平方米————平方分米———平方厘米质量单位:吨————千克————克单位换算:(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。