海洋地球化学11-12全解
- 格式:ppt
- 大小:1.59 MB
- 文档页数:50
2024~2025学年度第一学期期中教学质量检测高三地理试题2024.11(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在题卡上。
写在本试卷上无效。
一、选择题:本题共15小题,每小题3分,共45分。
每小题只有一个选项符合题目要求。
大阿尔贝尔山位于德国南部,左图是该山某坡日平均最低气温垂直分布情况,右图是该山坡山麓—半山腰—山顶不同植物新梢长到4厘米时的日期。
调查显示,欧洲越桔与山毛榉的新梢生长速度一致。
据完成下面小题。
1.形成右图中物候垂直分布特点的主要影响因素是()A.海拔高度B.降水分布C.局地环流D.大气环流2.右图显示,大阿尔贝尔山的山毛榉()A.新梢比越桔更耐寒B.海拔越高发芽越晚C.发芽普遍晚于越桔D.5月22日开始发芽3.栽培喜温、惧寒水果的最佳地段是该山地的()A.山顶B.半山腰C.山麓D.洼地【答案】1.C 2.A 3.B【解析】【1题详解】大阿尔贝尔山该坡度相对高差较小,海拔高度相差并不大,根据气温垂直递减率海拔上升100米,气温下降0.6℃,650米到800米高差气温应下降0.9℃,但该山坡在此高度气温却上升,说明海拔高度不是主要的影响因素,A错误;图文信息中没有关于降水量分布信息,无法判断,排除B;大气环流应是影响该山的背景风,德国南部受盛行西风影响,若自受其影响,气温应随海拔下降,D错误;图中显示半山腰气温最高,山顶和山麓地区气温都较低,说明影响该山不同地区有多个局地环流,从而导致该山气温不规律分布,C正确。
故选C。
【2题详解】图中显示山毛榉在同一海拔与欧洲越桔相比,新梢长到4厘米时的日期更早,而欧洲越桔与山毛榉的新梢生长速度一致,说明山毛榉较欧洲越桔更早发芽生长,而发芽时气温较低,新梢生长期间更耐寒,A正确,C错误;在650米-750米的空间范围内海拔越高发芽越早,B错误;不同海拔的山毛榉发芽时间不同,D错误。
地球化学一.名词解释1. 异戊二烯型化合物:由一个个异戊二烯单元头尾相连重复组合而成一类化合物,它广泛存在于生物体、近代沉积物、古代沉积岩以及原油中。
2. 萜类:环状的异戊二烯型化合物。
3.同位素效应:由于同位素不同,引起单质或化合物在物理、化学性质上发生微小变化的现象,称为同位素效应。
4.同位素分馏:在各种自然过程中,由于同位素的效应引起同位素相对含量在不同相之间的变化。
5.干酪根:沉积物和沉积岩中不溶于非氧化性的无机酸、碱和常用有机溶剂的一切有机质。
6.腐殖质:指土壤和现代沉积物中不能水解的、不溶于不溶于有机溶剂的有机质。
7.低熟油:指所有非干酪根晚期热降解成因的各类低温早熟的非常规石油。
8.生物标志物:是沉积物(岩)、原油、油页岩和煤中那些来源于生物体,在有机质演化过程中具有一定稳定性,没有或很少发生变化,基本保存了原始生化组分的碳骨架,记载了原始生物母质特殊分子结构信息的有机化合物。
9.质谱法:通过研究分子量和离子化的分子碎片来认识分子结构的一种现代分析技术(以高能电子将单个分子击碎,用碎片的质量组成特征,推测分子的结构组成和分子量,以达到分子鉴定的目的)。
10.质谱法(棒图):将每一次扫描的记录,应用质荷比对检测器响应值作图,就可以得到由色谱分离的某一种化合物的质谱图。
11.质量色谱图:12.总离子流图:13.生物成因气:14.热成因气:二.简答题1.生物有机质的化学组分碳水化合物脂类蛋白质和氨基酸木质素和丹宁2.异戊二烯单元的结构及简单组合、拆分3.富沉积有机质的沉积环境4.C 、O 同位素丰度的表示方法5.自然界中碳同位素分馏的几种方式和结果6.干酪根的光学显微组分分类主要(1)统计腐泥组和壳质组之和与镜质组的比例;采用(2)采用类型指数(T 值)来划分,具体方法是将鉴定的各组分相对百分含量代入下式,计算出T 值,再依据表中的分类标准划分类型。
两种 方法以透射光为基础的干酪根显微组分分类组 分 亚 组 分腐泥组 无定形—絮状,团粒状,薄膜状有机质藻质体孢粉体—孢子、花粉、菌孢树脂体壳质组 角质体木栓质体表皮体镜质组 结构镜质体无结构镜质体惰质组 丝质体7.干酪根研究的常用测试方法干酪根研究的常用方法直接方法:显微镜SEM ——scanning electronic microscope荧光显光镜IR 吸收光谱X-ray核磁共振(NMR ),顺磁共振(ESR)(不破坏干酪根,根据其物理特性来研究干酪根的性质、结构)间接方法:元素分析稳定同位素热解分析(热失重、热模拟、热解—-色谱)超临界抽提、氧化分解100)100()75()50()100(-⨯+-⨯+⨯+⨯=惰质组含量镜质组含量壳质组含量腐泥组含量T(这种方法的特点是彻底的破坏干酪根,看它由哪些单元组成。
元素逗留时间:某元素以稳定速率向海洋输送,将海水胸该元素全部置换出来所需要的时间(单位:年)称为该元素的逗留时间。
前提条件 1.稳态 2. 元素在海洋中是均匀的海洋“稳态”原理: 海洋中各元素的含量(供给和从海水中去除)处于一种动态平衡的状态。
dA/dt=0 各元素含量不随时间改变保守性元素:海洋中的浓度表现为无变化或几乎无变化的元素。
非保守性元素:海洋中的浓度表现为随位置变化而变化的元素。
恒比规律:尽管各大洋各海区海水的含盐量可能不同,但海水主要溶解成分的含量间有恒定的比值。
海水盐度:是指海水中全部溶解固体与海水重量之比,通常以每千克海水中所含的克数表示。
海水氯度简称“氯度”:早期定义为:一千克海水中所含的溴和碘由等当量的氯置换后所含氯的总克数。
单位为“克/千克,符号为Cl‰。
为了使氯度值保持永恒性,便于相互比较,克努森和雅科布森在1940年提出新的定义:沉淀0.3285233千克海水中全部卤素所需银原子的克数,即为氯度。
标准海水:经过放置和严格的过滤处理,调整其氯度为19.38‰左右(其氯度值准确测定到0.001‰)的大洋海水。
中国标准海水由中国海洋大学生产,其氯度值与中国海平均氯度数值相近,在17—19‰左右。
实用盐度标度:将盐度为35的国际标准海水用蒸馏水稀释或经蒸发浓缩,在15℃时测得的相对电导比.绝对盐度:符号SA,定义为海水中溶解物质的质量与溶液质量的比值营养盐:一般指磷、氮、硅元素的盐类。
营养盐再生:在真光层内,营养盐经生物光合作用被吸收,成为生物有机体组成部分,生物体死亡后下沉到真光层以下,有机体分解、矿化,营养元素最终以无机化学形式返回到海水中的过程为营养盐再生。
铁假说:离子缔合:两个异号电荷离子相互接近到某一临界距离形成离子对的过程。
EH:通称氧化还原电位,氧化还原反应强度的指标。
PH:指氢离子浓度指数,是指溶液中氢离子的总数和总物质的量的比。
1.大气的气体组成可分为不变气体成分和可变气体成分两部分:不变气体成分(11种)主要成分:N2、O2、Ar 微量成分:He、Ne、Kr、Xe、H2、CH4、N2O;可变气体成分:CO2、O3、NO2、CO、SO2、NH3、H2O2.生源: CH4、NH3、 N2O、 H2、 CS2、 OCS 光化学: CO、 O3、 NO2、 HNO3、 OH、 HO2、H2O2、 H2CO 闪电: NO、HO2 火山: SO24.真实气体( Vander Waals方程)式中,a、b为范德华常数。
关于海的知识广泛而深远,涉及自然科学、地理、生态、环境等多个领域。
以下是一些关于海的基本知识点:1. 海洋的定义:海洋是指地球表面上广阔的、相互连接的海洋区域,通常包括太平洋、大西洋、印度洋、南冰洋和北冰洋。
2. 海洋的面积:海洋覆盖了地球表面的大部分,约占地球表面积的71%。
3. 海洋的深度:海洋的平均深度约为3.8公里,但最深处可以达到10公里以上,如马里亚纳海沟。
4. 海洋的组成:海水主要由水、溶解的盐分和其他矿物质组成,其中盐分主要是氯化钠。
5. 海洋的循环:海洋循环包括物理循环(如洋流)和生物地球化学循环(如碳循环、氮循环等),它们共同维持着海洋的生态平衡。
6. 海洋生物:海洋是地球上生物多样性最丰富的地方之一,从微小的浮游生物到巨大的鲸鱼,都是海洋生态系统的重要组成部分。
7. 海洋资源:海洋资源丰富,包括渔业资源、石油和天然气、矿物质、药物等。
8. 海洋环境问题:海洋面临着多种环境问题,如过度捕鱼、海洋污染、气候变化导致的海洋酸化和海平面上升等。
9. 海洋保护:为了保护海洋生态系统,各国和国际组织正在采取措施,如建立海洋保护区、减少塑料垃圾排放、限制过度捕鱼等。
10. 海洋研究:海洋学是研究海洋的自然科学,涉及海洋的物理、化学、生物、地质等多个方面。
11. 海洋与气候:海洋对全球气候有着重要影响,它能够调节气候、吸收二氧化碳、影响降水等。
12. 海洋的探索:人类对海洋的探索从未停止,从古代的航海家到现代的深海潜水器和卫星遥感技术,都在不断扩展我们对海洋的认识。
海洋是地球上最神秘、最广阔的领域之一,人类对它的了解仍然有限。
随着科技的发展,我们对海洋的认识将会越来越深入。
环境海洋学化学部分答案一.名词解释1.常量元素:即海水的主要的成分。
除组成水的H和O外,溶解组分的含量大于1mg/kg的仅有11种,包括Na+、Mg2+、Ca2+、K+和Sr2+五种阳离子,Cl-、SO42-、CO32-(HCO3-)、Br-和F-五种阴离子,以及H3BO3分子。
这些成分占海水中总盐分的99.9%,所以称主要成分。
2.营养元素:主要是与海洋生物生长有关的一些元素,通常是指N、P和Si。
3.主要成分恒比定律:尽管各大洋各海区海水的含盐量可能不同,但海水主要溶解成分的含量间有恒定的比值,这就是海水主要成分的恒比定律,也称为Marcet-Dittmar恒比定律。
4.元素的保守性:海水中物质的浓度只能被物理过程(蒸发和降水稀释)而不被生物和化学过程所改变。
5.海水的碱度:在温度为20℃时,1L海水中弱酸阴离子全部被释放时所需要氢离子的毫摩尔数6.碳酸碱度:由CO32-和HCO3-所形成的碱度7.硼酸碱度:由B(OH)4-所形成的碱度8.海洋低氧现象:对水生生物的生理或行为,如生长速率、繁殖能力、多样性、死亡等产生有害影响的氧环境。
通常把溶解氧浓度不大于2mg/L作为缺氧判断临界值。
9.悬浮颗粒物:简称“悬浮物”,亦称“悬浮体”、“悬浮固体”或“悬浮胶体”,是能在海水中悬浮相当长时间的固体颗粒,包括有机和无机两大部分。
10.硝酸盐的还原作用:NO3-被细菌作用还原为NO2-,并进一步转化为NH3或NH4+的过程11.反硝化作用:NO3-在某些脱氮细菌的作用下,还原为N2或NO2的过程12.海洋生物固氮作用:通过海-气界面交换进入海水中的溶解N2,在海洋中某些细菌和蓝藻的作用下还原为NH3、NH4+或有机氮化合物的过程。
13.Redfield比值:海洋漂游生物对营养盐的吸收一般按照C:N:P=106:16:1进行,这一比例关系常被称为Redfield比值。
14.营养盐限制:营养盐比例不平衡会导致浮游植物生长受制于某一相对不足的营养盐,通常被称为营养盐限制。
中国地质调查局地质调查技术标准DD2005-01多目标区域地球化学调查规范(1:250000)中国地质调查局2005 年10 月I目次 (Ⅲ)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 总则 (2)5 设计书的编写 (2)6 土壤地球化学样品采集工作方法 (3)7 近海海域沉积物地球化学样品采集工作方法 (8)8 湖泊沉积物地球化学样品采集工作方法 (9)9 水地球化学样品采集工作方法 (10)10 样品库 (12)11 野外原始资料质量检查 (12)12 土壤地球化学样品分析测试质量要求及质量控制 (13)13 水地球化学样品分析测试质量要求及质量控制 (19)14 数据库与地球化学图编制 (20)15 异常查证 (24)16 多目标区域地球化学调查报告的编写 (26)17 附录A 土壤地球化学采样记录卡(规范性附录)………………………………2818 附录B 水地球化学采样记录卡(规范性附录)…………………………………3019 附录C 近岸海域沉积物、湖积物地球化学采样记录卡(规范性附录)………3220 附录D 野外工作GPS 定点及航迹监管要求(规范性附录)……………………3421 附录E 质量检查记录表(资料性附录)…………………………………………3522 附录F 各省、市、自治区的编码(资料性附录)………………………………4123 附录G 标样质量监控图图式(规范性附录)……………………………………4224 附录H 多目标区域地球化学调查报告封面、扉页格式(资料性附录)………4325 附录J 地球化学图图式(资料性附录)…………………………………………45II《多目标区域地球化学调查规范(1:250000)》是针对我国第四系发育的平原、盆地、滩涂、近岸海域、湖泊、湿地、草原、黄土高原及丘陵山地等地区开展的区域性、基础性资源与环境地球化学调查工作而制定的。
以往国内外均未编制过该类调查工作的技术要求。
海洋沉积物Nd同位素研究进展近年来,海洋中放射成因同位素体系已被广泛用来示踪和恢复古洋流的循环。
其中,Nd同位素体系已经成为最重要的研究手段之一,并且取得了许多重大的研究成果,极大地推动了海洋组成及演化等方面的研究。
本文围绕海洋沉积物中的碎屑组分及自生组分来分别阐述Nd同位素体系在物源分析及古海洋演化中应用的可行性及最新的研究进展,并结合实例进行分析说明。
标签:Nd同位素海洋沉积物物源分析古海洋演化1前言地球的内部活动(岩浆活动、板块运动、地幔柱活动、大陆的聚散等)和外部状态(地理、气候、风化等)影响和控制着海洋环流、海水成分以及沉积作用。
海洋沉积物中保存了古海洋的某些信息,因此,通过研究这些沉积物的同位素组成,可获得古环境、物源、古气候以及与此相关的地球内部活动的信息。
近年来,这一研究领域已发展成当今地球科学研究中的前沿领域之一,具有十分重要的科学意义。
近年来,多种放射性同位素体系(Nd、Pb、Hf、Sr、Os等)已被广泛应的用来示踪物源和恢复古洋流循环的研究中[1]。
其中,Nd同位素的研究程度相对较高且应用最为广泛,并取得了许多重要的成果。
本文目的在于介绍国内外Nd 同位素的最新研究方法和成果,提高我们对这一领域的认识和研究。
2 Nd同位素简介Nd属于轻稀土元素,在自然界中共有7种同位素,其中常用的主要为143Nd 和144Nd。
144Nd是由放射性元素147Sm衰变形成,主要来自于海底地幔物质如洋脊超基性—基性系列岩石,因此也称其为放射性成因Nd;而143Nd则多富集与酸性铝硅酸盐中,是Nd的稳定同位素,通常被认为是陆源Nd。
Sm-Nd同位素体系最初并没有被应用于古海洋学研究,而是作为岩石地球化学的示踪体系来指示各种壳-幔演化过程[2]。
最早研究海洋中的Nd同位素是在20世纪70年代,O’Nions等[3]首次报道了海洋铁锰结核以及热液沉积物的Nd同位素组成。
为了应用的方便,通常Nd同位素组成的表达为εNd,其计算方式下:其中CHUR代表球粒陨石储库。