海洋生物活性肽的研究概况[1][1].ppt
- 格式:ppt
- 大小:956.50 KB
- 文档页数:20
海洋生物活性肽生物学和功能特性的研究进展广州华银医学检验中心有限公司摘要:目前国际市场上已经出现了含有生物活性肽的产品。
作为新型功能性食品的潜在来源,生物活性肽等生物活性化合物引起了众多研究者的兴趣。
生物活性肽是一种对身体功能有积极影响并可能影响健康的特定氨基酸片段,是由几个至十几个氨基酸通过共价键连接而成的有机物质,虽然不同分子片段的复杂程度有所差异,但生物活性肽的分子质量都在6000Da以下。
本文主要对海洋生物活性肽生物学和功能特性的研究进展进行论述,详情如下。
关键词:海洋生物;活性肽;生物学;功能特性引言近年来,海洋生物活性肽成为研究热点,其抗氧化、抗高血压和抗动脉粥样硬化等生物学特性以及溶解性、起泡性和乳化性等功能特性被广泛关注,这些特性缘于其化学组成和物理结构。
目前生物活性肽最常用的制备方法是酶解法,其中应用较多的酶是胃肠酶。
海洋资源是新型功能性成分的良好来源,如多糖、矿物质、维生素、抗氧化剂和多肽等。
海洋生物活性肽可被应用于功能食品、药品或化妆品领域。
1海洋生物活性肽生物活性多肽的来源非常广泛,主要有动物源和植物源。
海洋生物被认为是生物活性肽的重要来源,可以发挥生物功能来预防和治疗各种疾病。
最近的药理学研究报道了海洋生物活性肽的心脏保护、抗肿瘤、抗氧化、抗糖尿病等作用。
海洋衍生生物活性肽是有助于消费者健康的合成成分的替代来源,是营养药品和功能性食品的一部分,得到了市场的广泛认可。
对大鲵肉进行酶解,提取到的大鲵肉酶解肽分子量分布在5kDa以下,具有免疫调节活性和抗氧化活性。
采用体外胃肠消化法从牡蛎蛋白质中提取出分子量为1.60kDa的强抗氧化肽,纯化后能有效地清除自由基,并能有效地防止因羟基自由基所致DNA损伤。
利用酶解法从大眼金枪鱼暗肌中纯化出一种分子量为1222Da的抗氧化肽,可以有效清除自由基并抑制脂质过氧化,还能显著地清除细胞ROS,增强细胞活性。
观察到分子量为928Da的康格海鳗抗氧化肽对自由基有较强的清除作用,比α-生育酚有更强的活性。
海洋生物活性肽的提取与应用海洋生物是地球上独特而丰富的资源之一,其中包含了许多具有生物活性的物质。
其中,海洋生物活性肽是一类具有广泛应用前景的生物功能分子。
本文将对海洋生物活性肽的提取与应用进行探讨,以期为相关研究与开发提供参考。
一、海洋生物活性肽的特点海洋生物活性肽是由海洋生物中提取出来的一类多肽,具有以下几个特点:1. 多样性:海洋生物种类繁多,其中包含了大量未被开发利用的物种。
这些物种中存在着丰富的生物活性肽资源,包括抗菌肽、抗氧化肽、抗炎肽等。
2. 高效性:海洋生物活性肽具有较高的生物活性和生物利用率,对人体具有良好的生物相容性和生物可利用性。
3. 生物功能多样性:海洋生物活性肽具有抗菌、抗氧化、抗炎、抗衰老等多种生物功能,具有广泛的应用前景。
二、海洋生物活性肽的提取方法提取是获得海洋生物活性肽的关键步骤,目前常用的提取方法有以下几种:1. 酸性水解法:将海洋生物样品经过酸性水解处理,使蛋白质解离为多肽,再通过分离纯化得到目标肽段。
2. 酶解法:利用特定酶对海洋生物样品进行酶解,使蛋白质分解为多肽,再通过分离纯化得到目标肽段。
3. 抽提法:采用有机溶剂或超临界流体等方法对海洋生物样品进行溶剂抽提,得到含有目标肽的溶液,再进行浓缩和纯化。
4. 智能膜技术:利用具有特定孔径和亲和性的智能膜对海洋生物样品进行过滤和分离,得到目标肽。
三、海洋生物活性肽的应用领域海洋生物活性肽具有广泛的应用前景,目前已在以下几个领域得到应用:1. 医药领域:海洋生物活性肽具有抗炎、抗菌、促进伤口愈合等生物功能,可以应用于药物研发、抗菌剂开发以及组织工程等领域。
2. 食品工业:海洋生物活性肽具有抗氧化、保健、增强免疫力等功能,可以应用于食品添加剂、保健品和功能性食品的开发中。
3. 化妆品领域:海洋生物活性肽具有抗衰老、保湿、修复肌肤等功能,可用于化妆品的开发与应用。
4. 生物工程:海洋生物活性肽可以被应用于生物材料的合成与改良,用于构建生物传感器、生物膜和细胞培养等领域。
近年来海洋生物活性多肽的研究概况与探析维普资讯 ////0>.第卷第期. . .海洋通报年月.近年来海洋生物活性多肽的研究概况与展望于荣敏,严春艳,曲红艳,姚新生,暨南大学药学院,广东广州 ;沈阳药科大学,辽宁沈阳摘要:海洋是地球上资源最丰富的领域,海洋生物是新型肽类生物活性物质的重要来源。
科学研究证明,许多海洋多肽具有抗肿痛、抗艾滋病、抗真菌、抗病毒、防治心脑血管疾病及免疫调节等药理活性。
本文简要介绍了近来国内外对海洋生物活性肽的研究概况,并进行了概括性展望。
关键词:海洋;生物活性肽;研究概况:展望中图分类号:文献标识码: 文章编号:?海洋是地球上资源最丰富的领域,由于海洋生物物种的生态环境比陆生生物复杂得多,其赋予海洋生物的某些特异的化学结构是陆地生物体内尚未发现的,这使得海洋成为创新药物与功能性/保健食品的资源宝库。
自世纪年代以来,人们已经从海洋生物中分离出数万种新型化合物,包括肽类、蛋白质类、多糖类、生物碱类、萜类、大环聚酯类等类型。
海洋生物活性物质中肽类是数量最庞大的一类化合物,达数万种之多 ,包括海洋肽类毒素与海洋生物活性肽等。
生物活性肽是指有特殊生理活性的肽类。
现已证明,很多海洋肽类具有抗肿瘤、抗艾滋病、抗真菌、抗病毒及免疫调节等生理活性。
抗肿瘤多肽从海洋动物提取的化合物有 %具有抗癌活性,海洋植物提取物有. %具有抗癌和细胞毒活性。
其中抗癌多肽具有活性高、稳定性好等特点。
由于海洋生物生存的特定环境,海洋抗癌多肽的结构与陆生动植物肽糖肽有很大不同,多为小分子环肽.含有丰富的型氨基酸、羟基酸、新的氨基酸与氨基酸及噻酚、嗯唑环。
有的还含有烯键与炔键,这大大提高了肽的生物稳定性及生物利用度。
年,等从帕劳群岛的海洋藻青菌中分离得到了抗肿瘤活性很高的化合物 ,它最初是从海兔中获得的。
人们还从关岛和夏威夷的中分离得到了的化学类似物,结构中的 , 二甲基异亮氨酸基团为型氨基酸,并确定了它的立体化学结构。
(生物科技行业)海洋生物活性肽研究进展海洋生物活性肽研究进展海洋生物物种的多样性以及所含化合物的特异性,为海洋生物资源的开发利用提供了许多机遇与挑战。
由于海洋存在许多极端环境,如高压(深海)、低温(极地、深海)、高温(海底火山口)和高盐等。
为了适应这些极端的海洋生境,海洋生物蛋白质无论氨基酸的组成或序列都与陆地生物蛋白有很大的不同。
生物活性肽是指那些有特殊生理活性的肽类。
同时,海洋生物蛋白资源无论在种类还是在数量上都远远大于陆地蛋白资源,并且未得到很好的开发。
1海洋天然生物活性肽天然存在的活性肽包括肽类抗生素、激素等生物体的次级代谢产物以及各种组织系统,如骨骼、肌肉、免疫、消化、中枢神经系统中存在的活性肽。
随着人们对海洋资源认识水平的提高,以及现代生物技术在海洋药物研究中的应用,RP-HPLC,2D-NMR,TOF-MS,手性色谱(包括GC,HPLC)等技术的发展,使得对海洋活性肽的研究易于进行。
目前研究的海洋活性肽主要包括来源于海鞘、海葵、海绵、芋螺、海星、海兔、海藻、鱼类、贝类等的活性肽以及在海洋生物中广泛分布的生物防御素。
1.1海鞘多肽海鞘(Ascidian)属于脊索动物门,海鞘纲与尾索动物亚门的另外两个纲称为被囊动物(Tunicate),约有2000种,海鞘是被囊动物中种类最丰富、含有重要生物活性物质最多的一类。
自1980年Ireland等从海鞘中发现一个具有抗肿瘤活性的环肽Ulithiacycla-mide 以来,不断有环肽从此类海洋生物中发现。
最令人瞩目的是从加利福尼亚海域及加勒比海中群体海鞘Trididemnumsolidum.中分离出的3种环肽DidemninA~C,它们都具有体内和体外抗病毒和抗肿瘤活性,其中DidemninB的活性最强,对乳腺癌、卵巢癌具明显的抑制活性。
同时,它还有明显的免疫抑制活性,体内活性较环抱霉素A强1000倍,有望成为新型抗肿瘤药.1.2海葵多肽海葵(Anemone)是另一类富含生物活性物质的海洋生物。
可控酶解从海洋鱼蛋白中制备生物活性肽的研究一、本文概述本研究工作聚焦于海洋资源的深度开发利用,特别是针对海洋鱼类蛋白这一丰富且未充分利用的生物资源,采用先进的可控酶解技术来制备具有生物活性的肽类物质。
论文首先阐述了海洋鱼蛋白作为生物活性肽潜在来源的重要性,以及酶解技术在蛋白质改性和功能成分释放方面的优势。
通过对沙丁鱼蛋白进行系统研究,我们探索了酶种类选择、酶解条件(包括pH值、温度、水解时间、酶底物比等)的优化,并结合超滤和离子交换层析等分离纯化手段,旨在高效地从鱼蛋白中获得具有特定生物活性的小分子肽。
研究的核心目标是探究如何通过精准调控酶解过程,实现对生物活性肽产量和结构的控制,进而鉴定其结构特征和生物活性。
实验不仅涵盖了活性肽的制备流程优化,还包括对其抗疲劳活性的深入研究,以验证所得到的生物活性肽在改善机体机能方面可能的应用价值。
最终,本研究期望为海洋鱼蛋白资源的高值化利用提供理论依据和技术支撑,推动生物活性肽在医药、食品、化妆品等领域的发展与应用。
二、海洋鱼蛋白原料及预处理方法海洋鱼蛋白作为生物活性肽的理想来源,因其丰富的氨基酸组成和潜在的生物活性而备受关注。
本研究选取了新鲜且富含高质量蛋白质的海洋鱼类,如沙丁鱼、鲐鲅鱼等,确保原料的新鲜度和无污染状态是保证最终产品品质的关键。
在预处理阶段,首先对捕捞或收购的鱼类进行了严格筛选,剔除了病害、死亡以及不新鲜的个体。
原料鱼经清洗去除内脏和杂质后,采用低温冷冻技术迅速锁住蛋白质结构和营养成分,防止腐败变质。
随后进行解冻,并对鱼肉进行机械破碎,通过物理方式去除脂肪和其他非蛋白成分,这一过程通常包括离心分离、压榨脱脂等步骤,力求将鱼蛋白的脱脂残留量控制在较低水平,以利于后续酶解反应的高效进行。
接着,对脱脂后的鱼肉进行温和热处理,以破坏肌肉组织结构并灭活可能影响酶解效果的天然酶类。
将处理过的鱼肉进一步研磨成细粉,以增大鱼蛋白与酶接触的表面积,提高酶解效率。